blob: bc16fc070fd3841304bda64f1c4675c5d6a3a6ca [file] [log] [blame]
/*
* VMEbus User access driver
*
* Author: Martyn Welch <martyn.welch@ge.com>
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* Based on work by:
* Tom Armistead and Ajit Prem
* Copyright 2004 Motorola Inc.
*
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/pci.h>
#include <linux/semaphore.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/smp_lock.h>
#include <linux/types.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "../vme.h"
#include "vme_user.h"
static char driver_name[] = "vme_user";
static int bus[USER_BUS_MAX];
static int bus_num;
/* Currently Documentation/devices.txt defines the following for VME:
*
* 221 char VME bus
* 0 = /dev/bus/vme/m0 First master image
* 1 = /dev/bus/vme/m1 Second master image
* 2 = /dev/bus/vme/m2 Third master image
* 3 = /dev/bus/vme/m3 Fourth master image
* 4 = /dev/bus/vme/s0 First slave image
* 5 = /dev/bus/vme/s1 Second slave image
* 6 = /dev/bus/vme/s2 Third slave image
* 7 = /dev/bus/vme/s3 Fourth slave image
* 8 = /dev/bus/vme/ctl Control
*
* It is expected that all VME bus drivers will use the
* same interface. For interface documentation see
* http://www.vmelinux.org/.
*
* However the VME driver at http://www.vmelinux.org/ is rather old and doesn't
* even support the tsi148 chipset (which has 8 master and 8 slave windows).
* We'll run with this or now as far as possible, however it probably makes
* sense to get rid of the old mappings and just do everything dynamically.
*
* So for now, we'll restrict the driver to providing 4 masters and 4 slaves as
* defined above and try to support at least some of the interface from
* http://www.vmelinux.org/ as an alternative drive can be written providing a
* saner interface later.
*
* The vmelinux.org driver never supported slave images, the devices reserved
* for slaves were repurposed to support all 8 master images on the UniverseII!
* We shall support 4 masters and 4 slaves with this driver.
*/
#define VME_MAJOR 221 /* VME Major Device Number */
#define VME_DEVS 9 /* Number of dev entries */
#define MASTER_MINOR 0
#define MASTER_MAX 3
#define SLAVE_MINOR 4
#define SLAVE_MAX 7
#define CONTROL_MINOR 8
#define PCI_BUF_SIZE 0x20000 /* Size of one slave image buffer */
/*
* Structure to handle image related parameters.
*/
typedef struct {
void __iomem *kern_buf; /* Buffer address in kernel space */
dma_addr_t pci_buf; /* Buffer address in PCI address space */
unsigned long long size_buf; /* Buffer size */
struct semaphore sem; /* Semaphore for locking image */
struct device *device; /* Sysfs device */
struct vme_resource *resource; /* VME resource */
int users; /* Number of current users */
} image_desc_t;
static image_desc_t image[VME_DEVS];
typedef struct {
unsigned long reads;
unsigned long writes;
unsigned long ioctls;
unsigned long irqs;
unsigned long berrs;
unsigned long dmaErrors;
unsigned long timeouts;
unsigned long external;
} driver_stats_t;
static driver_stats_t statistics;
struct cdev *vme_user_cdev; /* Character device */
struct class *vme_user_sysfs_class; /* Sysfs class */
struct device *vme_user_bridge; /* Pointer to the bridge device */
static const int type[VME_DEVS] = { MASTER_MINOR, MASTER_MINOR,
MASTER_MINOR, MASTER_MINOR,
SLAVE_MINOR, SLAVE_MINOR,
SLAVE_MINOR, SLAVE_MINOR,
CONTROL_MINOR
};
static int vme_user_open(struct inode *, struct file *);
static int vme_user_release(struct inode *, struct file *);
static ssize_t vme_user_read(struct file *, char *, size_t, loff_t *);
static ssize_t vme_user_write(struct file *, const char *, size_t, loff_t *);
static loff_t vme_user_llseek(struct file *, loff_t, int);
static long vme_user_unlocked_ioctl(struct file *, unsigned int, unsigned long);
static int __init vme_user_probe(struct device *, int, int);
static int __exit vme_user_remove(struct device *, int, int);
static struct file_operations vme_user_fops = {
.open = vme_user_open,
.release = vme_user_release,
.read = vme_user_read,
.write = vme_user_write,
.llseek = vme_user_llseek,
.unlocked_ioctl = vme_user_unlocked_ioctl,
};
/*
* Reset all the statistic counters
*/
static void reset_counters(void)
{
statistics.reads = 0;
statistics.writes = 0;
statistics.ioctls = 0;
statistics.irqs = 0;
statistics.berrs = 0;
statistics.dmaErrors = 0;
statistics.timeouts = 0;
}
static int vme_user_open(struct inode *inode, struct file *file)
{
int err;
unsigned int minor = MINOR(inode->i_rdev);
down(&image[minor].sem);
/* Only allow device to be opened if a resource is allocated */
if (image[minor].resource == NULL) {
printk(KERN_ERR "No resources allocated for device\n");
err = -EINVAL;
goto err_res;
}
/* Increment user count */
image[minor].users++;
up(&image[minor].sem);
return 0;
err_res:
up(&image[minor].sem);
return err;
}
static int vme_user_release(struct inode *inode, struct file *file)
{
unsigned int minor = MINOR(inode->i_rdev);
down(&image[minor].sem);
/* Decrement user count */
image[minor].users--;
up(&image[minor].sem);
return 0;
}
/*
* We are going ot alloc a page during init per window for small transfers.
