blob: 2a2afd51cf42a7a5413c7f367c27e9f903b4b586 [file] [log] [blame]
/*
* This is part of the rtl8180-sa2400 driver
* released under the GPL (See file COPYING for details).
* Copyright (c) 2005 Andrea Merello <andreamrl@tiscali.it>
*
* This files contains programming code for the rtl8225
* radio frontend.
*
* *Many* thanks to Realtek Corp. for their great support!
*/
#include "r8180_hw.h"
#include "r8180_rtl8225.h"
#include "r8180_93cx6.h"
#include "ieee80211/dot11d.h"
static void write_rtl8225(struct net_device *dev, u8 adr, u16 data)
{
int i;
u16 out, select;
u8 bit;
u32 bangdata = (data << 4) | (adr & 0xf);
out = read_nic_word(dev, RFPinsOutput) & 0xfff3;
write_nic_word(dev, RFPinsEnable,
(read_nic_word(dev, RFPinsEnable) | 0x7));
select = read_nic_word(dev, RFPinsSelect);
write_nic_word(dev, RFPinsSelect, select | 0x7 |
SW_CONTROL_GPIO);
force_pci_posting(dev);
udelay(10);
write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN);
force_pci_posting(dev);
udelay(2);
write_nic_word(dev, RFPinsOutput, out);
force_pci_posting(dev);
udelay(10);
for (i = 15; i >= 0; i--) {
bit = (bangdata & (1 << i)) >> i;
write_nic_word(dev, RFPinsOutput, bit | out);
write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK);
write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK);
i--;
bit = (bangdata & (1 << i)) >> i;
write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK);
write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK);
write_nic_word(dev, RFPinsOutput, bit | out);
}
write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN);
force_pci_posting(dev);
udelay(10);
write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN);
write_nic_word(dev, RFPinsSelect, select | SW_CONTROL_GPIO);
rtl8185_rf_pins_enable(dev);
}
static const u16 rtl8225bcd_rxgain[] = {
0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0408, 0x0409,
0x040a, 0x040b, 0x0502, 0x0503, 0x0504, 0x0505, 0x0540, 0x0541,
0x0542, 0x0543, 0x0544, 0x0545, 0x0580, 0x0581, 0x0582, 0x0583,
0x0584, 0x0585, 0x0588, 0x0589, 0x058a, 0x058b, 0x0643, 0x0644,
0x0645, 0x0680, 0x0681, 0x0682, 0x0683, 0x0684, 0x0685, 0x0688,
0x0689, 0x068a, 0x068b, 0x068c, 0x0742, 0x0743, 0x0744, 0x0745,
0x0780, 0x0781, 0x0782, 0x0783, 0x0784, 0x0785, 0x0788, 0x0789,
0x078a, 0x078b, 0x078c, 0x078d, 0x0790, 0x0791, 0x0792, 0x0793,
0x0794, 0x0795, 0x0798, 0x0799, 0x079a, 0x079b, 0x079c, 0x079d,
0x07a0, 0x07a1, 0x07a2, 0x07a3, 0x07a4, 0x07a5, 0x07a8, 0x07a9,
0x07aa, 0x07ab, 0x07ac, 0x07ad, 0x07b0, 0x07b1, 0x07b2, 0x07b3,
0x07b4, 0x07b5, 0x07b8, 0x07b9, 0x07ba, 0x07bb, 0x07bb
};
static const u8 rtl8225_agc[] = {
0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e,
0x9d, 0x9c, 0x9b, 0x9a, 0x99, 0x98, 0x97, 0x96,
0x95, 0x94, 0x93, 0x92, 0x91, 0x90, 0x8f, 0x8e,
0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88, 0x87, 0x86,
0x85, 0x84, 0x83, 0x82, 0x81, 0x80, 0x3f, 0x3e,
0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38, 0x37, 0x36,
