| /* |
| * Linux Socket Filter - Kernel level socket filtering |
| * |
| * Author: |
| * Jay Schulist <jschlst@samba.org> |
| * |
| * Based on the design of: |
| * - The Berkeley Packet Filter |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Andi Kleen - Fix a few bad bugs and races. |
| * Kris Katterjohn - Added many additional checks in sk_chk_filter() |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/fcntl.h> |
| #include <linux/socket.h> |
| #include <linux/in.h> |
| #include <linux/inet.h> |
| #include <linux/netdevice.h> |
| #include <linux/if_packet.h> |
| #include <linux/gfp.h> |
| #include <net/ip.h> |
| #include <net/protocol.h> |
| #include <net/netlink.h> |
| #include <linux/skbuff.h> |
| #include <net/sock.h> |
| #include <linux/errno.h> |
| #include <linux/timer.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/unaligned.h> |
| #include <linux/filter.h> |
| |
| /* No hurry in this branch */ |
| static void *__load_pointer(struct sk_buff *skb, int k) |
| { |
| u8 *ptr = NULL; |
| |
| if (k >= SKF_NET_OFF) |
| ptr = skb_network_header(skb) + k - SKF_NET_OFF; |
| else if (k >= SKF_LL_OFF) |
| ptr = skb_mac_header(skb) + k - SKF_LL_OFF; |
| |
| if (ptr >= skb->head && ptr < skb_tail_pointer(skb)) |
| return ptr; |
| return NULL; |
| } |
| |
| static inline void *load_pointer(struct sk_buff *skb, int k, |
| unsigned int size, void *buffer) |
| { |
| if (k >= 0) |
| return skb_header_pointer(skb, k, size, buffer); |
| else { |
| if (k >= SKF_AD_OFF) |
| return NULL; |
| return __load_pointer(skb, k); |
| } |
| } |
| |
| /** |
| * sk_filter - run a packet through a socket filter |
| * @sk: sock associated with &sk_buff |
| * @skb: buffer to filter |
| * |
| * Run the filter code and then cut skb->data to correct size returned by |
| * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller |
| * than pkt_len we keep whole skb->data. This is the socket level |
| * wrapper to sk_run_filter. It returns 0 if the packet should |
| * be accepted or -EPERM if the packet should be tossed. |
| * |
| */ |
| int sk_filter(struct sock *sk, struct sk_buff *skb) |
| { |
| int err; |
| struct sk_filter *filter; |
| |
| err = security_sock_rcv_skb(sk, skb); |
| if (err) |
| return err; |
| |
| rcu_read_lock_bh(); |
| filter = rcu_dereference_bh(sk->sk_filter); |
| if (filter) { |
| unsigned int pkt_len = sk_run_filter(skb, filter->insns, |
| filter->len); |
| err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; |
| } |
| rcu_read_unlock_bh(); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(sk_filter); |
| |
| /** |
| * sk_run_filter - run a filter on a socket |
| * @skb: buffer to run the filter on |
| * @filter: filter to apply |
| * @flen: length of filter |
| * |
| * Decode and apply filter instructions to the skb->data. |
| * Return length to keep, 0 for none. skb is the data we are |
| * filtering, filter is the array of filter instructions, and |
| * len is the number of filter blocks in the array. |
| */ |
| unsigned int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen) |
| { |
| void *ptr; |
| u32 A = 0; /* Accumulator */ |
| u32 X = 0; /* Index Register */ |
