blob: 39cab6db7476c729349cfd28a99598f029bd85a4 [file] [log] [blame]
/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Vineetg: Aug 21st 2010
* -Is uart_tx_stopped() not done in tty write path as it has already been
* taken care of, in serial core
*
* Vineetg: Aug 18th 2010
* -New Serial Core based ARC UART driver
* -Derived largely from blackfin driver albiet with some major tweaks
*
* TODO:
* -check if sysreq works
* -suspend/resume, although it is non-hotpluggable
*/
#if defined(CONFIG_ARC_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/module.h>
#include <linux/serial.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/platform_device.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <asm/irq.h>
#include <asm/board/plat_memmap.h>
#include <asm/board/plat_irq.h>
/* workaround for ISS VUART baudh=0 bug */
extern int running_on_hw;
/*************************************
* ARC UART Hardware Specs
************************************/
#define ARC_UART_TX_FIFO_SIZE RUBY_UART_FIFO_SIZE
/* UART Register set:
* Word aligned, but only 8 bits wide
*/
typedef volatile struct {
unsigned char id0 __attribute__((aligned(4)));
unsigned char id1 __attribute__((aligned(4)));
unsigned char id2 __attribute__((aligned(4)));
unsigned char id3 __attribute__((aligned(4)));
unsigned char data __attribute__((aligned(4)));
unsigned char status __attribute__((aligned(4)));
unsigned char baudl __attribute__((aligned(4)));
unsigned char baudh __attribute__((aligned(4)));
} arc_uart_registers;
/* Bits for UART Status Reg (R/W) */
#define RXIENB 0x04 // Receive Interrupt Enable
#define TXIENB 0x40 // Transmit Interrupt Enable
#define RXEMPTY 0x20 // Receive FIFO Empty: No char received
#define TXEMPTY 0x80 // Transmit FIFO Empty, thus char can be written into
#define RXFULL 0x08 // Receive FIFO full
#define RXFULL1 0x10 // Receive FIFO has space for 1 char (tot space=4)
#define RXFERR 0x01 // Frame Error: Stop Bit not detected
#define RXOERR 0x02 // OverFlow Err: Char recv but RXFULL still set
/* Uart bit fiddling helpers: lowest level */
#define RBASE(uart) ((arc_uart_registers *)(uart->port.membase))
#define UART_REG_SET(u, reg, val) (RBASE(u)->reg = (val))
#define UART_REG_OR(u, reg, val) (RBASE(u)->reg |= (val))
#define UART_REG_CLR(u, reg, val) (RBASE(u)->reg &= (~(val)))
#define UART_REG_GET(u, reg) (RBASE(u)->reg)
/* Uart bit fiddling helpers: API level */
#define UART_SET_DATA(uart, val) UART_REG_SET(uart,data,val)
#define UART_GET_DATA(uart) UART_REG_GET(uart,data)
#define UART_SET_BAUDH(uart, val) UART_REG_SET(uart,baudh,val)
#define UART_SET_BAUDL(uart, val) UART_REG_SET(uart,baudl,val)
#define UART_CLR_STATUS(uart, val) UART_REG_CLR(uart,status,val)
#define UART_GET_STATUS(uart) UART_REG_GET(uart,status)
