blob: a41db5dc8c7c592a0f8c670495682ecb97def021 [file] [log] [blame]
/* src/prism2/driver/hfa384x_usb.c
*
* Functions that talk to the USB variantof the Intersil hfa384x MAC
*
* Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
* --------------------------------------------------------------------
*
* linux-wlan
*
* The contents of this file are subject to the Mozilla Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU Public License version 2 (the "GPL"), in which
* case the provisions of the GPL are applicable instead of the
* above. If you wish to allow the use of your version of this file
* only under the terms of the GPL and not to allow others to use
* your version of this file under the MPL, indicate your decision
* by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete
* the provisions above, a recipient may use your version of this
* file under either the MPL or the GPL.
*
* --------------------------------------------------------------------
*
* Inquiries regarding the linux-wlan Open Source project can be
* made directly to:
*
* AbsoluteValue Systems Inc.
* info@linux-wlan.com
* http://www.linux-wlan.com
*
* --------------------------------------------------------------------
*
* Portions of the development of this software were funded by
* Intersil Corporation as part of PRISM(R) chipset product development.
*
* --------------------------------------------------------------------
*
* This file implements functions that correspond to the prism2/hfa384x
* 802.11 MAC hardware and firmware host interface.
*
* The functions can be considered to represent several levels of
* abstraction. The lowest level functions are simply C-callable wrappers
* around the register accesses. The next higher level represents C-callable
* prism2 API functions that match the Intersil documentation as closely
* as is reasonable. The next higher layer implements common sequences
* of invocations of the API layer (e.g. write to bap, followed by cmd).
*
* Common sequences:
* hfa384x_drvr_xxx Highest level abstractions provided by the
* hfa384x code. They are driver defined wrappers
* for common sequences. These functions generally
* use the services of the lower levels.
*
* hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
* functions are wrappers for the RID get/set
* sequence. They call copy_[to|from]_bap() and
* cmd_access(). These functions operate on the
* RIDs and buffers without validation. The caller
* is responsible for that.
*
* API wrapper functions:
* hfa384x_cmd_xxx functions that provide access to the f/w commands.
* The function arguments correspond to each command
* argument, even command arguments that get packed
* into single registers. These functions _just_
* issue the command by setting the cmd/parm regs
* & reading the status/resp regs. Additional
* activities required to fully use a command
* (read/write from/to bap, get/set int status etc.)
* are implemented separately. Think of these as
* C-callable prism2 commands.
*
* Lowest Layer Functions:
* hfa384x_docmd_xxx These functions implement the sequence required
* to issue any prism2 command. Primarily used by the
* hfa384x_cmd_xxx functions.
*
* hfa384x_bap_xxx BAP read/write access functions.
* Note: we usually use BAP0 for non-interrupt context
* and BAP1 for interrupt context.
*
* hfa384x_dl_xxx download related functions.
*
* Driver State Issues:
* Note that there are two pairs of functions that manage the
* 'initialized' and 'running' states of the hw/MAC combo. The four
* functions are create(), destroy(), start(), and stop(). create()
* sets up the data structures required to support the hfa384x_*
* functions and destroy() cleans them up. The start() function gets
* the actual hardware running and enables the interrupts. The stop()
* function shuts the hardware down. The sequence should be:
* create()
* start()
* .
* . Do interesting things w/ the hardware
* .
* stop()
* destroy()
*
* Note that destroy() can be called without calling stop() first.
* --------------------------------------------------------------------
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/wireless.h>
#include <linux/netdevice.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <linux/bitops.h>
#include <linux/list.h>
#include <linux/usb.h>
#include <linux/byteorder/generic.h>
#define SUBMIT_URB(u, f) usb_submit_urb(u, f)
#include "p80211types.h"
#include "p80211hdr.h"
#include "p80211mgmt.h"
#include "p80211conv.h"
#include "p80211msg.h"
#include "p80211netdev.h"
#include "p80211req.h"
#include "p80211metadef.h"
#include "p80211metastruct.h"
#include "hfa384x.h"
#include "prism2mgmt.h"
enum cmd_mode {
DOWAIT = 0,
DOASYNC
};
#define THROTTLE_JIFFIES (HZ/8)
#define URB_ASYNC_UNLINK 0
#define USB_QUEUE_BULK 0
#define ROUNDUP64(a) (((a)+63)&~63)
#ifdef DEBUG_USB
static void dbprint_urb(struct urb *urb);
#endif
static void
hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
static void hfa384x_usb_defer(struct work_struct *data);
static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
/*---------------------------------------------------*/
/* Callbacks */
static void hfa384x_usbout_callback(struct urb *urb);
static void hfa384x_ctlxout_callback(struct urb *urb);
static void hfa384x_usbin_callback(struct urb *urb);
static void
hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
static void
hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
int urb_status);
/*---------------------------------------------------*/
/* Functions to support the prism2 usb command queue */
static void hfa384x_usbctlxq_run(hfa384x_t *hw);
static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
static void hfa384x_usbctlx_resptimerfn(unsigned long data);
static void hfa384x_usb_throttlefn(unsigned long data);
static void hfa384x_usbctlx_completion_task(unsigned long data);
static void hfa384x_usbctlx_reaper_task(unsigned long data);
static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
struct usbctlx_completor {
int (*complete) (struct usbctlx_completor *);
};
static int
hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
hfa384x_usbctlx_t *ctlx,
struct usbctlx_completor *completor);
static int
unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
static int
usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
hfa384x_cmdresult_t *result);
static void
usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
hfa384x_rridresult_t *result);
/*---------------------------------------------------*/
/* Low level req/resp CTLX formatters and submitters */
static int
hfa384x_docmd(hfa384x_t *hw,
enum cmd_mode mode,
hfa384x_metacmd_t *cmd,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
static int
hfa384x_dorrid(hfa384x_t *hw,
enum cmd_mode mode,
u16 rid,
void *riddata,
unsigned int riddatalen,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
static int
hfa384x_dowrid(hfa384x_t *hw,
enum cmd_mode mode,
u16 rid,
void *riddata,
unsigned int riddatalen,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
static int
hfa384x_dormem(hfa384x_t *hw,
enum cmd_mode mode,
u16 page,
u16 offset,
void *data,
unsigned int len,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
static int
hfa384x_dowmem(hfa384x_t *hw,
enum cmd_mode mode,
u16 page,
u16 offset,
void *data,
unsigned int len,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
static int hfa384x_isgood_pdrcode(u16 pdrcode);
static inline const char *ctlxstr(CTLX_STATE s)
{
static const char *ctlx_str[] = {
"Initial state",
"Complete",
"Request failed",
"Request pending",
"Request packet submitted",
"Request packet completed",
"Response packet completed"
};
return ctlx_str[s];
};
static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t * hw)
{
return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
}
#ifdef DEBUG_USB
void dbprint_urb(struct urb *urb)
{
pr_debug("urb->pipe=0x%08x\n", urb->pipe);
pr_debug("urb->status=0x%08x\n", urb->status);
pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
pr_debug("urb->transfer_buffer=0x%08x\n",
(unsigned int)urb->transfer_buffer);
pr_debug("urb->transfer_buffer_length=0x%08x\n",
urb->transfer_buffer_length);
pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
pr_debug("urb->setup_packet(ctl)=0x%08x\n",
(unsigned int)urb->setup_packet);
pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
pr_debug("urb->timeout=0x%08x\n", urb->timeout);
pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
}
#endif
/*----------------------------------------------------------------
* submit_rx_urb
*
* Listen for input data on the BULK-IN pipe. If the pipe has
* stalled then schedule it to be reset.
*
* Arguments:
* hw device struct
* memflags memory allocation flags
*
* Returns:
* error code from submission
*
* Call context:
* Any
----------------------------------------------------------------*/
static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
{
struct sk_buff *skb;
int result;
skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
if (skb == NULL) {
result = -ENOMEM;
goto done;
}
/* Post the IN urb */
usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
hw->endp_in,
skb->data, sizeof(hfa384x_usbin_t),
hfa384x_usbin_callback, hw->wlandev);
hw->rx_urb_skb = skb;
result = -ENOLINK;
if (!hw->wlandev->hwremoved &&
!test_bit(WORK_RX_HALT, &hw->usb_flags)) {
result = SUBMIT_URB(&hw->rx_urb, memflags);
/* Check whether we need to reset the RX pipe */
if (result == -EPIPE) {
printk(KERN_WARNING
"%s rx pipe stalled: requesting reset\n",
hw->wlandev->netdev->name);
if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
schedule_work(&hw->usb_work);
}
}
/* Don't leak memory if anything should go wrong */
if (result != 0) {
dev_kfree_skb(skb);
hw->rx_urb_skb = NULL;
}
done:
return result;
}
/*----------------------------------------------------------------
* submit_tx_urb
*
* Prepares and submits the URB of transmitted data. If the
* submission fails then it will schedule the output pipe to
* be reset.
*
* Arguments:
* hw device struct
* tx_urb URB of data for tranmission
* memflags memory allocation flags
*
* Returns:
* error code from submission
*
* Call context:
* Any
----------------------------------------------------------------*/
static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
{
struct net_device *netdev = hw->wlandev->netdev;
int result;
result = -ENOLINK;
if (netif_running(netdev)) {
if (!hw->wlandev->hwremoved
&& !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
result = SUBMIT_URB(tx_urb, memflags);
/* Test whether we need to reset the TX pipe */
if (result == -EPIPE) {
printk(KERN_WARNING
"%s tx pipe stalled: requesting reset\n",
netdev->name);
set_bit(WORK_TX_HALT, &hw->usb_flags);
schedule_work(&hw->usb_work);
} else if (result == 0) {
netif_stop_queue(netdev);
}
}
}
return result;
}
/*----------------------------------------------------------------
* hfa394x_usb_defer
*
* There are some things that the USB stack cannot do while
* in interrupt context, so we arrange this function to run
* in process context.