| u32 mem[BPF_MEMWORDS]; /* Scratch Memory Store */ |
| unsigned long memvalid = 0; |
| u32 tmp; |
| int k; |
| int pc; |
| |
| BUILD_BUG_ON(BPF_MEMWORDS > BITS_PER_LONG); |
| /* |
| * Process array of filter instructions. |
| */ |
| for (pc = 0; pc < flen; pc++) { |
| const struct sock_filter *fentry = &filter[pc]; |
| u32 f_k = fentry->k; |
| |
| switch (fentry->code) { |
| case BPF_S_ALU_ADD_X: |
| A += X; |
| continue; |
| case BPF_S_ALU_ADD_K: |
| A += f_k; |
| continue; |
| case BPF_S_ALU_SUB_X: |
| A -= X; |
| continue; |
| case BPF_S_ALU_SUB_K: |
| A -= f_k; |
| continue; |
| case BPF_S_ALU_MUL_X: |
| A *= X; |
| continue; |
| case BPF_S_ALU_MUL_K: |
| A *= f_k; |
| continue; |
| case BPF_S_ALU_DIV_X: |
| if (X == 0) |
| return 0; |
| A /= X; |
| continue; |
| case BPF_S_ALU_DIV_K: |
| A /= f_k; |
| continue; |
| case BPF_S_ALU_AND_X: |
| A &= X; |
| continue; |
| case BPF_S_ALU_AND_K: |
| A &= f_k; |
| continue; |
| case BPF_S_ALU_OR_X: |
| A |= X; |
| continue; |
| case BPF_S_ALU_OR_K: |
| A |= f_k; |
| continue; |
| case BPF_S_ALU_LSH_X: |
| A <<= X; |
| continue; |
| case BPF_S_ALU_LSH_K: |
| A <<= f_k; |
| continue; |
| case BPF_S_ALU_RSH_X: |
| A >>= X; |
| continue; |
| case BPF_S_ALU_RSH_K: |
| A >>= f_k; |
| continue; |
| case BPF_S_ALU_NEG: |
| A = -A; |
| continue; |
| case BPF_S_JMP_JA: |
| pc += f_k; |
| continue; |
| case BPF_S_JMP_JGT_K: |
| pc += (A > f_k) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JGE_K: |
| pc += (A >= f_k) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JEQ_K: |
| pc += (A == f_k) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JSET_K: |
| pc += (A & f_k) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JGT_X: |
| pc += (A > X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JGE_X: |
| pc += (A >= X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JEQ_X: |
| pc += (A == X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JSET_X: |
| pc += (A & X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_LD_W_ABS: |
| k = f_k; |
| load_w: |
| ptr = load_pointer(skb, k, 4, &tmp); |
| if (ptr != NULL) { |
| A = get_unaligned_be32(ptr); |
| continue; |
| } |
| break; |
| case BPF_S_LD_H_ABS: |
| k = f_k; |
| load_h: |
| ptr = load_pointer(skb, k, 2, &tmp); |
| if (ptr != NULL) { |
| A = get_unaligned_be16(ptr); |
| continue; |
| } |
| break; |
| case BPF_S_LD_B_ABS: |
| k = f_k; |
| load_b: |
| ptr = load_pointer(skb, k, 1, &tmp); |
| if (ptr != NULL) { |
| A = *(u8 *)ptr; |
| continue; |
| } |
| break; |
| case BPF_S_LD_W_LEN: |
| A = skb->len; |
| continue; |
| case BPF_S_LDX_W_LEN: |
| X = skb->len; |
| continue; |
| case BPF_S_LD_W_IND: |
| k = X + f_k; |
| goto load_w; |
| case BPF_S_LD_H_IND: |
| k = X + f_k; |
| goto load_h; |
| case BPF_S_LD_B_IND: |
| k = X + f_k; |
| goto load_b; |
| case BPF_S_LDX_B_MSH: |
| ptr = load_pointer(skb, f_k, 1, &tmp); |
| if (ptr != NULL) { |
| X = (*(u8 *)ptr & 0xf) << 2; |
| continue; |
| } |
| return 0; |
| case BPF_S_LD_IMM: |
| A = f_k; |
| continue; |
| case BPF_S_LDX_IMM: |
| X = f_k; |
| continue; |
| case BPF_S_LD_MEM: |
| A = (memvalid & (1UL << f_k)) ? |
| mem[f_k] : 0; |
| continue; |
| case BPF_S_LDX_MEM: |