* Small transfers will go VME -> buffer -> user space. Larger (more than a
* page) transfers will lock the user space buffer into memory and then
* transfer the data directly into the user space buffers.
*/
static ssize_t resource_to_user(int minor, char __user *buf, size_t count,
loff_t *ppos)
{
ssize_t retval;
ssize_t copied = 0;
if (count <= image[minor].size_buf) {
/* We copy to kernel buffer */
copied = vme_master_read(image[minor].resource,
image[minor].kern_buf, count, *ppos);
if (copied < 0) {
return (int)copied;
}
retval = __copy_to_user(buf, image[minor].kern_buf,
(unsigned long)copied);
if (retval != 0) {
copied = (copied - retval);
printk("User copy failed\n");
return -EINVAL;
}
} else {
/* XXX Need to write this */
printk("Currently don't support large transfers\n");
/* Map in pages from userspace */
/* Call vme_master_read to do the transfer */
return -EINVAL;
}
return copied;
}
/*
* We are going ot alloc a page during init per window for small transfers.
* Small transfers will go user space -> buffer -> VME. Larger (more than a
* page) transfers will lock the user space buffer into memory and then
* transfer the data directly from the user space buffers out to VME.
*/
static ssize_t resource_from_user(unsigned int minor, const char *buf,
size_t count, loff_t *ppos)
{
ssize_t retval;
ssize_t copied = 0;
if (count <= image[minor].size_buf) {
retval = __copy_from_user(image[minor].kern_buf, buf,
(unsigned long)count);
if (retval != 0)
copied = (copied - retval);
else
copied = count;
copied = vme_master_write(image[minor].resource,
image[minor].kern_buf, copied, *ppos);
} else {
/* XXX Need to write this */
printk("Currently don't support large transfers\n");
/* Map in pages from userspace */
/* Call vme_master_write to do the transfer */
return -EINVAL;
}
return copied;
}
static ssize_t buffer_to_user(unsigned int minor, char __user *buf,
size_t count, loff_t *ppos)
{
void __iomem *image_ptr;
ssize_t retval;
image_ptr = image[minor].kern_buf + *ppos;
retval = __copy_to_user(buf, image_ptr, (unsigned long)count);
if (retval != 0) {
retval = (count - retval);
printk(KERN_WARNING "Partial copy to userspace\n");
} else
retval = count;
/* Return number of bytes successfully read */
return retval;
}
static ssize_t buffer_from_user(unsigned int minor, const char *buf,
size_t count, loff_t *ppos)
{
void __iomem *image_ptr;
size_t retval;
image_ptr = image[minor].kern_buf + *ppos;
retval = __copy_from_user(image_ptr, buf, (unsigned long)count);
if (retval != 0) {
retval = (count - retval);
printk(KERN_WARNING "Partial copy to userspace\n");
} else
retval = count;
/* Return number of bytes successfully read */
return retval;
}
static ssize_t vme_user_read(struct file *file, char *buf, size_t count,
loff_t * ppos)
{
unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
ssize_t retval;
size_t image_size;
size_t okcount;
down(&image[minor].sem);
/* XXX Do we *really* want this helper - we can use vme_*_get ? */
image_size = vme_get_size(image[minor].resource);
/* Ensure we are starting at a valid location */
if ((*ppos < 0) || (*ppos > (image_size - 1))) {
up(&image[minor].sem);
return 0;
}
/* Ensure not reading past end of the image */
if (*ppos + count > image_size)
okcount = image_size - *ppos;
else
okcount = count;
switch (type[minor]){
case MASTER_MINOR:
retval = resource_to_user(minor, buf, okcount, ppos);
break;
case SLAVE_MINOR:
retval = buffer_to_user(minor, buf, okcount, ppos);
break;
default:
retval = -EINVAL;
}
up(&image[minor].sem);
if (retval > 0)
*ppos += retval;
return retval;
}
static ssize_t vme_user_write(struct file *file, const char *buf, size_t count,
loff_t *ppos)
{
unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
ssize_t retval;
size_t image_size;
size_t okcount;
down(&image[minor].sem);