*
* Arguments:
* hw device structure
*
* Returns:
* nothing
*
* Call context:
* process (by design)
----------------------------------------------------------------*/
static void hfa384x_usb_defer(struct work_struct *data)
{
hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
struct net_device *netdev = hw->wlandev->netdev;
/* Don't bother trying to reset anything if the plug
* has been pulled ...
*/
if (hw->wlandev->hwremoved)
return;
/* Reception has stopped: try to reset the input pipe */
if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
int ret;
usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
ret = usb_clear_halt(hw->usb, hw->endp_in);
if (ret != 0) {
printk(KERN_ERR
"Failed to clear rx pipe for %s: err=%d\n",
netdev->name, ret);
} else {
printk(KERN_INFO "%s rx pipe reset complete.\n",
netdev->name);
clear_bit(WORK_RX_HALT, &hw->usb_flags);
set_bit(WORK_RX_RESUME, &hw->usb_flags);
}
}
/* Resume receiving data back from the device. */
if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
int ret;
ret = submit_rx_urb(hw, GFP_KERNEL);
if (ret != 0) {
printk(KERN_ERR
"Failed to resume %s rx pipe.\n", netdev->name);
} else {
clear_bit(WORK_RX_RESUME, &hw->usb_flags);
}
}
/* Transmission has stopped: try to reset the output pipe */
if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
int ret;
usb_kill_urb(&hw->tx_urb);
ret = usb_clear_halt(hw->usb, hw->endp_out);
if (ret != 0) {
printk(KERN_ERR
"Failed to clear tx pipe for %s: err=%d\n",
netdev->name, ret);
} else {
printk(KERN_INFO "%s tx pipe reset complete.\n",
netdev->name);
clear_bit(WORK_TX_HALT, &hw->usb_flags);
set_bit(WORK_TX_RESUME, &hw->usb_flags);
/* Stopping the BULK-OUT pipe also blocked
* us from sending any more CTLX URBs, so
* we need to re-run our queue ...
*/
hfa384x_usbctlxq_run(hw);
}
}
/* Resume transmitting. */
if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
netif_wake_queue(hw->wlandev->netdev);
}
/*----------------------------------------------------------------
* hfa384x_create
*
* Sets up the hfa384x_t data structure for use. Note this
* does _not_ intialize the actual hardware, just the data structures
* we use to keep track of its state.
*
* Arguments:
* hw device structure
* irq device irq number
* iobase i/o base address for register access
* membase memory base address for register access
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
{
memset(hw, 0, sizeof(hfa384x_t));
hw->usb = usb;
/* set up the endpoints */
hw->endp_in = usb_rcvbulkpipe(usb, 1);
hw->endp_out = usb_sndbulkpipe(usb, 2);
/* Set up the waitq */
init_waitqueue_head(&hw->cmdq);
/* Initialize the command queue */
spin_lock_init(&hw->ctlxq.lock);
INIT_LIST_HEAD(&hw->ctlxq.pending);
INIT_LIST_HEAD(&hw->ctlxq.active);
INIT_LIST_HEAD(&hw->ctlxq.completing);
INIT_LIST_HEAD(&hw->ctlxq.reapable);
/* Initialize the authentication queue */
skb_queue_head_init(&hw->authq);
tasklet_init(&hw->reaper_bh,
hfa384x_usbctlx_reaper_task, (unsigned long)hw);
tasklet_init(&hw->completion_bh,
hfa384x_usbctlx_completion_task, (unsigned long)hw);
INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
init_timer(&hw->throttle);
hw->throttle.function = hfa384x_usb_throttlefn;
hw->throttle.data = (unsigned long)hw;
init_timer(&hw->resptimer);
hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
hw->resptimer.data = (unsigned long)hw;
init_timer(&hw->reqtimer);
hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
hw->reqtimer.data = (unsigned long)hw;
usb_init_urb(&hw->rx_urb);
usb_init_urb(&hw->tx_urb);
usb_init_urb(&hw->ctlx_urb);
hw->link_status = HFA384x_LINK_NOTCONNECTED;
hw->state = HFA384x_STATE_INIT;
INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
init_timer(&hw->commsqual_timer);
hw->commsqual_timer.data = (unsigned long)hw;
hw->commsqual_timer.function = prism2sta_commsqual_timer;
}
/*----------------------------------------------------------------
* hfa384x_destroy
*
* Partner to hfa384x_create(). This function cleans up the hw
* structure so that it can be freed by the caller using a simple
* kfree. Currently, this function is just a placeholder. If, at some
* point in the future, an hw in the 'shutdown' state requires a 'deep'
* kfree, this is where it should be done. Note that if this function
* is called on a _running_ hw structure, the drvr_stop() function is
* called.
*
* Arguments:
* hw device structure
*
* Returns:
* nothing, this function is not allowed to fail.
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
void hfa384x_destroy(hfa384x_t *hw)
{
struct sk_buff *skb;
if (hw->state == HFA384x_STATE_RUNNING)
hfa384x_drvr_stop(hw);
hw->state = HFA384x_STATE_PREINIT;
if (hw->scanresults) {
kfree(hw->scanresults);
hw->scanresults = NULL;
}
/* Now to clean out the auth queue */
while ((skb = skb_dequeue(&hw->authq)))
dev_kfree_skb(skb);
}
static hfa384x_usbctlx_t *usbctlx_alloc(void)
{
hfa384x_usbctlx_t *ctlx;
ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
if (ctlx != NULL) {
memset(ctlx, 0, sizeof(*ctlx));
init_completion(&ctlx->done);
}
return ctlx;
}
static int
usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
hfa384x_cmdresult_t *result)
{
result->status = le16_to_cpu(cmdresp->status);
result->resp0 = le16_to_cpu(cmdresp->resp0);
result->resp1 = le16_to_cpu(cmdresp->resp1);
result->resp2 = le16_to_cpu(cmdresp->resp2);
pr_debug("cmdresult:status=0x%04x "
"resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
result->status, result->resp0, result->resp1, result->resp2);
return result->status & HFA384x_STATUS_RESULT;
}
static void
usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
hfa384x_rridresult_t *result)
{
result->rid = le16_to_cpu(rridresp->rid);
result->riddata = rridresp->data;
result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
}
/*----------------------------------------------------------------
* Completor object:
* This completor must be passed to hfa384x_usbctlx_complete_sync()
* when processing a CTLX that returns a hfa384x_cmdresult_t structure.
----------------------------------------------------------------*/
struct usbctlx_cmd_completor {
struct usbctlx_completor head;
const hfa384x_usb_cmdresp_t *cmdresp;
hfa384x_cmdresult_t *result;
};
static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
{
struct usbctlx_cmd_completor *complete;
complete = (struct usbctlx_cmd_completor *) head;
return usbctlx_get_status(complete->cmdresp, complete->result);
}
static inline struct usbctlx_completor *init_cmd_completor(
struct usbctlx_cmd_completor
*completor,
const hfa384x_usb_cmdresp_t
*cmdresp,
hfa384x_cmdresult_t *result)
{
completor->head.complete = usbctlx_cmd_completor_fn;
completor->cmdresp = cmdresp;
completor->result = result;
return &(completor->head);
}
/*----------------------------------------------------------------
* Completor object:
* This completor must be passed to hfa384x_usbctlx_complete_sync()
* when processing a CTLX that reads a RID.
----------------------------------------------------------------*/
struct usbctlx_rrid_completor {
struct usbctlx_completor head;
const hfa384x_usb_rridresp_t *rridresp;
void *riddata;
unsigned int riddatalen;
};
static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
{
struct usbctlx_rrid_completor *complete;
hfa384x_rridresult_t rridresult;
complete = (struct usbctlx_rrid_completor *) head;
usbctlx_get_rridresult(complete->rridresp, &rridresult);
/* Validate the length, note body len calculation in bytes */
if (rridresult.riddata_len != complete->riddatalen) {
printk(KERN_WARNING
"RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
rridresult.rid,
complete->riddatalen, rridresult.riddata_len);
return -ENODATA;
}
memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
return 0;
}
static inline struct usbctlx_completor *init_rrid_completor(
struct usbctlx_rrid_completor
*completor,
const hfa384x_usb_rridresp_t
*rridresp,
void *riddata,
unsigned int riddatalen)
{
completor->head.complete = usbctlx_rrid_completor_fn;
completor->rridresp = rridresp;
completor->riddata = riddata;
completor->riddatalen = riddatalen;
return &(completor->head);
}
/*----------------------------------------------------------------
* Completor object:
* Interprets the results of a synchronous RID-write
----------------------------------------------------------------*/
typedef struct usbctlx_cmd_completor usbctlx_wrid_completor_t;
#define init_wrid_completor init_cmd_completor
/*----------------------------------------------------------------
* Completor object:
* Interprets the results of a synchronous memory-write
----------------------------------------------------------------*/
typedef struct usbctlx_cmd_completor usbctlx_wmem_completor_t;
#define init_wmem_completor init_cmd_completor
/*----------------------------------------------------------------
* Completor object:
* Interprets the results of a synchronous memory-read
----------------------------------------------------------------*/
struct usbctlx_rmem_completor {
struct usbctlx_completor head;
const hfa384x_usb_rmemresp_t *rmemresp;
void *data;
unsigned int len;
};
typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
{
usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
memcpy(complete->data, complete->rmemresp->data, complete->len);
return 0;
}
static inline struct usbctlx_completor *init_rmem_completor(
usbctlx_rmem_completor_t
*completor,
hfa384x_usb_rmemresp_t
*rmemresp,
void *data,
unsigned int len)
{
completor->head.complete = usbctlx_rmem_completor_fn;
completor->rmemresp = rmemresp;
completor->data = data;
completor->len = len;
return &(completor->head);
}
/*----------------------------------------------------------------
* hfa384x_cb_status
*
* Ctlx_complete handler for async CMD type control exchanges.