0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x2f, 0x2e,
0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28, 0x27, 0x26,
0x25, 0x24, 0x23, 0x22, 0x21, 0x20, 0x1f, 0x1e,
0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16,
0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e,
0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
};
static const u8 rtl8225_gain[] = {
0x23, 0x88, 0x7c, 0xa5, /* -82dBm */
0x23, 0x88, 0x7c, 0xb5, /* -82dBm */
0x23, 0x88, 0x7c, 0xc5, /* -82dBm */
0x33, 0x80, 0x79, 0xc5, /* -78dBm */
0x43, 0x78, 0x76, 0xc5, /* -74dBm */
0x53, 0x60, 0x73, 0xc5, /* -70dBm */
0x63, 0x58, 0x70, 0xc5, /* -66dBm */
};
static const u8 rtl8225_tx_gain_cck_ofdm[] = {
0x02, 0x06, 0x0e, 0x1e, 0x3e, 0x7e
};
static const u8 rtl8225_tx_power_cck[] = {
0x18, 0x17, 0x15, 0x11, 0x0c, 0x08, 0x04, 0x02,
0x1b, 0x1a, 0x17, 0x13, 0x0e, 0x09, 0x04, 0x02,
0x1f, 0x1e, 0x1a, 0x15, 0x10, 0x0a, 0x05, 0x02,
0x22, 0x21, 0x1d, 0x18, 0x11, 0x0b, 0x06, 0x02,
0x26, 0x25, 0x21, 0x1b, 0x14, 0x0d, 0x06, 0x03,
0x2b, 0x2a, 0x25, 0x1e, 0x16, 0x0e, 0x07, 0x03
};
static const u8 rtl8225_tx_power_cck_ch14[] = {
0x18, 0x17, 0x15, 0x0c, 0x00, 0x00, 0x00, 0x00,
0x1b, 0x1a, 0x17, 0x0e, 0x00, 0x00, 0x00, 0x00,
0x1f, 0x1e, 0x1a, 0x0f, 0x00, 0x00, 0x00, 0x00,
0x22, 0x21, 0x1d, 0x11, 0x00, 0x00, 0x00, 0x00,
0x26, 0x25, 0x21, 0x13, 0x00, 0x00, 0x00, 0x00,
0x2b, 0x2a, 0x25, 0x15, 0x00, 0x00, 0x00, 0x00
};
static const u8 rtl8225_tx_power_ofdm[] = {
0x80, 0x90, 0xa2, 0xb5, 0xcb, 0xe4
};
static const u32 rtl8225_chan[] = {
0,
0x0080, 0x0100, 0x0180, 0x0200, 0x0280, 0x0300, 0x0380,
0x0400, 0x0480, 0x0500, 0x0580, 0x0600, 0x0680, 0x074A,
};
static void rtl8225_SetTXPowerLevel(struct net_device *dev, short ch)
{
struct r8180_priv *priv = ieee80211_priv(dev);
int GainIdx;
int GainSetting;
int i;
u8 power;
const u8 *cck_power_table;
u8 max_cck_power_level;
u8 max_ofdm_power_level;
u8 min_ofdm_power_level;
u8 cck_power_level = 0xff & priv->chtxpwr[ch];
u8 ofdm_power_level = 0xff & priv->chtxpwr_ofdm[ch];
max_cck_power_level = 35;
max_ofdm_power_level = 35;
min_ofdm_power_level = 0;
if (cck_power_level > max_cck_power_level)
cck_power_level = max_cck_power_level;
GainIdx = cck_power_level % 6;
GainSetting = cck_power_level / 6;
if (ch == 14)
cck_power_table = rtl8225_tx_power_cck_ch14;
else
cck_power_table = rtl8225_tx_power_cck;
write_nic_byte(dev, TX_GAIN_CCK,
rtl8225_tx_gain_cck_ofdm[GainSetting] >> 1);
for (i = 0; i < 8; i++) {
power = cck_power_table[GainIdx * 8 + i];
write_phy_cck(dev, 0x44 + i, power);
}
/* FIXME Is this delay really needeed ? */
force_pci_posting(dev);
mdelay(1);
if (ofdm_power_level > (max_ofdm_power_level - min_ofdm_power_level))
ofdm_power_level = max_ofdm_power_level;
else
ofdm_power_level += min_ofdm_power_level;
if (ofdm_power_level > 35)
ofdm_power_level = 35;
GainIdx = ofdm_power_level % 6;
GainSetting = ofdm_power_level / 6;