image_size = vme_get_size(image[minor].resource);
/* Ensure we are starting at a valid location */
if ((*ppos < 0) || (*ppos > (image_size - 1))) {
up(&image[minor].sem);
return 0;
}
/* Ensure not reading past end of the image */
if (*ppos + count > image_size)
okcount = image_size - *ppos;
else
okcount = count;
switch (type[minor]){
case MASTER_MINOR:
retval = resource_from_user(minor, buf, okcount, ppos);
break;
case SLAVE_MINOR:
retval = buffer_from_user(minor, buf, okcount, ppos);
break;
default:
retval = -EINVAL;
}
up(&image[minor].sem);
if (retval > 0)
*ppos += retval;
return retval;
}
static loff_t vme_user_llseek(struct file *file, loff_t off, int whence)
{
loff_t absolute = -1;
unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
size_t image_size;
down(&image[minor].sem);
image_size = vme_get_size(image[minor].resource);
switch (whence) {
case SEEK_SET:
absolute = off;
break;
case SEEK_CUR:
absolute = file->f_pos + off;
break;
case SEEK_END:
absolute = image_size + off;
break;
default:
up(&image[minor].sem);
return -EINVAL;
break;
}
if ((absolute < 0) || (absolute >= image_size)) {
up(&image[minor].sem);
return -EINVAL;
}
file->f_pos = absolute;
up(&image[minor].sem);
return absolute;
}
/*
* The ioctls provided by the old VME access method (the one at vmelinux.org)
* are most certainly wrong as the effectively push the registers layout
* through to user space. Given that the VME core can handle multiple bridges,
* with different register layouts this is most certainly not the way to go.
*
* We aren't using the structures defined in the Motorola driver either - these
* are also quite low level, however we should use the definitions that have
* already been defined.
*/
static int vme_user_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct vme_master master;
struct vme_slave slave;
unsigned long copied;
unsigned int minor = MINOR(inode->i_rdev);
int retval;
dma_addr_t pci_addr;
statistics.ioctls++;
switch (type[minor]) {
case CONTROL_MINOR:
break;
case MASTER_MINOR:
switch (cmd) {
case VME_GET_MASTER:
memset(&master, 0, sizeof(struct vme_master));
/* XXX We do not want to push aspace, cycle and width
* to userspace as they are
*/
retval = vme_master_get(image[minor].resource,
&(master.enable), &(master.vme_addr),
&(master.size), &(master.aspace),
&(master.cycle), &(master.dwidth));
copied = copy_to_user((char *)arg, &master,
sizeof(struct vme_master));
if (copied != 0) {
printk(KERN_WARNING "Partial copy to "
"userspace\n");
return -EFAULT;
}
return retval;
break;
case VME_SET_MASTER:
copied = copy_from_user(&master, (char *)arg,
sizeof(master));
if (copied != 0) {
printk(KERN_WARNING "Partial copy from "
"userspace\n");
return -EFAULT;
}
/* XXX We do not want to push aspace, cycle and width
* to userspace as they are
*/
return vme_master_set(image[minor].resource,
master.enable, master.vme_addr, master.size,
master.aspace, master.cycle, master.dwidth);
break;
}
break;
case SLAVE_MINOR:
switch (cmd) {
case VME_GET_SLAVE:
memset(&slave, 0, sizeof(struct vme_slave));
/* XXX We do not want to push aspace, cycle and width
* to userspace as they are
*/
retval = vme_slave_get(image[minor].resource,
&(slave.enable), &(slave.vme_addr),
&(slave.size), &pci_addr, &(slave.aspace),
&(slave.cycle));
copied = copy_to_user((char *)arg, &slave,
sizeof(struct vme_slave));
if (copied != 0) {
printk(KERN_WARNING "Partial copy to "
"userspace\n");
return -EFAULT;
}
return retval;
break;
case VME_SET_SLAVE:
copied = copy_from_user(&slave, (char *)arg,
sizeof(slave));
if (copied != 0) {
printk(KERN_WARNING "Partial copy from "
"userspace\n");
return -EFAULT;
}
/* XXX We do not want to push aspace, cycle and width
* to userspace as they are
*/
return vme_slave_set(image[minor].resource,
slave.enable, slave.vme_addr, slave.size,