| X = (memvalid & (1UL << f_k)) ? |
| mem[f_k] : 0; |
| continue; |
| case BPF_S_MISC_TAX: |
| X = A; |
| continue; |
| case BPF_S_MISC_TXA: |
| A = X; |
| continue; |
| case BPF_S_RET_K: |
| return f_k; |
| case BPF_S_RET_A: |
| return A; |
| case BPF_S_ST: |
| memvalid |= 1UL << f_k; |
| mem[f_k] = A; |
| continue; |
| case BPF_S_STX: |
| memvalid |= 1UL << f_k; |
| mem[f_k] = X; |
| continue; |
| default: |
| WARN_ON(1); |
| return 0; |
| } |
| |
| /* |
| * Handle ancillary data, which are impossible |
| * (or very difficult) to get parsing packet contents. |
| */ |
| switch (k-SKF_AD_OFF) { |
| case SKF_AD_PROTOCOL: |
| A = ntohs(skb->protocol); |
| continue; |
| case SKF_AD_PKTTYPE: |
| A = skb->pkt_type; |
| continue; |
| case SKF_AD_IFINDEX: |
| if (!skb->dev) |
| return 0; |
| A = skb->dev->ifindex; |
| continue; |
| case SKF_AD_MARK: |
| A = skb->mark; |
| continue; |
| case SKF_AD_QUEUE: |
| A = skb->queue_mapping; |
| continue; |
| case SKF_AD_HATYPE: |
| if (!skb->dev) |
| return 0; |
| A = skb->dev->type; |
| continue; |
| case SKF_AD_NLATTR: { |
| struct nlattr *nla; |
| |
| if (skb_is_nonlinear(skb)) |
| return 0; |
| if (A > skb->len - sizeof(struct nlattr)) |
| return 0; |
| |
| nla = nla_find((struct nlattr *)&skb->data[A], |
| skb->len - A, X); |
| if (nla) |
| A = (void *)nla - (void *)skb->data; |
| else |
| A = 0; |
| continue; |
| } |
| case SKF_AD_NLATTR_NEST: { |
| struct nlattr *nla; |
| |
| if (skb_is_nonlinear(skb)) |
| return 0; |
| if (A > skb->len - sizeof(struct nlattr)) |
| return 0; |
| |
| nla = (struct nlattr *)&skb->data[A]; |
| if (nla->nla_len > A - skb->len) |
| return 0; |
| |
| nla = nla_find_nested(nla, X); |
| if (nla) |
| A = (void *)nla - (void *)skb->data; |
| else |
| A = 0; |
| continue; |
| } |
| default: |
| return 0; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sk_run_filter); |
| |
| /** |
| * sk_chk_filter - verify socket filter code |
| * @filter: filter to verify |
| * @flen: length of filter |
| * |
| * Check the user's filter code. If we let some ugly |
| * filter code slip through kaboom! The filter must contain |
| * no references or jumps that are out of range, no illegal |
| * instructions, and must end with a RET instruction. |
| * |
| * All jumps are forward as they are not signed. |
| * |
| * Returns 0 if the rule set is legal or -EINVAL if not. |
| */ |
| int sk_chk_filter(struct sock_filter *filter, int flen) |
| { |
| struct sock_filter *ftest; |
| int pc; |
| |
| if (flen == 0 || flen > BPF_MAXINSNS) |
| return -EINVAL; |
| |
| /* check the filter code now */ |
| for (pc = 0; pc < flen; pc++) { |
| ftest = &filter[pc]; |
| |
| /* Only allow valid instructions */ |
| switch (ftest->code) { |
| case BPF_ALU|BPF_ADD|BPF_K: |
| ftest->code = BPF_S_ALU_ADD_K; |
| break; |
| case BPF_ALU|BPF_ADD|BPF_X: |
| ftest->code = BPF_S_ALU_ADD_X; |
| break; |
| case BPF_ALU|BPF_SUB|BPF_K: |
| ftest->code = BPF_S_ALU_SUB_K; |
| break; |
| case BPF_ALU|BPF_SUB|BPF_X: |
| ftest->code = BPF_S_ALU_SUB_X; |
| break; |
| case BPF_ALU|BPF_MUL|BPF_K: |
| ftest->code = BPF_S_ALU_MUL_K; |
| break; |
| case BPF_ALU|BPF_MUL|BPF_X: |
| ftest->code = BPF_S_ALU_MUL_X; |