#define UART_ALL_IRQ_DISABLE(uart) UART_REG_CLR(uart,status,RXIENB|TXIENB)
#define UART_RX_IRQ_DISABLE(uart) UART_REG_CLR(uart,status,RXIENB)
#define UART_TX_IRQ_DISABLE(uart) UART_REG_CLR(uart,status,TXIENB)
#define UART_ALL_IRQ_ENABLE(uart) UART_REG_OR(uart,status,RXIENB|TXIENB)
#define UART_RX_IRQ_ENABLE(uart) UART_REG_OR(uart,status,RXIENB)
#define UART_TX_IRQ_ENABLE(uart) UART_REG_OR(uart,status,TXIENB)
/* Board specific helpers */
#define ARC_UART_BASE(x) (RUBY_UART0_BASE_ADDR + x * 0x5000000)
static unsigned int arc_uart_irq[CONFIG_ARC_SERIAL_NR_PORTS] = {
#if CONFIG_ARC_SERIAL_NR_PORTS >= 1
VUART_IRQ
#endif
#if CONFIG_ARC_SERIAL_NR_PORTS >= 2
,VUART1_IRQ
#endif
#if CONFIG_ARC_SERIAL_NR_PORTS >= 3
,VUART2_IRQ
#endif
};
#define ARC_SERIAL_NAME "ttyS"
#define ARC_SERIAL_MAJOR 4 //204
#define ARC_SERIAL_MINOR 64
struct arc_serial_port {
struct uart_port port;
};
static struct arc_serial_port arc_serial_ports[CONFIG_ARC_SERIAL_NR_PORTS];
#ifdef CONFIG_ARC_SERIAL_CONSOLE
static struct console arc_serial_console;
#define ARC_SERIAL_CONSOLE &arc_serial_console
#else
#define ARC_SERIAL_CONSOLE NULL
#endif
/* Although compile time option, could be over-ridden by bootup tag parsing */
unsigned long serial_baudrate = CONFIG_ARC_SERIAL_BAUD;
static int arc_serial_probe(struct platform_device *dev);
static int arc_serial_remove(struct platform_device *dev);
static struct uart_driver arc_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "arc-uart",
.dev_name = ARC_SERIAL_NAME,
.major = ARC_SERIAL_MAJOR,
.minor = ARC_SERIAL_MINOR,
.nr = CONFIG_ARC_SERIAL_NR_PORTS,
.cons = ARC_SERIAL_CONSOLE,
};
static struct platform_driver arc_platform_driver = {
.probe = arc_serial_probe,
.remove = arc_serial_remove,
// .suspend = arc_serial_suspend,
// .resume = arc_serial_resume,
.driver = {
.name = "arc-uart",
.owner = THIS_MODULE,
},
};
static int arc_serial_probe(struct platform_device *dev)
{
int i;
for (i = 0; i < CONFIG_ARC_SERIAL_NR_PORTS; i++) {
platform_set_drvdata(dev, &arc_serial_ports[i].port);
//arc_serial_ports[i].port.dev = &dev->dev;
uart_add_one_port(&arc_uart_driver, &arc_serial_ports[i].port);
}
return 0;
}
static int arc_serial_remove(struct platform_device *dev)
{
int i;
for (i = 0; i < CONFIG_ARC_SERIAL_NR_PORTS; i++) {
uart_remove_one_port(&arc_uart_driver, &arc_serial_ports[i].port);
arc_serial_ports[i].port.dev = NULL;
}
return 0;
}
static void arc_serial_stop_rx(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
UART_RX_IRQ_DISABLE(uart);
}
static void arc_serial_stop_tx(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
while (!(UART_GET_STATUS(uart) & TXEMPTY))
cpu_relax();
UART_TX_IRQ_DISABLE(uart);
}
/*
* Return TIOCSER_TEMT when transmitter is not busy.