rtl8185_set_anaparam2(dev, RTL8225_ANAPARAM2_ON);
write_phy_ofdm(dev, 2, 0x42);
write_phy_ofdm(dev, 6, 0x00);
write_phy_ofdm(dev, 8, 0x00);
write_nic_byte(dev, TX_GAIN_OFDM,
rtl8225_tx_gain_cck_ofdm[GainSetting] >> 1);
power = rtl8225_tx_power_ofdm[GainIdx];
write_phy_ofdm(dev, 5, power);
write_phy_ofdm(dev, 7, power);
force_pci_posting(dev);
mdelay(1);
}
static const u8 rtl8225z2_threshold[] = {
0x8d, 0x8d, 0x8d, 0x8d, 0x9d, 0xad, 0xbd,
};
static const u8 rtl8225z2_gain_bg[] = {
0x23, 0x15, 0xa5, /* -82-1dBm */
0x23, 0x15, 0xb5, /* -82-2dBm */
0x23, 0x15, 0xc5, /* -82-3dBm */
0x33, 0x15, 0xc5, /* -78dBm */
0x43, 0x15, 0xc5, /* -74dBm */
0x53, 0x15, 0xc5, /* -70dBm */
0x63, 0x15, 0xc5, /* -66dBm */
};
static const u8 rtl8225z2_gain_a[] = {
0x13, 0x27, 0x5a, /* -82dBm */
0x23, 0x23, 0x58, /* -82dBm */
0x33, 0x1f, 0x56, /* -82dBm */
0x43, 0x1b, 0x54, /* -78dBm */
0x53, 0x17, 0x51, /* -74dBm */
0x63, 0x24, 0x4f, /* -70dBm */
0x73, 0x0f, 0x4c, /* -66dBm */
};
static const u16 rtl8225z2_rxgain[] = {
0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0408, 0x0409,
0x040a, 0x040b, 0x0502, 0x0503, 0x0504, 0x0505, 0x0540, 0x0541,
0x0542, 0x0543, 0x0544, 0x0545, 0x0580, 0x0581, 0x0582, 0x0583,
0x0584, 0x0585, 0x0588, 0x0589, 0x058a, 0x058b, 0x0643, 0x0644,
0x0645, 0x0680, 0x0681, 0x0682, 0x0683, 0x0684, 0x0685, 0x0688,
0x0689, 0x068a, 0x068b, 0x068c, 0x0742, 0x0743, 0x0744, 0x0745,
0x0780, 0x0781, 0x0782, 0x0783, 0x0784, 0x0785, 0x0788, 0x0789,
0x078a, 0x078b, 0x078c, 0x078d, 0x0790, 0x0791, 0x0792, 0x0793,
0x0794, 0x0795, 0x0798, 0x0799, 0x079a, 0x079b, 0x079c, 0x079d,
0x07a0, 0x07a1, 0x07a2, 0x07a3, 0x07a4, 0x07a5, 0x07a8, 0x07a9,
0x03aa, 0x03ab, 0x03ac, 0x03ad, 0x03b0, 0x03b1, 0x03b2, 0x03b3,
0x03b4, 0x03b5, 0x03b8, 0x03b9, 0x03ba, 0x03bb, 0x03bb
};
static const u8 ZEBRA2_CCK_OFDM_GAIN_SETTING[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d,
0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23,
};
static const u8 rtl8225z2_tx_power_ofdm[] = {
0x42, 0x00, 0x40, 0x00, 0x40
};
static const u8 rtl8225z2_tx_power_cck_ch14[] = {
0x36, 0x35, 0x2e, 0x1b, 0x00, 0x00, 0x00, 0x00
};
static const u8 rtl8225z2_tx_power_cck[] = {
0x36, 0x35, 0x2e, 0x25, 0x1c, 0x12, 0x09, 0x04
};
void rtl8225z2_set_gain(struct net_device *dev, short gain)
{
const u8 *rtl8225_gain;
struct r8180_priv *priv = ieee80211_priv(dev);
u8 mode = priv->ieee80211->mode;
if (mode == IEEE_B || mode == IEEE_G)
rtl8225_gain = rtl8225z2_gain_bg;
else
rtl8225_gain = rtl8225z2_gain_a;
write_phy_ofdm(dev, 0x0b, rtl8225_gain[gain * 3]);
write_phy_ofdm(dev, 0x1b, rtl8225_gain[gain * 3 + 1]);
write_phy_ofdm(dev, 0x1d, rtl8225_gain[gain * 3 + 2]);
write_phy_ofdm(dev, 0x21, 0x37);
}
static u32 read_rtl8225(struct net_device *dev, u8 adr)
{
u32 data2Write = ((u32)(adr & 0x1f)) << 27;
u32 dataRead;
u32 mask;
u16 oval, oval2, oval3, tmp;
int i;
short bit, rw;
u8 wLength = 6;
u8 rLength = 12;
u8 low2high = 0;