| break; |
| case BPF_ALU|BPF_DIV|BPF_X: |
| ftest->code = BPF_S_ALU_DIV_X; |
| break; |
| case BPF_ALU|BPF_AND|BPF_K: |
| ftest->code = BPF_S_ALU_AND_K; |
| break; |
| case BPF_ALU|BPF_AND|BPF_X: |
| ftest->code = BPF_S_ALU_AND_X; |
| break; |
| case BPF_ALU|BPF_OR|BPF_K: |
| ftest->code = BPF_S_ALU_OR_K; |
| break; |
| case BPF_ALU|BPF_OR|BPF_X: |
| ftest->code = BPF_S_ALU_OR_X; |
| break; |
| case BPF_ALU|BPF_LSH|BPF_K: |
| ftest->code = BPF_S_ALU_LSH_K; |
| break; |
| case BPF_ALU|BPF_LSH|BPF_X: |
| ftest->code = BPF_S_ALU_LSH_X; |
| break; |
| case BPF_ALU|BPF_RSH|BPF_K: |
| ftest->code = BPF_S_ALU_RSH_K; |
| break; |
| case BPF_ALU|BPF_RSH|BPF_X: |
| ftest->code = BPF_S_ALU_RSH_X; |
| break; |
| case BPF_ALU|BPF_NEG: |
| ftest->code = BPF_S_ALU_NEG; |
| break; |
| case BPF_LD|BPF_W|BPF_ABS: |
| ftest->code = BPF_S_LD_W_ABS; |
| break; |
| case BPF_LD|BPF_H|BPF_ABS: |
| ftest->code = BPF_S_LD_H_ABS; |
| break; |
| case BPF_LD|BPF_B|BPF_ABS: |
| ftest->code = BPF_S_LD_B_ABS; |
| break; |
| case BPF_LD|BPF_W|BPF_LEN: |
| ftest->code = BPF_S_LD_W_LEN; |
| break; |
| case BPF_LD|BPF_W|BPF_IND: |
| ftest->code = BPF_S_LD_W_IND; |
| break; |
| case BPF_LD|BPF_H|BPF_IND: |
| ftest->code = BPF_S_LD_H_IND; |
| break; |
| case BPF_LD|BPF_B|BPF_IND: |
| ftest->code = BPF_S_LD_B_IND; |
| break; |
| case BPF_LD|BPF_IMM: |
| ftest->code = BPF_S_LD_IMM; |
| break; |
| case BPF_LDX|BPF_W|BPF_LEN: |
| ftest->code = BPF_S_LDX_W_LEN; |
| break; |
| case BPF_LDX|BPF_B|BPF_MSH: |
| ftest->code = BPF_S_LDX_B_MSH; |
| break; |
| case BPF_LDX|BPF_IMM: |
| ftest->code = BPF_S_LDX_IMM; |
| break; |
| case BPF_MISC|BPF_TAX: |
| ftest->code = BPF_S_MISC_TAX; |
| break; |
| case BPF_MISC|BPF_TXA: |
| ftest->code = BPF_S_MISC_TXA; |
| break; |
| case BPF_RET|BPF_K: |
| ftest->code = BPF_S_RET_K; |
| break; |
| case BPF_RET|BPF_A: |
| ftest->code = BPF_S_RET_A; |
| break; |
| |
| /* Some instructions need special checks */ |
| |
| /* check for division by zero */ |
| case BPF_ALU|BPF_DIV|BPF_K: |
| if (ftest->k == 0) |
| return -EINVAL; |
| ftest->code = BPF_S_ALU_DIV_K; |
| break; |
| |
| /* check for invalid memory addresses */ |
| case BPF_LD|BPF_MEM: |
| if (ftest->k >= BPF_MEMWORDS) |
| return -EINVAL; |
| ftest->code = BPF_S_LD_MEM; |
| break; |
| case BPF_LDX|BPF_MEM: |
| if (ftest->k >= BPF_MEMWORDS) |
| return -EINVAL; |
| ftest->code = BPF_S_LDX_MEM; |
| break; |
| case BPF_ST: |
| if (ftest->k >= BPF_MEMWORDS) |
| return -EINVAL; |
| ftest->code = BPF_S_ST; |
| break; |
| case BPF_STX: |
| if (ftest->k >= BPF_MEMWORDS) |
| return -EINVAL; |
| ftest->code = BPF_S_STX; |
| break; |
| |
| case BPF_JMP|BPF_JA: |
| /* |
| * Note, the large ftest->k might cause loops. |
| * Compare this with conditional jumps below, |
| * where offsets are limited. --ANK (981016) |
| */ |
| if (ftest->k >= (unsigned)(flen-pc-1)) |
| return -EINVAL; |
| ftest->code = BPF_S_JMP_JA; |
| break; |
| |
| case BPF_JMP|BPF_JEQ|BPF_K: |
| ftest->code = BPF_S_JMP_JEQ_K; |
| break; |
| case BPF_JMP|BPF_JEQ|BPF_X: |
| ftest->code = BPF_S_JMP_JEQ_X; |
| break; |
| case BPF_JMP|BPF_JGE|BPF_K: |
| ftest->code = BPF_S_JMP_JGE_K; |
| break; |