*/
static unsigned int arc_serial_tx_empty(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
unsigned int stat;
stat = UART_GET_STATUS(uart);
if (stat & TXEMPTY )
return TIOCSER_TEMT;
else
return 0;
}
// TODO:remove this
int arc_cnt;
/* Driver internal routine, used by both tty(serial core) as well as tx-isr
* -Called under spinlock in either cases
* -also tty->stopped / tty->hw_stopped has already been checked
* = by uart_start( ) before calling us
* = tx_ist checks that too before calling
*/
static void arc_serial_tx_chars(struct arc_serial_port *uart)
{
struct circ_buf *xmit = &uart->port.state->xmit;
int sent=0;
unsigned char ch;
if (unlikely(uart->port.x_char)) {
UART_SET_DATA(uart, uart->port.x_char);
uart->port.icount.tx++;
uart->port.x_char = 0;
sent = 1;
}
else if ( xmit->tail != xmit->head) { // TODO: uart_circ_empty
ch = xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
uart->port.icount.tx++;
while( !(UART_GET_STATUS(uart) & TXEMPTY))
arc_cnt++;
UART_SET_DATA(uart, ch);
sent = 1;
}
/* If num chars in xmit buffer are too few, ask for more from tty layer */
// By Hard ISR to schedule processing in software interrupt part */
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&uart->port);
//if (uart_circ_chars_pending(xmit))
if (sent)
UART_TX_IRQ_ENABLE(uart);
}
/*
* port is locked and interrupts are disabled
* uart_start( ) calls us under the port spinlock irqsave
*/
static void arc_serial_start_tx(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
arc_serial_tx_chars(uart);
}
static void arc_serial_rx_chars(struct arc_serial_port *uart)
{
struct tty_struct *tty = NULL;
unsigned int status, ch, flg=0;
tty = uart->port.state->port.tty;
/* UART controller has 4 deep RX-FIFO. Driver's recongnition of this fact
* is very subtle. Here's how ...
* Upon getting a RX-Intr, such that RX-EMPTY=0, meaning data available,
* driver reads the DATA Reg and keeps doing that in a loop,
* until RX-EMPTY=1. Multiple chars being avail, with a single Interrupt,
* before RX-EMPTY=0, implies some sort of buffering going on in the
* controller, which is indeed the Rx-FIFO.
*/
while( !( (status = UART_GET_STATUS(uart)) & RXEMPTY)) {
ch = UART_GET_DATA(uart);
uart->port.icount.rx++;
if (unlikely(status & (RXOERR|RXFERR))) {
if (status & RXOERR) {
uart->port.icount.overrun++;
flg = TTY_OVERRUN;
UART_CLR_STATUS(uart, RXOERR);
}
if (status & RXFERR) {
uart->port.icount.frame++;
flg = TTY_FRAME;
UART_CLR_STATUS(uart, RXFERR);
}
}
else
flg = TTY_NORMAL;
if (unlikely(uart_handle_sysrq_char(&uart->port, ch)))
goto done;
uart_insert_char(&uart->port, status, RXOERR, ch, flg);
done:
tty_flip_buffer_push(tty);
}
}
/* A note on the Interrupt handling state machine of this driver
*
* kernel printk writes funnel thru the console driver framework and in order
* to keep things simple as well as efficient, it writes to UART in polled
* mode, in one shot, and exits.
*
* OTOH, Userland output (via tty layer), uses interrupt based writes as there
* can be undeterministic delay between char writes.
*
* Thus Rx-interrupts are always enabled, while tx-interrupts are by default
* disabled.
*
* When tty has some data to send out, serial core calls driver's start_tx
* which
* -checks-if-tty-buffer-has-char-to-send
* -writes-data-to-uart
* -enable-tx-intr
*
* Once data bits are pushed out, controller raises the Tx-room-avail-Interrupt.
* The first thing Tx ISR does is disable further Tx interrupts (as this could
* be the last char to send, before settling down into the quiet polled mode).
* It then calls the exact routine used by tty layer write to send out any
* more char in tty buffer. In case of sending, it re-enables Tx-intr. In case
* of no data, it remains disabled.
* This is how the transmit state machine is dynamically switched on/off
*
*/
static irqreturn_t arc_serial_isr(int irq, void *dev_id)
{
struct arc_serial_port *uart = dev_id;
unsigned int status;
status = UART_GET_STATUS(uart);
/* Single IRQ for both Rx (data available) Tx (room available) Interrupt
* notifications from the UART Controller.
* To demultiplex between the two, we check the relevant bits
*/
if ((status & RXIENB) && !(status & RXEMPTY)) {
spin_lock(&uart->port.lock); // already in ISR, no need of xx_irqsave
arc_serial_rx_chars(uart);
spin_unlock(&uart->port.lock);
}
if ((status & TXIENB) && (status & TXEMPTY)) {
/* Unconditionally disable further Tx-Interrupts.