oval = read_nic_word(dev, RFPinsOutput);
oval2 = read_nic_word(dev, RFPinsEnable);
oval3 = read_nic_word(dev, RFPinsSelect);
write_nic_word(dev, RFPinsEnable, (oval2|0xf));
write_nic_word(dev, RFPinsSelect, (oval3|0xf));
dataRead = 0;
oval &= ~0xf;
write_nic_word(dev, RFPinsOutput, oval | BB_HOST_BANG_EN);
udelay(4);
write_nic_word(dev, RFPinsOutput, oval);
udelay(5);
rw = 0;
mask = (low2high) ? 0x01 : (((u32)0x01)<<(32-1));
for (i = 0; i < wLength/2; i++) {
bit = ((data2Write&mask) != 0) ? 1 : 0;
write_nic_word(dev, RFPinsOutput, bit | oval | rw);
udelay(1);
write_nic_word(dev, RFPinsOutput,
bit | oval | BB_HOST_BANG_CLK | rw);
udelay(2);
write_nic_word(dev, RFPinsOutput,
bit | oval | BB_HOST_BANG_CLK | rw);
udelay(2);
mask = (low2high) ? (mask<<1) : (mask>>1);
if (i == 2) {
rw = BB_HOST_BANG_RW;
write_nic_word(dev, RFPinsOutput,
bit | oval | BB_HOST_BANG_CLK | rw);
udelay(2);
write_nic_word(dev, RFPinsOutput, bit | oval | rw);
udelay(2);
break;
}
bit = ((data2Write&mask) != 0) ? 1 : 0;
write_nic_word(dev, RFPinsOutput,
oval | bit | rw | BB_HOST_BANG_CLK);
udelay(2);
write_nic_word(dev, RFPinsOutput,
oval | bit | rw | BB_HOST_BANG_CLK);
udelay(2);
write_nic_word(dev, RFPinsOutput, oval | bit | rw);
udelay(1);
mask = (low2high) ? (mask<<1) : (mask>>1);
}
write_nic_word(dev, RFPinsOutput, rw|oval);
udelay(2);
mask = (low2high) ? 0x01 : (((u32)0x01) << (12-1));
/*
* We must set data pin to HW controled, otherwise RF can't driver it
* and value RF register won't be able to read back properly.
*/
write_nic_word(dev, RFPinsEnable, (oval2 & (~0x01)));
for (i = 0; i < rLength; i++) {
write_nic_word(dev, RFPinsOutput, rw|oval); udelay(1);
write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK);
udelay(2);
write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK);
udelay(2);
write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK);
udelay(2);
tmp = read_nic_word(dev, RFPinsInput);
dataRead |= (tmp & BB_HOST_BANG_CLK ? mask : 0);
write_nic_word(dev, RFPinsOutput, (rw|oval)); udelay(2);
mask = (low2high) ? (mask<<1) : (mask>>1);
}
write_nic_word(dev, RFPinsOutput,
BB_HOST_BANG_EN | BB_HOST_BANG_RW | oval);
udelay(2);
write_nic_word(dev, RFPinsEnable, oval2);
write_nic_word(dev, RFPinsSelect, oval3); /* Set To SW Switch */
write_nic_word(dev, RFPinsOutput, 0x3a0);
return dataRead;
}
short rtl8225_is_V_z2(struct net_device *dev)
{
short vz2 = 1;
if (read_rtl8225(dev, 8) != 0x588)
vz2 = 0;
else /* reg 9 pg 1 = 24 */
if (read_rtl8225(dev, 9) != 0x700)
vz2 = 0;
/* sw back to pg 0 */
write_rtl8225(dev, 0, 0xb7);
return vz2;
}
void rtl8225z2_rf_close(struct net_device *dev)
{
RF_WriteReg(dev, 0x4, 0x1f);
force_pci_posting(dev);
mdelay(1);
rtl8180_set_anaparam(dev, RTL8225z2_ANAPARAM_OFF);
rtl8185_set_anaparam2(dev, RTL8225z2_ANAPARAM2_OFF);
}
/*
* Map dBm into Tx power index according to current HW model, for example,
* RF and PA, and current wireless mode.