* mark the hw struct as such.
*
* Note: If the handling is changed here, it should probably be
* changed in docmd as well.
*
* Arguments:
* hw hw struct
* ctlx completed CTLX
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* interrupt
----------------------------------------------------------------*/
static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
{
if (ctlx->usercb != NULL) {
hfa384x_cmdresult_t cmdresult;
if (ctlx->state != CTLX_COMPLETE) {
memset(&cmdresult, 0, sizeof(cmdresult));
cmdresult.status =
HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
} else {
usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
}
ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
}
}
/*----------------------------------------------------------------
* hfa384x_cb_rrid
*
* CTLX completion handler for async RRID type control exchanges.
*
* Note: If the handling is changed here, it should probably be
* changed in dorrid as well.
*
* Arguments:
* hw hw struct
* ctlx completed CTLX
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* interrupt
----------------------------------------------------------------*/
static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
{
if (ctlx->usercb != NULL) {
hfa384x_rridresult_t rridresult;
if (ctlx->state != CTLX_COMPLETE) {
memset(&rridresult, 0, sizeof(rridresult));
rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
} else {
usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
&rridresult);
}
ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
}
}
static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
{
return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
}
static inline int
hfa384x_docmd_async(hfa384x_t *hw,
hfa384x_metacmd_t *cmd,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
{
return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
}
static inline int
hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
unsigned int riddatalen)
{
return hfa384x_dorrid(hw, DOWAIT,
rid, riddata, riddatalen, NULL, NULL, NULL);
}
static inline int
hfa384x_dorrid_async(hfa384x_t *hw,
u16 rid, void *riddata, unsigned int riddatalen,
ctlx_cmdcb_t cmdcb,
ctlx_usercb_t usercb, void *usercb_data)
{
return hfa384x_dorrid(hw, DOASYNC,
rid, riddata, riddatalen,
cmdcb, usercb, usercb_data);
}
static inline int
hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
unsigned int riddatalen)
{
return hfa384x_dowrid(hw, DOWAIT,
rid, riddata, riddatalen, NULL, NULL, NULL);
}
static inline int
hfa384x_dowrid_async(hfa384x_t *hw,
u16 rid, void *riddata, unsigned int riddatalen,
ctlx_cmdcb_t cmdcb,
ctlx_usercb_t usercb, void *usercb_data)
{
return hfa384x_dowrid(hw, DOASYNC,
rid, riddata, riddatalen,
cmdcb, usercb, usercb_data);
}
static inline int
hfa384x_dormem_wait(hfa384x_t *hw,
u16 page, u16 offset, void *data, unsigned int len)
{
return hfa384x_dormem(hw, DOWAIT,
page, offset, data, len, NULL, NULL, NULL);
}
static inline int
hfa384x_dormem_async(hfa384x_t *hw,
u16 page, u16 offset, void *data, unsigned int len,
ctlx_cmdcb_t cmdcb,
ctlx_usercb_t usercb, void *usercb_data)
{
return hfa384x_dormem(hw, DOASYNC,
page, offset, data, len,
cmdcb, usercb, usercb_data);
}
static inline int
hfa384x_dowmem_wait(hfa384x_t *hw,
u16 page, u16 offset, void *data, unsigned int len)
{
return hfa384x_dowmem(hw, DOWAIT,
page, offset, data, len, NULL, NULL, NULL);
}
static inline int
hfa384x_dowmem_async(hfa384x_t *hw,
u16 page,
u16 offset,
void *data,
unsigned int len,
ctlx_cmdcb_t cmdcb,
ctlx_usercb_t usercb, void *usercb_data)
{
return hfa384x_dowmem(hw, DOASYNC,
page, offset, data, len,
cmdcb, usercb, usercb_data);
}
/*----------------------------------------------------------------
* hfa384x_cmd_initialize
*
* Issues the initialize command and sets the hw->state based
* on the result.
*
* Arguments:
* hw device structure
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_cmd_initialize(hfa384x_t *hw)
{
int result = 0;
int i;
hfa384x_metacmd_t cmd;
cmd.cmd = HFA384x_CMDCODE_INIT;
cmd.parm0 = 0;
cmd.parm1 = 0;
cmd.parm2 = 0;
result = hfa384x_docmd_wait(hw, &cmd);
pr_debug("cmdresp.init: "
"status=0x%04x, resp0=0x%04x, "
"resp1=0x%04x, resp2=0x%04x\n",
cmd.result.status,
cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
if (result == 0) {
for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
hw->port_enabled[i] = 0;
}
hw->link_status = HFA384x_LINK_NOTCONNECTED;
return result;
}
/*----------------------------------------------------------------
* hfa384x_cmd_disable
*
* Issues the disable command to stop communications on one of
* the MACs 'ports'.
*
* Arguments:
* hw device structure
* macport MAC port number (host order)
*
* Returns:
* 0 success
* >0 f/w reported failure - f/w status code
* <0 driver reported error (timeout|bad arg)
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
{
int result = 0;
hfa384x_metacmd_t cmd;
cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
HFA384x_CMD_MACPORT_SET(macport);
cmd.parm0 = 0;
cmd.parm1 = 0;
cmd.parm2 = 0;
result = hfa384x_docmd_wait(hw, &cmd);
return result;
}
/*----------------------------------------------------------------
* hfa384x_cmd_enable
*
* Issues the enable command to enable communications on one of
* the MACs 'ports'.
*
* Arguments:
* hw device structure
* macport MAC port number
*
* Returns:
* 0 success
* >0 f/w reported failure - f/w status code
* <0 driver reported error (timeout|bad arg)
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
{
int result = 0;
hfa384x_metacmd_t cmd;
cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
HFA384x_CMD_MACPORT_SET(macport);
cmd.parm0 = 0;
cmd.parm1 = 0;
cmd.parm2 = 0;
result = hfa384x_docmd_wait(hw, &cmd);
return result;
}
/*----------------------------------------------------------------
* hfa384x_cmd_monitor
*
* Enables the 'monitor mode' of the MAC. Here's the description of
* monitor mode that I've received thus far:
*
* "The "monitor mode" of operation is that the MAC passes all
* frames for which the PLCP checks are correct. All received
* MPDUs are passed to the host with MAC Port = 7, with a
* receive status of good, FCS error, or undecryptable. Passing
* certain MPDUs is a violation of the 802.11 standard, but useful
* for a debugging tool." Normal communication is not possible
* while monitor mode is enabled.
*
* Arguments:
* hw device structure
* enable a code (0x0b|0x0f) that enables/disables
* monitor mode. (host order)
*
* Returns:
* 0 success
* >0 f/w reported failure - f/w status code
* <0 driver reported error (timeout|bad arg)
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
{
int result = 0;
hfa384x_metacmd_t cmd;
cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
HFA384x_CMD_AINFO_SET(enable);
cmd.parm0 = 0;
cmd.parm1 = 0;
cmd.parm2 = 0;
result = hfa384x_docmd_wait(hw, &cmd);
return result;
}
/*----------------------------------------------------------------
* hfa384x_cmd_download
*
* Sets the controls for the MAC controller code/data download
* process. The arguments set the mode and address associated
* with a download. Note that the aux registers should be enabled
* prior to setting one of the download enable modes.
*
* Arguments:
* hw device structure
* mode 0 - Disable programming and begin code exec
* 1 - Enable volatile mem programming
* 2 - Enable non-volatile mem programming
* 3 - Program non-volatile section from NV download
* buffer.
* (host order)
* lowaddr
* highaddr For mode 1, sets the high & low order bits of
* the "destination address". This address will be
* the execution start address when download is
* subsequently disabled.
* For mode 2, sets the high & low order bits of
* the destination in NV ram.
* For modes 0 & 3, should be zero. (host order)
* NOTE: these are CMD format.
* codelen Length of the data to write in mode 2,
* zero otherwise. (host order)
*
* Returns:
* 0 success
* >0 f/w reported failure - f/w status code
* <0 driver reported error (timeout|bad arg)
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
u16 highaddr, u16 codelen)
{
int result = 0;
hfa384x_metacmd_t cmd;
pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
mode, lowaddr, highaddr, codelen);
cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
HFA384x_CMD_PROGMODE_SET(mode));
cmd.parm0 = lowaddr;
cmd.parm1 = highaddr;
cmd.parm2 = codelen;
result = hfa384x_docmd_wait(hw, &cmd);
return result;
}
/*----------------------------------------------------------------
* hfa384x_corereset
*
* Perform a reset of the hfa38xx MAC core. We assume that the hw
* structure is in its "created" state. That is, it is initialized
* with proper values. Note that if a reset is done after the
* device has been active for awhile, the caller might have to clean
* up some leftover cruft in the hw structure.
*
* Arguments:
* hw device structure
* holdtime how long (in ms) to hold the reset
* settletime how long (in ms) to wait after releasing
* the reset
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
{
int result = 0;
result = usb_reset_device(hw->usb);
if (result < 0) {
printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
result);
}
return result;
}
/*----------------------------------------------------------------
* hfa384x_usbctlx_complete_sync
*
* Waits for a synchronous CTLX object to complete,
* and then handles the response.