* will be enabled by tx_chars() if needed.
*/
UART_TX_IRQ_DISABLE(uart);
spin_lock(&uart->port.lock);
if (!uart_tx_stopped(&uart->port)) {
arc_serial_tx_chars(uart);
}
spin_unlock(&uart->port.lock);
}
return IRQ_HANDLED;
}
static unsigned int arc_serial_get_mctrl(struct uart_port *port)
{
/* Pretend we have a Modem status reg and following bits are
* always set, to satify the serial core state machine
* (DSR) Data Set Ready
* (CTS) Clear To Send
* (CAR) Carrier Detect
*/
return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
}
static void arc_serial_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
// MCR not present
}
/* Enable Modem Status Interrupts */
static void arc_serial_enable_ms(struct uart_port *port)
{
// MSR not present
}
static void arc_serial_break_ctl(struct uart_port *port, int break_state)
{
// ARC UART doesn't support sendind Break signal
}
static int arc_serial_startup(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
unsigned int tmp;
// Edge Triggered Interrupts to eliminate Spurious Interrupts
tmp = read_new_aux_reg(AUX_ITRIGGER);
tmp |= (1 << uart->port.irq);
write_new_aux_reg(AUX_ITRIGGER,tmp);
/* Before we hook up the ISR, Disable all UART Interrupts */
UART_ALL_IRQ_DISABLE(uart);
// TODO: generic request_irq takes a difft set of flags
// We dont need IRQF_DISABLED since further IRQ auto-disabled
if (request_irq(uart->port.irq, arc_serial_isr, IRQ_FLG_LOCK,
"ARC_UART_RX", uart)) {
printk(KERN_NOTICE "Unable to attach ARC UART interrupt\n");
return -EBUSY;
}
UART_RX_IRQ_ENABLE(uart); // Only Rx IRQ enabled. WHY ?
return 0;
}
/* This is not really needed */
static void arc_serial_shutdown(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
free_irq(uart->port.irq, uart);
}
static void arc_serial_set_ldisc(struct uart_port *port)
{
// this might need implementing for the touch driver
}
static void
arc_serial_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
unsigned int baud, uartl, uarth, hw_val;
unsigned long flags;
// TBD : We need to support more functions
/* Use the generic handler so that any specially encoded baud rates
* such as SPD_xx flags or "%B0" can be handled
*/
// Max Baud I suppose will not be more than current 115K * 4
baud = uart_get_baud_rate(port, termios, old, 0, 460800);
/* Formula for ARC UART is: hw-val = ((CLK/(BAUD*4)) -1)
* spread over two 8-bit registers
*/
hw_val = uart->port.uartclk / (baud*4) -1;
uartl = hw_val & 0xFF;
uarth = (hw_val >> 8) & 0xFF;
/* ISS UART emulation has a subtle bug:
* A existing value of Baudh = 0 is used as a indication to startup
* it's internal state machine.
* Thus if baudh is set to 0, 2 times, it chokes.
* This happens with BAUD=115200 and the formaula above
* Until that is fixed, when runnign on ISS, we will set baudh to !0
*/
if (!running_on_hw) {
uarth = 1;
}
spin_lock_irqsave(&uart->port.lock, flags);
UART_ALL_IRQ_DISABLE(uart);
UART_SET_BAUDL(uart, uartl);
UART_SET_BAUDH(uart, uarth);
UART_RX_IRQ_ENABLE(uart);
/* Port speed changed, update the per-port timeout. */
uart_update_timeout(port, termios->c_cflag, baud);
spin_unlock_irqrestore(&uart->port.lock, flags);
}
static const char *arc_serial_type(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
return uart->port.type == PORT_ARC ? "ARC-UART" : NULL;
}
/*
* Release the memory region(s) being used by 'port'.
*/
static void arc_serial_release_port(struct uart_port *port)
{
}
/*
* Request the memory region(s) being used by 'port'.