| case BPF_JMP|BPF_JGE|BPF_X: |
| ftest->code = BPF_S_JMP_JGE_X; |
| break; |
| case BPF_JMP|BPF_JGT|BPF_K: |
| ftest->code = BPF_S_JMP_JGT_K; |
| break; |
| case BPF_JMP|BPF_JGT|BPF_X: |
| ftest->code = BPF_S_JMP_JGT_X; |
| break; |
| case BPF_JMP|BPF_JSET|BPF_K: |
| ftest->code = BPF_S_JMP_JSET_K; |
| break; |
| case BPF_JMP|BPF_JSET|BPF_X: |
| ftest->code = BPF_S_JMP_JSET_X; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* for conditionals both must be safe */ |
| switch (ftest->code) { |
| case BPF_S_JMP_JEQ_K: |
| case BPF_S_JMP_JEQ_X: |
| case BPF_S_JMP_JGE_K: |
| case BPF_S_JMP_JGE_X: |
| case BPF_S_JMP_JGT_K: |
| case BPF_S_JMP_JGT_X: |
| case BPF_S_JMP_JSET_X: |
| case BPF_S_JMP_JSET_K: |
| if (pc + ftest->jt + 1 >= flen || |
| pc + ftest->jf + 1 >= flen) |
| return -EINVAL; |
| } |
| } |
| |
| /* last instruction must be a RET code */ |
| switch (filter[flen - 1].code) { |
| case BPF_S_RET_K: |
| case BPF_S_RET_A: |
| return 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| EXPORT_SYMBOL(sk_chk_filter); |
| |
| /** |
| * sk_filter_release_rcu - Release a socket filter by rcu_head |
| * @rcu: rcu_head that contains the sk_filter to free |
| */ |
| void sk_filter_release_rcu(struct rcu_head *rcu) |
| { |
| struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); |
| |
| kfree(fp); |
| } |
| EXPORT_SYMBOL(sk_filter_release_rcu); |
| |
| /** |
| * sk_attach_filter - attach a socket filter |
| * @fprog: the filter program |
| * @sk: the socket to use |
| * |
| * Attach the user's filter code. We first run some sanity checks on |
| * it to make sure it does not explode on us later. If an error |
| * occurs or there is insufficient memory for the filter a negative |
| * errno code is returned. On success the return is zero. |
| */ |
| int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) |
| { |
| struct sk_filter *fp, *old_fp; |
| unsigned int fsize = sizeof(struct sock_filter) * fprog->len; |
| int err; |
| |
| /* Make sure new filter is there and in the right amounts. */ |
| if (fprog->filter == NULL) |
| return -EINVAL; |
| |
| fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL); |
| if (!fp) |
| return -ENOMEM; |
| if (copy_from_user(fp->insns, fprog->filter, fsize)) { |
| sock_kfree_s(sk, fp, fsize+sizeof(*fp)); |
| return -EFAULT; |
| } |
| |
| atomic_set(&fp->refcnt, 1); |
| fp->len = fprog->len; |
| |
| err = sk_chk_filter(fp->insns, fp->len); |
| if (err) { |
| sk_filter_uncharge(sk, fp); |
| return err; |
| } |
| |
| rcu_read_lock_bh(); |
| old_fp = rcu_dereference_bh(sk->sk_filter); |
| rcu_assign_pointer(sk->sk_filter, fp); |
| rcu_read_unlock_bh(); |
| |
| if (old_fp) |
| sk_filter_uncharge(sk, old_fp); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sk_attach_filter); |
| |
| int sk_detach_filter(struct sock *sk) |
| { |
| int ret = -ENOENT; |
| struct sk_filter *filter; |
| |
| rcu_read_lock_bh(); |
| filter = rcu_dereference_bh(sk->sk_filter); |
| if (filter) { |
| rcu_assign_pointer(sk->sk_filter, NULL); |
| sk_filter_uncharge(sk, filter); |
| ret = 0; |
| } |
| rcu_read_unlock_bh(); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(sk_detach_filter); |