*
* Arguments:
* hw device structure
* ctlx CTLX ptr
* completor functor object to decide what to
* do with the CTLX's result.
*
* Returns:
* 0 Success
* -ERESTARTSYS Interrupted by a signal
* -EIO CTLX failed
* -ENODEV Adapter was unplugged
* ??? Result from completor
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
hfa384x_usbctlx_t *ctlx,
struct usbctlx_completor *completor)
{
unsigned long flags;
int result;
result = wait_for_completion_interruptible(&ctlx->done);
spin_lock_irqsave(&hw->ctlxq.lock, flags);
/*
* We can only handle the CTLX if the USB disconnect
* function has not run yet ...
*/
cleanup:
if (hw->wlandev->hwremoved) {
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
result = -ENODEV;
} else if (result != 0) {
int runqueue = 0;
/*
* We were probably interrupted, so delete
* this CTLX asynchronously, kill the timers
* and the URB, and then start the next
* pending CTLX.
*
* NOTE: We can only delete the timers and
* the URB if this CTLX is active.
*/
if (ctlx == get_active_ctlx(hw)) {
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
del_singleshot_timer_sync(&hw->reqtimer);
del_singleshot_timer_sync(&hw->resptimer);
hw->req_timer_done = 1;
hw->resp_timer_done = 1;
usb_kill_urb(&hw->ctlx_urb);
spin_lock_irqsave(&hw->ctlxq.lock, flags);
runqueue = 1;
/*
* This scenario is so unlikely that I'm
* happy with a grubby "goto" solution ...
*/
if (hw->wlandev->hwremoved)
goto cleanup;
}
/*
* The completion task will send this CTLX
* to the reaper the next time it runs. We
* are no longer in a hurry.
*/
ctlx->reapable = 1;
ctlx->state = CTLX_REQ_FAILED;
list_move_tail(&ctlx->list, &hw->ctlxq.completing);
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
if (runqueue)
hfa384x_usbctlxq_run(hw);
} else {
if (ctlx->state == CTLX_COMPLETE) {
result = completor->complete(completor);
} else {
printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
le16_to_cpu(ctlx->outbuf.type),
ctlxstr(ctlx->state));
result = -EIO;
}
list_del(&ctlx->list);
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
kfree(ctlx);
}
return result;
}
/*----------------------------------------------------------------
* hfa384x_docmd
*
* Constructs a command CTLX and submits it.
*
* NOTE: Any changes to the 'post-submit' code in this function
* need to be carried over to hfa384x_cbcmd() since the handling
* is virtually identical.
*
* Arguments:
* hw device structure
* mode DOWAIT or DOASYNC
* cmd cmd structure. Includes all arguments and result
* data points. All in host order. in host order
* cmdcb command-specific callback
* usercb user callback for async calls, NULL for DOWAIT calls
* usercb_data user supplied data pointer for async calls, NULL
* for DOASYNC calls
*
* Returns:
* 0 success
* -EIO CTLX failure
* -ERESTARTSYS Awakened on signal
* >0 command indicated error, Status and Resp0-2 are
* in hw structure.
*
* Side effects:
*
*
* Call context:
* process
----------------------------------------------------------------*/
static int
hfa384x_docmd(hfa384x_t *hw,
enum cmd_mode mode,
hfa384x_metacmd_t *cmd,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
{
int result;
hfa384x_usbctlx_t *ctlx;
ctlx = usbctlx_alloc();
if (ctlx == NULL) {
result = -ENOMEM;
goto done;
}
/* Initialize the command */
ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
pr_debug("cmdreq: cmd=0x%04x "
"parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
ctlx->reapable = mode;
ctlx->cmdcb = cmdcb;
ctlx->usercb = usercb;
ctlx->usercb_data = usercb_data;
result = hfa384x_usbctlx_submit(hw, ctlx);
if (result != 0) {
kfree(ctlx);
} else if (mode == DOWAIT) {
struct usbctlx_cmd_completor completor;
result =
hfa384x_usbctlx_complete_sync(hw, ctlx,
init_cmd_completor(&completor,
&ctlx->
inbuf.
cmdresp,
&cmd->
result));
}
done:
return result;
}
/*----------------------------------------------------------------
* hfa384x_dorrid
*
* Constructs a read rid CTLX and issues it.
*
* NOTE: Any changes to the 'post-submit' code in this function
* need to be carried over to hfa384x_cbrrid() since the handling
* is virtually identical.
*
* Arguments:
* hw device structure
* mode DOWAIT or DOASYNC
* rid Read RID number (host order)
* riddata Caller supplied buffer that MAC formatted RID.data
* record will be written to for DOWAIT calls. Should
* be NULL for DOASYNC calls.
* riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
* cmdcb command callback for async calls, NULL for DOWAIT calls
* usercb user callback for async calls, NULL for DOWAIT calls
* usercb_data user supplied data pointer for async calls, NULL
* for DOWAIT calls
*
* Returns:
* 0 success
* -EIO CTLX failure
* -ERESTARTSYS Awakened on signal
* -ENODATA riddatalen != macdatalen
* >0 command indicated error, Status and Resp0-2 are
* in hw structure.
*
* Side effects:
*
* Call context:
* interrupt (DOASYNC)
* process (DOWAIT or DOASYNC)
----------------------------------------------------------------*/
static int
hfa384x_dorrid(hfa384x_t *hw,
enum cmd_mode mode,
u16 rid,
void *riddata,
unsigned int riddatalen,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
{
int result;
hfa384x_usbctlx_t *ctlx;
ctlx = usbctlx_alloc();
if (ctlx == NULL) {
result = -ENOMEM;
goto done;
}
/* Initialize the command */
ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
ctlx->outbuf.rridreq.frmlen =
cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
ctlx->reapable = mode;
ctlx->cmdcb = cmdcb;
ctlx->usercb = usercb;
ctlx->usercb_data = usercb_data;
/* Submit the CTLX */
result = hfa384x_usbctlx_submit(hw, ctlx);
if (result != 0) {
kfree(ctlx);
} else if (mode == DOWAIT) {
struct usbctlx_rrid_completor completor;
result =
hfa384x_usbctlx_complete_sync(hw, ctlx,
init_rrid_completor
(&completor,
&ctlx->inbuf.rridresp,
riddata, riddatalen));
}
done:
return result;
}
/*----------------------------------------------------------------
* hfa384x_dowrid
*
* Constructs a write rid CTLX and issues it.
*
* NOTE: Any changes to the 'post-submit' code in this function
* need to be carried over to hfa384x_cbwrid() since the handling
* is virtually identical.
*
* Arguments:
* hw device structure
* enum cmd_mode DOWAIT or DOASYNC
* rid RID code
* riddata Data portion of RID formatted for MAC
* riddatalen Length of the data portion in bytes
* cmdcb command callback for async calls, NULL for DOWAIT calls
* usercb user callback for async calls, NULL for DOWAIT calls
* usercb_data user supplied data pointer for async calls
*
* Returns:
* 0 success
* -ETIMEDOUT timed out waiting for register ready or
* command completion
* >0 command indicated error, Status and Resp0-2 are
* in hw structure.
*
* Side effects:
*
* Call context:
* interrupt (DOASYNC)
* process (DOWAIT or DOASYNC)
----------------------------------------------------------------*/
static int
hfa384x_dowrid(hfa384x_t *hw,
enum cmd_mode mode,
u16 rid,
void *riddata,
unsigned int riddatalen,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
{
int result;
hfa384x_usbctlx_t *ctlx;
ctlx = usbctlx_alloc();
if (ctlx == NULL) {
result = -ENOMEM;
goto done;
}
/* Initialize the command */
ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
(ctlx->outbuf.wridreq.rid) +
riddatalen + 1) / 2);
ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
sizeof(ctlx->outbuf.wridreq.frmlen) +
sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
ctlx->reapable = mode;
ctlx->cmdcb = cmdcb;
ctlx->usercb = usercb;
ctlx->usercb_data = usercb_data;
/* Submit the CTLX */
result = hfa384x_usbctlx_submit(hw, ctlx);
if (result != 0) {
kfree(ctlx);
} else if (mode == DOWAIT) {
usbctlx_wrid_completor_t completor;
hfa384x_cmdresult_t wridresult;
result = hfa384x_usbctlx_complete_sync(hw,
ctlx,
init_wrid_completor
(&completor,
&ctlx->inbuf.wridresp,
&wridresult));
}
done:
return result;
}
/*----------------------------------------------------------------
* hfa384x_dormem
*
* Constructs a readmem CTLX and issues it.
*
* NOTE: Any changes to the 'post-submit' code in this function
* need to be carried over to hfa384x_cbrmem() since the handling
* is virtually identical.
*
* Arguments:
* hw device structure
* mode DOWAIT or DOASYNC
* page MAC address space page (CMD format)
* offset MAC address space offset
* data Ptr to data buffer to receive read
* len Length of the data to read (max == 2048)
* cmdcb command callback for async calls, NULL for DOWAIT calls
* usercb user callback for async calls, NULL for DOWAIT calls
* usercb_data user supplied data pointer for async calls
*
* Returns:
* 0 success
* -ETIMEDOUT timed out waiting for register ready or
* command completion
* >0 command indicated error, Status and Resp0-2 are
* in hw structure.