*/
static int arc_serial_request_port(struct uart_port *port)
{
return 0;
}
/*
* Verify the new serial_struct (for TIOCSSERIAL).
*/
static int
arc_serial_verify_port(struct uart_port *port, struct serial_struct *ser)
{
return 0;
}
/*
* Configure/autoconfigure the port.
*/
static void arc_serial_config_port(struct uart_port *port, int flags)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
if (flags & UART_CONFIG_TYPE &&
arc_serial_request_port(&uart->port) == 0)
uart->port.type = PORT_ARC;
}
#ifdef CONFIG_CONSOLE_POLL
static void arc_serial_poll_put_char(struct uart_port *port, unsigned char chr)
{
while( !( (status = UART_GET_STATUS(uart)) & TXEMPTY)) {
cpu_relax();
}
UART_SET_DATA(uart, chr);
}
static int arc_serial_poll_get_char(struct uart_port *port)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
unsigned char chr;
while( !( (status = UART_GET_STATUS(uart)) & RXEMPTY)) {
cpu_relax();
chr = UART_GET_DATA(uart);
return chr;
}
#endif
static struct uart_ops arc_serial_pops = {
.tx_empty = arc_serial_tx_empty,
.set_mctrl = arc_serial_set_mctrl,
.get_mctrl = arc_serial_get_mctrl,
.stop_tx = arc_serial_stop_tx,
.start_tx = arc_serial_start_tx,
.stop_rx = arc_serial_stop_rx,
.enable_ms = arc_serial_enable_ms,
.break_ctl = arc_serial_break_ctl,
.startup = arc_serial_startup,
.shutdown = arc_serial_shutdown,
.set_termios = arc_serial_set_termios,
.set_ldisc = arc_serial_set_ldisc,
.type = arc_serial_type,
.release_port = arc_serial_release_port,
.request_port = arc_serial_request_port,
.config_port = arc_serial_config_port,
.verify_port = arc_serial_verify_port,
#ifdef CONFIG_CONSOLE_POLL
.poll_put_char = arc_serial_poll_put_char,
.poll_get_char = arc_serial_poll_get_char,
#endif
};
static void __init arc_serial_init_ports(void)
{
static int first = 1;
int i;
if (!first)
return;
first = 0;
for (i = 0; i < CONFIG_ARC_SERIAL_NR_PORTS; i++) {
arc_serial_ports[i].port.uartclk = CONFIG_ARC700_CLK; //get_sclk();
arc_serial_ports[i].port.fifosize = ARC_UART_TX_FIFO_SIZE;
arc_serial_ports[i].port.ops = &arc_serial_pops;
arc_serial_ports[i].port.line = i;
arc_serial_ports[i].port.iotype = UPIO_MEM;
arc_serial_ports[i].port.membase = (void *)ARC_UART_BASE(i);
arc_serial_ports[i].port.mapbase = ARC_UART_BASE(i);
arc_serial_ports[i].port.irq = arc_uart_irq[i];
arc_serial_ports[i].port.flags = UPF_BOOT_AUTOCONF;
/* uart_insert_char( ) uses it in decideding whether to ignore a
* char or not. Explicitly setting it here, removes the subtelty
*/
arc_serial_ports[i].port.ignore_status_mask = 0;
}
}
static struct platform_device *dev[CONFIG_ARC_SERIAL_NR_PORTS];
static int __init arc_serial_init(void)
{
int ret, i=0;
pr_info("Serial: ARC serial driver: platform register\n");
arc_serial_init_ports();
ret = uart_register_driver(&arc_uart_driver);
if (ret)
return ret;
for ( i= 0; i < CONFIG_ARC_SERIAL_NR_PORTS; i++) {
dev[i] = platform_device_register_simple("arc-uart",i,NULL,0);
if (IS_ERR(dev[i])) {
printk("ARC serial: plat device regisn failed\n");
return PTR_ERR(dev[i]);
}
}
ret = platform_driver_register(&arc_platform_driver);
if (ret) {
pr_debug("uart register failed\n");