image[minor].pci_buf, slave.aspace,
slave.cycle);
break;
}
break;
}
return -EINVAL;
}
static long
vme_user_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int ret;
lock_kernel();
ret = vme_user_ioctl(file->f_path.dentry->d_inode, file, cmd, arg);
unlock_kernel();
return ret;
}
/*
* Unallocate a previously allocated buffer
*/
static void buf_unalloc (int num)
{
if (image[num].kern_buf) {
#ifdef VME_DEBUG
printk(KERN_DEBUG "UniverseII:Releasing buffer at %p\n",
image[num].pci_buf);
#endif
vme_free_consistent(image[num].resource, image[num].size_buf,
image[num].kern_buf, image[num].pci_buf);
image[num].kern_buf = NULL;
image[num].pci_buf = 0;
image[num].size_buf = 0;
#ifdef VME_DEBUG
} else {
printk(KERN_DEBUG "UniverseII: Buffer not allocated\n");
#endif
}
}
static struct vme_driver vme_user_driver = {
.name = driver_name,
.probe = vme_user_probe,
.remove = vme_user_remove,
};
static int __init vme_user_init(void)
{
int retval = 0;
int i;
struct vme_device_id *ids;
printk(KERN_INFO "VME User Space Access Driver\n");
if (bus_num == 0) {
printk(KERN_ERR "%s: No cards, skipping registration\n",
driver_name);
goto err_nocard;
}
/* Let's start by supporting one bus, we can support more than one
* in future revisions if that ever becomes necessary.
*/
if (bus_num > USER_BUS_MAX) {
printk(KERN_ERR "%s: Driver only able to handle %d buses\n",
driver_name, USER_BUS_MAX);
bus_num = USER_BUS_MAX;
}
/* Dynamically create the bind table based on module parameters */
ids = kmalloc(sizeof(struct vme_device_id) * (bus_num + 1), GFP_KERNEL);
if (ids == NULL) {
printk(KERN_ERR "%s: Unable to allocate ID table\n",
driver_name);
goto err_id;
}
memset(ids, 0, (sizeof(struct vme_device_id) * (bus_num + 1)));
for (i = 0; i < bus_num; i++) {
ids[i].bus = bus[i];
/*
* We register the driver against the slot occupied by *this*
* card, since it's really a low level way of controlling
* the VME bridge
*/
ids[i].slot = VME_SLOT_CURRENT;
}
vme_user_driver.bind_table = ids;
retval = vme_register_driver(&vme_user_driver);
if (retval != 0)
goto err_reg;
return retval;
vme_unregister_driver(&vme_user_driver);
err_reg:
kfree(ids);
err_id:
err_nocard:
return retval;
}
/*
* In this simple access driver, the old behaviour is being preserved as much
* as practical. We will therefore reserve the buffers and request the images
* here so that we don't have to do it later.
*/
static int __init vme_user_probe(struct device *dev, int cur_bus, int cur_slot)
{
int i, err;
char name[12];
/* Save pointer to the bridge device */
if (vme_user_bridge != NULL) {
printk(KERN_ERR "%s: Driver can only be loaded for 1 device\n",
driver_name);
err = -EINVAL;
goto err_dev;
}
vme_user_bridge = dev;
/* Initialise descriptors */
for (i = 0; i < VME_DEVS; i++) {
image[i].kern_buf = NULL;
image[i].pci_buf = 0;
init_MUTEX(&(image[i].sem));
image[i].device = NULL;
image[i].resource = NULL;
image[i].users = 0;
}
/* Initialise statistics counters */
reset_counters();
/* Assign major and minor numbers for the driver */
err = register_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS,
driver_name);
if (err) {
printk(KERN_WARNING "%s: Error getting Major Number %d for "
"driver.\n", driver_name, VME_MAJOR);
goto err_region;
}
/* Register the driver as a char device */
vme_user_cdev = cdev_alloc();
vme_user_cdev->ops = &vme_user_fops;
vme_user_cdev->owner = THIS_MODULE;
err = cdev_add(vme_user_cdev, MKDEV(VME_MAJOR, 0), VME_DEVS);
if (err) {
printk(KERN_WARNING "%s: cdev_all failed\n", driver_name);
goto err_char;
}
/* Request slave resources and allocate buffers (128kB wide) */
for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
/* XXX Need to properly request attributes */
/* For ca91cx42 bridge there are only two slave windows
* supporting A16 addressing, so we request A24 supported
* by all windows.