*
* Side effects:
*
* Call context:
* interrupt (DOASYNC)
* process (DOWAIT or DOASYNC)
----------------------------------------------------------------*/
static int
hfa384x_dormem(hfa384x_t *hw,
enum cmd_mode mode,
u16 page,
u16 offset,
void *data,
unsigned int len,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
{
int result;
hfa384x_usbctlx_t *ctlx;
ctlx = usbctlx_alloc();
if (ctlx == NULL) {
result = -ENOMEM;
goto done;
}
/* Initialize the command */
ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
ctlx->outbuf.rmemreq.frmlen =
cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
sizeof(ctlx->outbuf.rmemreq.page) + len);
ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
ctlx->outbuf.rmemreq.type,
ctlx->outbuf.rmemreq.frmlen,
ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
ctlx->reapable = mode;
ctlx->cmdcb = cmdcb;
ctlx->usercb = usercb;
ctlx->usercb_data = usercb_data;
result = hfa384x_usbctlx_submit(hw, ctlx);
if (result != 0) {
kfree(ctlx);
} else if (mode == DOWAIT) {
usbctlx_rmem_completor_t completor;
result =
hfa384x_usbctlx_complete_sync(hw, ctlx,
init_rmem_completor
(&completor,
&ctlx->inbuf.rmemresp, data,
len));
}
done:
return result;
}
/*----------------------------------------------------------------
* hfa384x_dowmem
*
* Constructs a writemem CTLX and issues it.
*
* NOTE: Any changes to the 'post-submit' code in this function
* need to be carried over to hfa384x_cbwmem() since the handling
* is virtually identical.
*
* Arguments:
* hw device structure
* mode DOWAIT or DOASYNC
* page MAC address space page (CMD format)
* offset MAC address space offset
* data Ptr to data buffer containing write data
* len Length of the data to read (max == 2048)
* cmdcb command callback for async calls, NULL for DOWAIT calls
* usercb user callback for async calls, NULL for DOWAIT calls
* usercb_data user supplied data pointer for async calls.
*
* Returns:
* 0 success
* -ETIMEDOUT timed out waiting for register ready or
* command completion
* >0 command indicated error, Status and Resp0-2 are
* in hw structure.
*
* Side effects:
*
* Call context:
* interrupt (DOWAIT)
* process (DOWAIT or DOASYNC)
----------------------------------------------------------------*/
static int
hfa384x_dowmem(hfa384x_t *hw,
enum cmd_mode mode,
u16 page,
u16 offset,
void *data,
unsigned int len,
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
{
int result;
hfa384x_usbctlx_t *ctlx;
pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
ctlx = usbctlx_alloc();
if (ctlx == NULL) {
result = -ENOMEM;
goto done;
}
/* Initialize the command */
ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
ctlx->outbuf.wmemreq.frmlen =
cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
sizeof(ctlx->outbuf.wmemreq.page) + len);
ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
memcpy(ctlx->outbuf.wmemreq.data, data, len);
ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
sizeof(ctlx->outbuf.wmemreq.frmlen) +
sizeof(ctlx->outbuf.wmemreq.offset) +
sizeof(ctlx->outbuf.wmemreq.page) + len;
ctlx->reapable = mode;
ctlx->cmdcb = cmdcb;
ctlx->usercb = usercb;
ctlx->usercb_data = usercb_data;
result = hfa384x_usbctlx_submit(hw, ctlx);
if (result != 0) {
kfree(ctlx);
} else if (mode == DOWAIT) {
usbctlx_wmem_completor_t completor;
hfa384x_cmdresult_t wmemresult;
result = hfa384x_usbctlx_complete_sync(hw,
ctlx,
init_wmem_completor
(&completor,
&ctlx->inbuf.wmemresp,
&wmemresult));
}
done:
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_commtallies
*
* Send a commtallies inquiry to the MAC. Note that this is an async
* call that will result in an info frame arriving sometime later.
*
* Arguments:
* hw device structure
*
* Returns:
* zero success.
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_commtallies(hfa384x_t *hw)
{
hfa384x_metacmd_t cmd;
cmd.cmd = HFA384x_CMDCODE_INQ;
cmd.parm0 = HFA384x_IT_COMMTALLIES;
cmd.parm1 = 0;
cmd.parm2 = 0;
hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
return 0;
}
/*----------------------------------------------------------------
* hfa384x_drvr_disable
*
* Issues the disable command to stop communications on one of
* the MACs 'ports'. Only macport 0 is valid for stations.
* APs may also disable macports 1-6. Only ports that have been
* previously enabled may be disabled.
*
* Arguments:
* hw device structure
* macport MAC port number (host order)
*
* Returns:
* 0 success
* >0 f/w reported failure - f/w status code
* <0 driver reported error (timeout|bad arg)
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
{
int result = 0;
if ((!hw->isap && macport != 0) ||
(hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
!(hw->port_enabled[macport])) {
result = -EINVAL;
} else {
result = hfa384x_cmd_disable(hw, macport);
if (result == 0)
hw->port_enabled[macport] = 0;
}
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_enable
*
* Issues the enable command to enable communications on one of
* the MACs 'ports'. Only macport 0 is valid for stations.
* APs may also enable macports 1-6. Only ports that are currently
* disabled may be enabled.
*
* Arguments:
* hw device structure
* macport MAC port number
*
* Returns:
* 0 success
* >0 f/w reported failure - f/w status code
* <0 driver reported error (timeout|bad arg)
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
{
int result = 0;
if ((!hw->isap && macport != 0) ||
(hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
(hw->port_enabled[macport])) {
result = -EINVAL;
} else {
result = hfa384x_cmd_enable(hw, macport);
if (result == 0)
hw->port_enabled[macport] = 1;
}
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_flashdl_enable
*
* Begins the flash download state. Checks to see that we're not
* already in a download state and that a port isn't enabled.
* Sets the download state and retrieves the flash download
* buffer location, buffer size, and timeout length.
*
* Arguments:
* hw device structure
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
{
int result = 0;
int i;
/* Check that a port isn't active */
for (i = 0; i < HFA384x_PORTID_MAX; i++) {
if (hw->port_enabled[i]) {
pr_debug("called when port enabled.\n");
return -EINVAL;
}
}
/* Check that we're not already in a download state */
if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
return -EINVAL;
/* Retrieve the buffer loc&size and timeout */
result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
&(hw->bufinfo), sizeof(hw->bufinfo));
if (result)
return result;
hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
&(hw->dltimeout));
if (result)
return result;
hw->dltimeout = le16_to_cpu(hw->dltimeout);
pr_debug("flashdl_enable\n");
hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_flashdl_disable
*
* Ends the flash download state. Note that this will cause the MAC
* firmware to restart.
*
* Arguments:
* hw device structure
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
{
/* Check that we're already in the download state */
if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
return -EINVAL;
pr_debug("flashdl_enable\n");
/* There isn't much we can do at this point, so I don't */
/* bother w/ the return value */
hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
hw->dlstate = HFA384x_DLSTATE_DISABLED;
return 0;
}
/*----------------------------------------------------------------
* hfa384x_drvr_flashdl_write
*
* Performs a FLASH download of a chunk of data. First checks to see
* that we're in the FLASH download state, then sets the download
* mode, uses the aux functions to 1) copy the data to the flash
* buffer, 2) sets the download 'write flash' mode, 3) readback and
* compare. Lather rinse, repeat as many times an necessary to get
* all the given data into flash.
* When all data has been written using this function (possibly
* repeatedly), call drvr_flashdl_disable() to end the download state
* and restart the MAC.
*
* Arguments:
* hw device structure
* daddr Card address to write to. (host order)
* buf Ptr to data to write.
* len Length of data (host order).
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
{
int result = 0;
u32 dlbufaddr;
int nburns;
u32 burnlen;
u32 burndaddr;
u16 burnlo;
u16 burnhi;
int nwrites;
u8 *writebuf;
u16 writepage;
u16 writeoffset;
u32 writelen;
int i;
int j;
pr_debug("daddr=0x%08x len=%d\n", daddr, len);
/* Check that we're in the flash download state */
if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
return -EINVAL;
printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
/* Convert to flat address for arithmetic */
/* NOTE: dlbuffer RID stores the address in AUX format */
dlbufaddr =
HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
#if 0
printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
hw->bufinfo.len, hw->dltimeout);
#endif
/* Calculations to determine how many fills of the dlbuffer to do
* and how many USB wmemreq's to do for each fill. At this point
* in time, the dlbuffer size and the wmemreq size are the same.
* Therefore, nwrites should always be 1. The extra complexity
* here is a hedge against future changes.
*/
/* Figure out how many times to do the flash programming */
nburns = len / hw->bufinfo.len;
nburns += (len % hw->bufinfo.len) ? 1 : 0;
/* For each flash program cycle, how many USB wmemreq's are needed? */
nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
/* For each burn */
for (i = 0; i < nburns; i++) {
/* Get the dest address and len */
burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
hw->bufinfo.len : (len - (hw->bufinfo.len * i));
burndaddr = daddr + (hw->bufinfo.len * i);
burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
burnlen, burndaddr);
/* Set the download mode */
result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
burnlo, burnhi, burnlen);
if (result) {
printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
"cmd failed, result=%d. Aborting d/l\n",
burnlo, burnhi, burnlen, result);
goto exit_proc;
}
/* copy the data to the flash download buffer */
for (j = 0; j < nwrites; j++) {
writebuf = buf +
(i * hw->bufinfo.len) +
(j * HFA384x_USB_RWMEM_MAXLEN);
writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
(j * HFA384x_USB_RWMEM_MAXLEN));
writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
(j * HFA384x_USB_RWMEM_MAXLEN));
writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
HFA384x_USB_RWMEM_MAXLEN : writelen;
result = hfa384x_dowmem_wait(hw,
writepage,
writeoffset,
writebuf, writelen);
}
/* set the download 'write flash' mode */
result = hfa384x_cmd_download(hw,
HFA384x_PROGMODE_NVWRITE,
0, 0, 0);
if (result) {
printk(KERN_ERR
"download(NVWRITE,lo=%x,hi=%x,len=%x) "
"cmd failed, result=%d. Aborting d/l\n",
burnlo, burnhi, burnlen, result);
goto exit_proc;
}
/* TODO: We really should do a readback and compare. */
}
exit_proc:
/* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
/* actually disable programming mode. Remember, that will cause the */
/* the firmware to effectively reset itself. */
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_getconfig
*
* Performs the sequence necessary to read a config/info item.