uart_unregister_driver(&arc_uart_driver);
}
return ret;
}
static void __exit arc_serial_exit(void)
{
platform_driver_unregister(&arc_platform_driver);
uart_unregister_driver(&arc_uart_driver);
}
module_init(arc_serial_init);
module_exit(arc_serial_exit);
#ifdef CONFIG_ARC_SERIAL_CONSOLE
static int __init
arc_serial_console_setup(struct console *co, char *options)
{
struct arc_serial_port *uart;
int baud = CONFIG_ARC_SERIAL_BAUD;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index == -1 || co->index >= CONFIG_ARC_SERIAL_NR_PORTS)
co->index = 0;
uart = &arc_serial_ports[co->index];
/* Serial core will call port->ops->set_termios( )
* which will set the baud reg
*/
return uart_set_options(&uart->port, co, baud, parity, bits, flow);
}
static void arc_serial_console_putchar(struct uart_port *port, int ch)
{
struct arc_serial_port *uart = (struct arc_serial_port *)port;
while (!(UART_GET_STATUS(uart) & TXEMPTY));
UART_SET_DATA(uart, ch);
}
/*
* Interrupts are disabled on entering
*/
static void
arc_serial_console_write(struct console *co, const char *s, unsigned int count)
{
struct arc_serial_port *uart = &arc_serial_ports[co->index];
unsigned long flags;
spin_lock_irqsave(&uart->port.lock, flags);
uart_console_write(&uart->port, s, count, arc_serial_console_putchar);
spin_unlock_irqrestore(&uart->port.lock, flags);
}
static struct console arc_serial_console = {
.name = ARC_SERIAL_NAME,
.write = arc_serial_console_write,
.device = uart_console_device,
.setup = arc_serial_console_setup,
.flags = CON_PRINTBUFFER,
.index = 0,
.data = &arc_uart_driver
};
static int __init arc_serial_rs_console_init(void)
{
arc_serial_init_ports();
register_console(&arc_serial_console);
return 0;
}
console_initcall(arc_serial_rs_console_init);
#ifdef CONFIG_EARLY_PRINTK
static __init void early_serial_putc(struct uart_port *port, int ch)
{
unsigned timeout = 0xffff;
struct arc_serial_port *uart = (struct arc_serial_port *)port;
while( !(UART_GET_STATUS(uart) & TXEMPTY) &&
--timeout)
cpu_relax();
UART_SET_DATA(uart, ch);
}
static __init void early_serial_write(struct console *con, const char *s,
unsigned int n)
{
struct arc_serial_port *uart = &arc_serial_ports[con->index];
unsigned int i;
for (i = 0; i < n; i++, s++) {
if (*s == '\n')
early_serial_putc(&uart->port, '\r');
early_serial_putc(&uart->port, *s);
}
}
static int __init arc_early_serial_init(struct console *co, char *options)
{
struct arc_serial_port *uart;
unsigned int baud, uartl, uarth, hw_val;
arc_serial_init_ports();
uart = &arc_serial_ports[co->index];
baud = CONFIG_ARC_SERIAL_BAUD;
hw_val = uart->port.uartclk / (baud*4) -1;
uartl = hw_val & 0xFF;
uarth = (hw_val >> 8) & 0xFF;
if (!running_on_hw) {
uarth = 1;
}
UART_SET_BAUDL(uart, uartl);
UART_SET_BAUDH(uart, uarth);
UART_RX_IRQ_ENABLE(uart);
return 0;
}
static struct __initdata console arc_early_serial_console = {
.name = "early_ARCuart",
.write = early_serial_write,
.device = uart_console_device,
.flags = CON_PRINTBUFFER | CON_BOOT,
.setup = arc_early_serial_init,
.index = -1
};
void __init arc_early_serial_reg(void)
{
register_console(&arc_early_serial_console);
}
#endif /* CONFIG_EARLY_PRINTK */
#endif