*/
image[i].resource = vme_slave_request(vme_user_bridge,
VME_A24, VME_SCT);
if (image[i].resource == NULL) {
printk(KERN_WARNING "Unable to allocate slave "
"resource\n");
goto err_slave;
}
image[i].size_buf = PCI_BUF_SIZE;
image[i].kern_buf = vme_alloc_consistent(image[i].resource,
image[i].size_buf, &(image[i].pci_buf));
if (image[i].kern_buf == NULL) {
printk(KERN_WARNING "Unable to allocate memory for "
"buffer\n");
image[i].pci_buf = 0;
vme_slave_free(image[i].resource);
err = -ENOMEM;
goto err_slave;
}
}
/*
* Request master resources allocate page sized buffers for small
* reads and writes
*/
for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) {
/* XXX Need to properly request attributes */
image[i].resource = vme_master_request(vme_user_bridge,
VME_A32, VME_SCT, VME_D32);
if (image[i].resource == NULL) {
printk(KERN_WARNING "Unable to allocate master "
"resource\n");
goto err_master;
}
image[i].size_buf = PCI_BUF_SIZE;
image[i].kern_buf = kmalloc(image[i].size_buf, GFP_KERNEL);
if (image[i].kern_buf == NULL) {
printk(KERN_WARNING "Unable to allocate memory for "
"master window buffers\n");
err = -ENOMEM;
goto err_master_buf;
}
}
/* Create sysfs entries - on udev systems this creates the dev files */
vme_user_sysfs_class = class_create(THIS_MODULE, driver_name);
if (IS_ERR(vme_user_sysfs_class)) {
printk(KERN_ERR "Error creating vme_user class.\n");
err = PTR_ERR(vme_user_sysfs_class);
goto err_class;
}
/* Add sysfs Entries */
for (i=0; i<VME_DEVS; i++) {
switch (type[i]) {
case MASTER_MINOR:
sprintf(name,"bus/vme/m%%d");
break;
case CONTROL_MINOR:
sprintf(name,"bus/vme/ctl");
break;
case SLAVE_MINOR:
sprintf(name,"bus/vme/s%%d");
break;
default:
err = -EINVAL;
goto err_sysfs;
break;
}
image[i].device =
device_create(vme_user_sysfs_class, NULL,
MKDEV(VME_MAJOR, i), NULL, name,
(type[i] == SLAVE_MINOR)? i - (MASTER_MAX + 1) : i);
if (IS_ERR(image[i].device)) {
printk("%s: Error creating sysfs device\n",
driver_name);
err = PTR_ERR(image[i].device);
goto err_sysfs;
}
}
return 0;
/* Ensure counter set correcty to destroy all sysfs devices */
i = VME_DEVS;
err_sysfs:
while (i > 0){
i--;
device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
}
class_destroy(vme_user_sysfs_class);
/* Ensure counter set correcty to unalloc all master windows */
i = MASTER_MAX + 1;
err_master_buf:
for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++)
kfree(image[i].kern_buf);
err_master:
while (i > MASTER_MINOR) {
i--;
vme_master_free(image[i].resource);
}
/*
* Ensure counter set correcty to unalloc all slave windows and buffers
*/
i = SLAVE_MAX + 1;
err_slave:
while (i > SLAVE_MINOR) {
i--;
vme_slave_free(image[i].resource);
buf_unalloc(i);
}
err_class:
cdev_del(vme_user_cdev);
err_char:
unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
err_region:
err_dev:
return err;
}
static int __exit vme_user_remove(struct device *dev, int cur_bus, int cur_slot)
{
int i;
/* Remove sysfs Entries */
for(i=0; i<VME_DEVS; i++) {
device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
}
class_destroy(vme_user_sysfs_class);
for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++)
kfree(image[i].kern_buf);
for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
vme_slave_set(image[i].resource, 0, 0, 0, 0, VME_A32, 0);
vme_slave_free(image[i].resource);
buf_unalloc(i);
}
/* Unregister device driver */
cdev_del(vme_user_cdev);
/* Unregiser the major and minor device numbers */
unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
return 0;
}
static void __exit vme_user_exit(void)
{
vme_unregister_driver(&vme_user_driver);
kfree(vme_user_driver.bind_table);
}
MODULE_PARM_DESC(bus, "Enumeration of VMEbus to which the driver is connected");
module_param_array(bus, int, &bus_num, 0);
MODULE_DESCRIPTION("VME User Space Access Driver");
MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
MODULE_LICENSE("GPL");
module_init(vme_user_init);
module_exit(vme_user_exit);