*
* Arguments:
* hw device structure
* rid config/info record id (host order)
* buf host side record buffer. Upon return it will
* contain the body portion of the record (minus the
* RID and len).
* len buffer length (in bytes, should match record length)
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
* -ENODATA length mismatch between argument and retrieved
* record.
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
{
int result;
result = hfa384x_dorrid_wait(hw, rid, buf, len);
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_getconfig_async
*
* Performs the sequence necessary to perform an async read of
* of a config/info item.
*
* Arguments:
* hw device structure
* rid config/info record id (host order)
* buf host side record buffer. Upon return it will
* contain the body portion of the record (minus the
* RID and len).
* len buffer length (in bytes, should match record length)
* cbfn caller supplied callback, called when the command
* is done (successful or not).
* cbfndata pointer to some caller supplied data that will be
* passed in as an argument to the cbfn.
*
* Returns:
* nothing the cbfn gets a status argument identifying if
* any errors occur.
* Side effects:
* Queues an hfa384x_usbcmd_t for subsequent execution.
*
* Call context:
* Any
----------------------------------------------------------------*/
int
hfa384x_drvr_getconfig_async(hfa384x_t *hw,
u16 rid, ctlx_usercb_t usercb, void *usercb_data)
{
return hfa384x_dorrid_async(hw, rid, NULL, 0,
hfa384x_cb_rrid, usercb, usercb_data);
}
/*----------------------------------------------------------------
* hfa384x_drvr_setconfig_async
*
* Performs the sequence necessary to write a config/info item.
*
* Arguments:
* hw device structure
* rid config/info record id (in host order)
* buf host side record buffer
* len buffer length (in bytes)
* usercb completion callback
* usercb_data completion callback argument
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int
hfa384x_drvr_setconfig_async(hfa384x_t *hw,
u16 rid,
void *buf,
u16 len, ctlx_usercb_t usercb, void *usercb_data)
{
return hfa384x_dowrid_async(hw, rid, buf, len,
hfa384x_cb_status, usercb, usercb_data);
}
/*----------------------------------------------------------------
* hfa384x_drvr_ramdl_disable
*
* Ends the ram download state.
*
* Arguments:
* hw device structure
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
{
/* Check that we're already in the download state */
if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
return -EINVAL;
pr_debug("ramdl_disable()\n");
/* There isn't much we can do at this point, so I don't */
/* bother w/ the return value */
hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
hw->dlstate = HFA384x_DLSTATE_DISABLED;
return 0;
}
/*----------------------------------------------------------------
* hfa384x_drvr_ramdl_enable
*
* Begins the ram download state. Checks to see that we're not
* already in a download state and that a port isn't enabled.
* Sets the download state and calls cmd_download with the
* ENABLE_VOLATILE subcommand and the exeaddr argument.
*
* Arguments:
* hw device structure
* exeaddr the card execution address that will be
* jumped to when ramdl_disable() is called
* (host order).
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
{
int result = 0;
u16 lowaddr;
u16 hiaddr;
int i;
/* Check that a port isn't active */
for (i = 0; i < HFA384x_PORTID_MAX; i++) {
if (hw->port_enabled[i]) {
printk(KERN_ERR
"Can't download with a macport enabled.\n");
return -EINVAL;
}
}
/* Check that we're not already in a download state */
if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
printk(KERN_ERR "Download state not disabled.\n");
return -EINVAL;
}
pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
/* Call the download(1,addr) function */
lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
lowaddr, hiaddr, 0);
if (result == 0) {
/* Set the download state */
hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
} else {
pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
lowaddr, hiaddr, result);
}
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_ramdl_write
*
* Performs a RAM download of a chunk of data. First checks to see
* that we're in the RAM download state, then uses the [read|write]mem USB
* commands to 1) copy the data, 2) readback and compare. The download
* state is unaffected. When all data has been written using
* this function, call drvr_ramdl_disable() to end the download state
* and restart the MAC.
*
* Arguments:
* hw device structure
* daddr Card address to write to. (host order)
* buf Ptr to data to write.
* len Length of data (host order).
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
{
int result = 0;
int nwrites;
u8 *data = buf;
int i;
u32 curraddr;
u16 currpage;
u16 curroffset;
u16 currlen;
/* Check that we're in the ram download state */
if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
return -EINVAL;
printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
/* How many dowmem calls? */
nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
/* Do blocking wmem's */
for (i = 0; i < nwrites; i++) {
/* make address args */
curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
if (currlen > HFA384x_USB_RWMEM_MAXLEN)
currlen = HFA384x_USB_RWMEM_MAXLEN;
/* Do blocking ctlx */
result = hfa384x_dowmem_wait(hw,
currpage,
curroffset,
data +
(i * HFA384x_USB_RWMEM_MAXLEN),
currlen);
if (result)
break;
/* TODO: We really should have a readback. */
}
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_readpda
*
* Performs the sequence to read the PDA space. Note there is no
* drvr_writepda() function. Writing a PDA is
* generally implemented by a calling component via calls to
* cmd_download and writing to the flash download buffer via the
* aux regs.
*
* Arguments:
* hw device structure
* buf buffer to store PDA in
* len buffer length
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
* -ETIMEDOUT timout waiting for the cmd regs to become
* available, or waiting for the control reg
* to indicate the Aux port is enabled.
* -ENODATA the buffer does NOT contain a valid PDA.
* Either the card PDA is bad, or the auxdata
* reads are giving us garbage.
*
* Side effects:
*
* Call context:
* process or non-card interrupt.
----------------------------------------------------------------*/
int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
{
int result = 0;
u16 *pda = buf;
int pdaok = 0;
int morepdrs = 1;
int currpdr = 0; /* word offset of the current pdr */
size_t i;
u16 pdrlen; /* pdr length in bytes, host order */
u16 pdrcode; /* pdr code, host order */
u16 currpage;
u16 curroffset;
struct pdaloc {
u32 cardaddr;
u16 auxctl;
} pdaloc[] = {
{
HFA3842_PDA_BASE, 0}, {
HFA3841_PDA_BASE, 0}, {
HFA3841_PDA_BOGUS_BASE, 0}
};
/* Read the pda from each known address. */
for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
/* Make address */
currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
/* units of bytes */
result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
len);
if (result) {
printk(KERN_WARNING
"Read from index %zd failed, continuing\n", i);
continue;
}
/* Test for garbage */
pdaok = 1; /* initially assume good */
morepdrs = 1;
while (pdaok && morepdrs) {
pdrlen = le16_to_cpu(pda[currpdr]) * 2;
pdrcode = le16_to_cpu(pda[currpdr + 1]);
/* Test the record length */
if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
pdaok = 0;
break;
}
/* Test the code */
if (!hfa384x_isgood_pdrcode(pdrcode)) {
printk(KERN_ERR "pdrcode invalid=%d\n",
pdrcode);
pdaok = 0;
break;
}
/* Test for completion */
if (pdrcode == HFA384x_PDR_END_OF_PDA)
morepdrs = 0;
/* Move to the next pdr (if necessary) */
if (morepdrs) {
/* note the access to pda[], need words here */
currpdr += le16_to_cpu(pda[currpdr]) + 1;
}
}
if (pdaok) {
printk(KERN_INFO
"PDA Read from 0x%08x in %s space.\n",
pdaloc[i].cardaddr,
pdaloc[i].auxctl == 0 ? "EXTDS" :
pdaloc[i].auxctl == 1 ? "NV" :
pdaloc[i].auxctl == 2 ? "PHY" :
pdaloc[i].auxctl == 3 ? "ICSRAM" :
"<bogus auxctl>");
break;
}
}
result = pdaok ? 0 : -ENODATA;
if (result)
pr_debug("Failure: pda is not okay\n");
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_setconfig
*
* Performs the sequence necessary to write a config/info item.
*
* Arguments:
* hw device structure
* rid config/info record id (in host order)
* buf host side record buffer
* len buffer length (in bytes)
*
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
{
return hfa384x_dowrid_wait(hw, rid, buf, len);
}
/*----------------------------------------------------------------
* hfa384x_drvr_start
*
* Issues the MAC initialize command, sets up some data structures,
* and enables the interrupts. After this function completes, the
* low-level stuff should be ready for any/all commands.
*
* Arguments:
* hw device structure
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_start(hfa384x_t *hw)
{
int result, result1, result2;
u16 status;
might_sleep();
/* Clear endpoint stalls - but only do this if the endpoint
* is showing a stall status. Some prism2 cards seem to behave
* badly if a clear_halt is called when the endpoint is already
* ok
*/
result =
usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
if (result < 0) {
printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
goto done;
}
if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
result =
usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
if (result < 0) {
printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
goto done;
}
if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
/* Synchronous unlink, in case we're trying to restart the driver */
usb_kill_urb(&hw->rx_urb);
/* Post the IN urb */
result = submit_rx_urb(hw, GFP_KERNEL);
if (result != 0) {
printk(KERN_ERR
"Fatal, failed to submit RX URB, result=%d\n", result);
goto done;
}
/* Call initialize twice, with a 1 second sleep in between.
* This is a nasty work-around since many prism2 cards seem to
* need time to settle after an init from cold. The second
* call to initialize in theory is not necessary - but we call
* it anyway as a double insurance policy:
* 1) If the first init should fail, the second may well succeed
* and the card can still be used
* 2) It helps ensures all is well with the card after the first
* init and settle time.
*/
result1 = hfa384x_cmd_initialize(hw);
msleep(1000);
result = result2 = hfa384x_cmd_initialize(hw);
if (result1 != 0) {
if (result2 != 0) {
printk(KERN_ERR
"cmd_initialize() failed on two attempts, results %d and %d\n",
result1, result2);
usb_kill_urb(&hw->rx_urb);
goto done;
} else {
pr_debug("First cmd_initialize() failed (result %d),\n",
result1);
pr_debug("but second attempt succeeded. All should be ok\n");
}
} else if (result2 != 0) {
printk(KERN_WARNING "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
result2);
printk(KERN_WARNING
"Most likely the card will be functional\n");
goto done;
}
hw->state = HFA384x_STATE_RUNNING;
done:
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_stop
*
* Shuts down the MAC to the point where it is safe to unload the
* driver. Any subsystem that may be holding a data or function
* ptr into the driver must be cleared/deinitialized.
*
* Arguments:
* hw device structure
* Returns:
* 0 success
* >0 f/w reported error - f/w status code
* <0 driver reported error
*
* Side effects:
*
* Call context:
* process
----------------------------------------------------------------*/
int hfa384x_drvr_stop(hfa384x_t *hw)
{
int result = 0;
int i;
might_sleep();
/* There's no need for spinlocks here. The USB "disconnect"
* function sets this "removed" flag and then calls us.
*/
if (!hw->wlandev->hwremoved) {
/* Call initialize to leave the MAC in its 'reset' state */
hfa384x_cmd_initialize(hw);
/* Cancel the rxurb */
usb_kill_urb(&hw->rx_urb);
}
hw->link_status = HFA384x_LINK_NOTCONNECTED;
hw->state = HFA384x_STATE_INIT;
del_timer_sync(&hw->commsqual_timer);
/* Clear all the port status */
for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
hw->port_enabled[i] = 0;
return result;
}
/*----------------------------------------------------------------
* hfa384x_drvr_txframe
*
* Takes a frame from prism2sta and queues it for transmission.
*
* Arguments:
* hw device structure
* skb packet buffer struct. Contains an 802.11
* data frame.
* p80211_hdr points to the 802.11 header for the packet.
* Returns:
* 0 Success and more buffs available
* 1 Success but no more buffs
* 2 Allocation failure
* 4 Buffer full or queue busy
*
* Side effects:
*
* Call context:
* interrupt
----------------------------------------------------------------*/
int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
p80211_hdr_t *p80211_hdr,
p80211_metawep_t *p80211_wep)
{
int usbpktlen = sizeof(hfa384x_tx_frame_t);
int result;
int ret;
char *ptr;
if (hw->tx_urb.status == -EINPROGRESS) {
printk(KERN_WARNING "TX URB already in use\n");
result = 3;
goto exit;
}
/* Build Tx frame structure */
/* Set up the control field */
memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
/* Setup the usb type field */
hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
/* Set up the sw_support field to identify this frame */
hw->txbuff.txfrm.desc.sw_support = 0x0123;
/* Tx complete and Tx exception disable per dleach. Might be causing
* buf depletion
*/
/* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
#if defined(DOBOTH)
hw->txbuff.txfrm.desc.tx_control =
HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
#elif defined(DOEXC)
hw->txbuff.txfrm.desc.tx_control =
HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
#else
hw->txbuff.txfrm.desc.tx_control =
HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
#endif
hw->txbuff.txfrm.desc.tx_control =
cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
/* copy the header over to the txdesc */
memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
sizeof(p80211_hdr_t));
/* if we're using host WEP, increase size by IV+ICV */
if (p80211_wep->data) {
hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
usbpktlen += 8;
} else {
hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
}
usbpktlen += skb->len;
/* copy over the WEP IV if we are using host WEP */
ptr = hw->txbuff.txfrm.data;
if (p80211_wep->data) {
memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
ptr += sizeof(p80211_wep->iv);
memcpy(ptr, p80211_wep->data, skb->len);
} else {
memcpy(ptr, skb->data, skb->len);
}
/* copy over the packet data */
ptr += skb->len;
/* copy over the WEP ICV if we are using host WEP */
if (p80211_wep->data)
memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
/* Send the USB packet */
usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
hw->endp_out,
&(hw->txbuff), ROUNDUP64(usbpktlen),
hfa384x_usbout_callback, hw->wlandev);
hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
result = 1;
ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
if (ret != 0) {
printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
result = 3;
}
exit:
return result;
}
void hfa384x_tx_timeout(wlandevice_t *wlandev)
{
hfa384x_t *hw = wlandev->priv;
unsigned long flags;
spin_lock_irqsave(&hw->ctlxq.lock, flags);
if (!hw->wlandev->hwremoved &&
/* Note the bitwise OR, not the logical OR. */
(!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags) |
!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))) {
schedule_work(&hw->usb_work);
}
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
}
/*----------------------------------------------------------------
* hfa384x_usbctlx_reaper_task
*
* Tasklet to delete dead CTLX objects
*
* Arguments:
* data ptr to a hfa384x_t
*
* Returns:
*
* Call context:
* Interrupt
----------------------------------------------------------------*/
static void hfa384x_usbctlx_reaper_task(unsigned long data)
{
hfa384x_t *hw = (hfa384x_t *) data;
struct list_head *entry;
struct list_head *temp;
unsigned long flags;
spin_lock_irqsave(&hw->ctlxq.lock, flags);
/* This list is guaranteed to be empty if someone
* has unplugged the adapter.
*/
list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
hfa384x_usbctlx_t *ctlx;
ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
list_del(&ctlx->list);
kfree(ctlx);
}
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
}
/*----------------------------------------------------------------
* hfa384x_usbctlx_completion_task
*
* Tasklet to call completion handlers for returned CTLXs
*
* Arguments:
* data ptr to hfa384x_t
*
* Returns:
* Nothing
*
* Call context:
* Interrupt
----------------------------------------------------------------*/
static void hfa384x_usbctlx_completion_task(unsigned long data)
{
hfa384x_t *hw = (hfa384x_t *) data;
struct list_head *entry;
struct list_head *temp;
unsigned long flags;
int reap = 0;
spin_lock_irqsave(&hw->ctlxq.lock, flags);
/* This list is guaranteed to be empty if someone
* has unplugged the adapter ...
*/
list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
hfa384x_usbctlx_t *ctlx;
ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
/* Call the completion function that this
* command was assigned, assuming it has one.
*/
if (ctlx->cmdcb != NULL) {
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
ctlx->cmdcb(hw, ctlx);
spin_lock_irqsave(&hw->ctlxq.lock, flags);
/* Make sure we don't try and complete
* this CTLX more than once!
*/
ctlx->cmdcb = NULL;
/* Did someone yank the adapter out
* while our list was (briefly) unlocked?
*/
if (hw->wlandev->hwremoved) {
reap = 0;
break;
}
}
/*
* "Reapable" CTLXs are ones which don't have any
* threads waiting for them to die. Hence they must
* be delivered to The Reaper!
*/
if (ctlx->reapable) {
/* Move the CTLX off the "completing" list (hopefully)
* on to the "reapable" list where the reaper task
* can find it. And "reapable" means that this CTLX
* isn't sitting on a wait-queue somewhere.
*/
list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
reap = 1;
}
complete(&ctlx->done);
}
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
if (reap)
tasklet_schedule(&hw->reaper_bh);
}
/*----------------------------------------------------------------
* unlocked_usbctlx_cancel_async
*
* Mark the CTLX dead asynchronously, and ensure that the
* next command on the queue is run afterwards.
*
* Arguments:
* hw ptr to the hfa384x_t structure
* ctlx ptr to a CTLX structure
*
* Returns:
* 0 the CTLX's URB is inactive
* -EINPROGRESS the URB is currently being unlinked
*
* Call context:
* Either process or interrupt, but presumably interrupt
----------------------------------------------------------------*/
static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
hfa384x_usbctlx_t *ctlx)
{
int ret;
/*
* Try to delete the URB containing our request packet.
* If we succeed, then its completion handler will be
* called with a status of -ECONNRESET.
*/
hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
ret = usb_unlink_urb(&hw->ctlx_urb);
if (ret != -EINPROGRESS) {
/*
* The OUT URB had either already completed
* or was still in the pending queue, so the
* URB's completion function will not be called.
* We will have to complete the CTLX ourselves.
*/
ctlx->state = CTLX_REQ_FAILED;
unlocked_usbctlx_complete(hw, ctlx);
ret = 0;
}
return ret;
}
/*----------------------------------------------------------------
* unlocked_usbctlx_complete
*
* A CTLX has completed. It may have been successful, it may not
* have been. At this point, the CTLX should be quiescent. The URBs
* aren't active and the timers should have been stopped.
*
* The CTLX is migrated to the "completing" queue, and the completing
* tasklet is scheduled.
*
* Arguments:
* hw ptr to a hfa384x_t structure
* ctlx ptr to a ctlx structure
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* Either, assume interrupt
----------------------------------------------------------------*/
static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
{
/* Timers have been stopped, and ctlx should be in
* a terminal state. Retire it from the "active"
* queue.
*/
list_move_tail(&ctlx->list, &hw->ctlxq.completing);
tasklet_schedule(&hw->completion_bh);
switch (ctlx->state) {
case CTLX_COMPLETE:
case CTLX_REQ_FAILED:
/* This are the correct terminating states. */
break;
default:
printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
break;
} /* switch */
}
/*----------------------------------------------------------------
* hfa384x_usbctlxq_run
*
* Checks to see if the head item is running. If not, starts it.
*
* Arguments:
* hw ptr to hfa384x_t
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* any
----------------------------------------------------------------*/
static void hfa384x_usbctlxq_run(hfa384x_t *hw)
{
unsigned long flags;
/* acquire lock */
spin_lock_irqsave(&hw->ctlxq.lock, flags);
/* Only one active CTLX at any one time, because there's no
* other (reliable) way to match the response URB to the
* correct CTLX.
*
* Don't touch any of these CTLXs if the hardware
* has been removed or the USB subsystem is stalled.
*/
if (!list_empty(&hw->ctlxq.active) ||
test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
goto unlock;
while (!list_empty(&hw->ctlxq.pending)) {
hfa384x_usbctlx_t *head;
int result;
/* This is the first pending command */
head = list_entry(hw->ctlxq.pending.next,
hfa384x_usbctlx_t, list);
/* We need to split this off to avoid a race condition */
list_move_tail(&head->list, &hw->ctlxq.active);
/* Fill the out packet */
usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
hw->endp_out,
&(head->outbuf), ROUNDUP64(head->outbufsize),
hfa384x_ctlxout_callback, hw);
hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
/* Now submit the URB and update the CTLX's state */
result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
if (result == 0) {
/* This CTLX is now running on the active queue */
head->state = CTLX_REQ_SUBMITTED;
/* Start the OUT wait timer */
hw->req_timer_done = 0;
hw->reqtimer.expires = jiffies + HZ;
add_timer(&hw->reqtimer);
/* Start the IN wait timer */
hw->resp_timer_done = 0;
hw->resptimer.expires = jiffies + 2 * HZ;
add_timer(&hw->resptimer);
break;
}
if (result == -EPIPE) {
/* The OUT pipe needs resetting, so put
* this CTLX back in the "pending" queue
* and schedule a reset ...
*/
printk(KERN_WARNING
"%s tx pipe stalled: requesting reset\n",
hw->wlandev->netdev->name);
list_move(&head->list, &hw->ctlxq.pending);
set_bit(WORK_TX_HALT, &hw->usb_flags);
schedule_work(&hw->usb_work);
break;
}
if (result == -ESHUTDOWN) {
printk(KERN_WARNING "%s urb shutdown!\n",
hw->wlandev->netdev->name);
break;
}
printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
le16_to_cpu(head->outbuf.type), result);
unlocked_usbctlx_complete(hw, head);
} /* while */
unlock:
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
}
/*----------------------------------------------------------------
* hfa384x_usbin_callback
*
* Callback for URBs on the BULKIN endpoint.
*
* Arguments:
* urb ptr to the completed urb
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* interrupt
----------------------------------------------------------------*/
static void hfa384x_usbin_callback(struct urb *urb)
{
wlandevice_t *wlandev = urb->context;
hfa384x_t *hw;
hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
struct sk_buff *skb = NULL;
int result;
int urb_status;
u16 type;
enum USBIN_ACTION {
HANDLE,
RESUBMIT,
ABORT
} action;
if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
goto exit;
hw = wlandev->priv;
if (!hw)
goto exit;
skb = hw->rx_urb_skb;
BUG_ON(!skb || (skb->data != urb->transfer_buffer));
hw->rx_urb_skb = NULL;
/* Check for error conditions within the URB */
switch (urb->status) {
case 0:
action = HANDLE;
/* Check for short packet */
if (urb->actual_length == 0) {
++(wlandev->linux_stats.rx_errors);
++(wlandev->linux_stats.rx_length_errors);
action = RESUBMIT;
}
break;
case -EPIPE:
printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
wlandev->netdev->name);
if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
schedule_work(&hw->usb_work);
++(wlandev->linux_stats.rx_errors);
action = ABORT;
break;
case -EILSEQ:
case -ETIMEDOUT:
case -EPROTO:
if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
!timer_pending(&hw->throttle)) {
mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
}
++(wlandev->linux_stats.rx_errors);
action = ABORT;
break;
case -EOVERFLOW:
++(wlandev->linux_stats.rx_over_errors);
action = RESUBMIT;
break;
case -ENODEV:
case -ESHUTDOWN:
pr_debug("status=%d, device removed.\n", urb->status);
action = ABORT;
break;
case -ENOENT:
case -ECONNRESET:
pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
action = ABORT;
break;
default:
pr_debug("urb status=%d, transfer flags=0x%x\n",
urb->status, urb->transfer_flags);
++(wlandev->linux_stats.rx_errors);
action = RESUBMIT;
break;
}
urb_status = urb->status;
if (action != ABORT) {
/* Repost the RX URB */
result = submit_rx_urb(hw, GFP_ATOMIC);
if (result != 0) {
printk(KERN_ERR
"Fatal, failed to resubmit rx_urb. error=%d\n",
result);
}
}
/* Handle any USB-IN packet */
/* Note: the check of the sw_support field, the type field doesn't
* have bit 12 set like the docs suggest.
*/
type = le16_to_cpu(usbin->type);
if (HFA384x_USB_ISRXFRM(type)) {
if (action == HANDLE) {
if (usbin->txfrm.desc.sw_support == 0x0123) {
hfa384x_usbin_txcompl(wlandev, usbin);
} else {
skb_put(skb, sizeof(*usbin));
hfa384x_usbin_rx(wlandev, skb);
skb = NULL;
}
}
goto exit;
}
if (HFA384x_USB_ISTXFRM(type)) {
if (action == HANDLE)
hfa384x_usbin_txcompl(wlandev, usbin);
goto exit;
}
switch (type) {
case HFA384x_USB_INFOFRM:
if (action == ABORT)
goto exit;
if (action == HANDLE)
hfa384x_usbin_info(wlandev, usbin);
break;
case HFA384x_USB_CMDRESP:
case HFA384x_USB_WRIDRESP:
case HFA384x_USB_RRIDRESP:
case HFA384x_USB_WMEMRESP:
case HFA384x_USB_RMEMRESP:
/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
hfa384x_usbin_ctlx(hw, usbin, urb_status);
break;
case HFA384x_USB_BUFAVAIL:
pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
usbin->bufavail.frmlen);
break;
case HFA384x_USB_ERROR:
pr_debug("Received USB_ERROR packet, errortype=%d\n",
usbin->usberror.errortype);
break;
default:
pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
usbin->type, urb_status);
break;
} /* switch */
exit:
if (skb)
dev_kfree_skb(skb);
}
/*----------------------------------------------------------------
* hfa384x_usbin_ctlx
*
* We've received a URB containing a Prism2 "response" message.
* This message needs to be matched up with a CTLX on the active
* queue and our state updated accordingly.
*
* Arguments:
* hw ptr to hfa384x_t
* usbin ptr to USB IN packet
* urb_status status of this Bulk-In URB
*
* Returns:
* nothing
*
* Side effects:
*
* Call context:
* interrupt
----------------------------------------------------------------*/
static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
int urb_status)
{
hfa384x_usbctlx_t *ctlx;
int run_queue = 0;
unsigned long flags;
retry:
spin_lock_irqsave(&hw->ctlxq.lock, flags);
/* There can be only one CTLX on the active queue
* at any one time, and this is the CTLX that the
* timers are waiting for.
*/
if (list_empty(&hw->ctlxq.active))
goto unlock;
/* Remove the "response timeout". It's possible that
* we are already too late, and that the timeout is
* already running. And that's just too bad for us,
* because we could lose our CTLX from the active
* queue here ...
*/
if (del_timer(&hw->resptimer) == 0) {
if (hw->resp_timer_done == 0) {
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
goto retry;
}
} else {
hw->resp_timer_done = 1;
}
ctlx = get_active_ctlx(hw);
if (urb_status != 0) {
/*
* Bad CTLX, so get rid of it. But we only
* remove it from the active queue if we're no
* longer expecting the OUT URB to complete.
*/
if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
run_queue = 1;
} else {
const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
/*
* Check that our message is what we're expecting ...
*/
if (ctlx->outbuf.type != intype) {
printk(KERN_WARNING
"Expected IN[%d], received IN[%d] - ignored.\n",
le16_to_cpu(ctlx->outbuf.type),
le16_to_cpu(intype));
goto unlock;
}
/* This URB has succeeded, so grab the data ... */
memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
switch (ctlx->state) {
case CTLX_REQ_SUBMITTED:
/*
* We have received our response URB before
* our request has been acknowledged. Odd,
* but our OUT URB is still alive...
*/
pr_debug("Causality violation: please reboot Universe\n");
ctlx->state = CTLX_RESP_COMPLETE;
break;
case CTLX_REQ_COMPLETE:
/*
* This is the usual path: our request
* has already been acknowledged, and
* now we have received the reply too.
*/
ctlx->state = CTLX_COMPLETE;
unlocked_usbctlx_complete(hw, ctlx);
run_queue = 1;
break;
default:
/*
* Throw this CTLX away ...
*/
printk(KERN_ERR
"Matched IN URB, CTLX[%d] in invalid state(%s)."
" Discarded.\n",
le16_to_cpu(ctlx->outbuf.type),
ctlxstr(ctlx->state));
if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
run_queue = 1;
break;
} /* switch */
}
unlock:
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
if (run_queue)
hfa384x_usbctlxq_run(hw);
}