*/
s8 DbmToTxPwrIdx(struct r8180_priv *priv, WIRELESS_MODE WirelessMode,
s32 PowerInDbm)
{
bool bUseDefault = true;
s8 TxPwrIdx = 0;
/*
* OFDM Power in dBm = Index * 0.5 + 0
* CCK Power in dBm = Index * 0.25 + 13
*/
s32 tmp = 0;
if (WirelessMode == WIRELESS_MODE_G) {
bUseDefault = false;
tmp = (2 * PowerInDbm);
if (tmp < 0)
TxPwrIdx = 0;
else if (tmp > 40) /* 40 means 20 dBm. */
TxPwrIdx = 40;
else
TxPwrIdx = (s8)tmp;
} else if (WirelessMode == WIRELESS_MODE_B) {
bUseDefault = false;
tmp = (4 * PowerInDbm) - 52;
if (tmp < 0)
TxPwrIdx = 0;
else if (tmp > 28) /* 28 means 20 dBm. */
TxPwrIdx = 28;
else
TxPwrIdx = (s8)tmp;
}
/*
* TRUE if we want to use a default implementation.
* We shall set it to FALSE when we have exact translation formular
* for target IC. 070622, by rcnjko.
*/
if (bUseDefault) {
if (PowerInDbm < 0)
TxPwrIdx = 0;
else if (PowerInDbm > 35)
TxPwrIdx = 35;
else
TxPwrIdx = (u8)PowerInDbm;
}
return TxPwrIdx;
}
void rtl8225z2_SetTXPowerLevel(struct net_device *dev, short ch)
{
struct r8180_priv *priv = ieee80211_priv(dev);
u8 max_cck_power_level;
u8 max_ofdm_power_level;
u8 min_ofdm_power_level;
char cck_power_level = (char)(0xff & priv->chtxpwr[ch]);
char ofdm_power_level = (char)(0xff & priv->chtxpwr_ofdm[ch]);
if (IS_DOT11D_ENABLE(priv->ieee80211) &&
IS_DOT11D_STATE_DONE(priv->ieee80211)) {
u8 MaxTxPwrInDbm = DOT11D_GetMaxTxPwrInDbm(priv->ieee80211, ch);
u8 CckMaxPwrIdx = DbmToTxPwrIdx(priv, WIRELESS_MODE_B,
MaxTxPwrInDbm);
u8 OfdmMaxPwrIdx = DbmToTxPwrIdx(priv, WIRELESS_MODE_G,
MaxTxPwrInDbm);
if (cck_power_level > CckMaxPwrIdx)
cck_power_level = CckMaxPwrIdx;
if (ofdm_power_level > OfdmMaxPwrIdx)
ofdm_power_level = OfdmMaxPwrIdx;
}
max_cck_power_level = 15;
max_ofdm_power_level = 25;
min_ofdm_power_level = 10;
if (cck_power_level > 35)
cck_power_level = 35;
write_nic_byte(dev, CCK_TXAGC,
(ZEBRA2_CCK_OFDM_GAIN_SETTING[(u8)cck_power_level]));
force_pci_posting(dev);
mdelay(1);
if (ofdm_power_level > 35)
ofdm_power_level = 35;
if (priv->up == 0) {
write_phy_ofdm(dev, 2, 0x42);
write_phy_ofdm(dev, 5, 0x00);
write_phy_ofdm(dev, 6, 0x40);
write_phy_ofdm(dev, 7, 0x00);
write_phy_ofdm(dev, 8, 0x40);
}
write_nic_byte(dev, OFDM_TXAGC,
ZEBRA2_CCK_OFDM_GAIN_SETTING[(u8)ofdm_power_level]);
if (ofdm_power_level <= 11) {
write_phy_ofdm(dev, 0x07, 0x5c);
write_phy_ofdm(dev, 0x09, 0x5c);
}
if (ofdm_power_level <= 17) {
write_phy_ofdm(dev, 0x07, 0x54);
write_phy_ofdm(dev, 0x09, 0x54);
} else {
write_phy_ofdm(dev, 0x07, 0x50);
write_phy_ofdm(dev, 0x09, 0x50);
}
force_pci_posting(dev);
mdelay(1);
}
void rtl8225z2_rf_set_chan(struct net_device *dev, short ch)
{
rtl8225z2_SetTXPowerLevel(dev, ch);
RF_WriteReg(dev, 0x7, rtl8225_chan[ch]);
if ((RF_ReadReg(dev, 0x7) & 0x0F80) != rtl8225_chan[ch])
RF_WriteReg(dev, 0x7, rtl8225_chan[ch]);
mdelay(1);
force_pci_posting(dev);
mdelay(10);
}
static void rtl8225_host_pci_init(struct net_device *dev)
{
write_nic_word(dev, RFPinsOutput, 0x480);
rtl8185_rf_pins_enable(dev);
write_nic_word(dev, RFPinsSelect, 0x88 | SW_CONTROL_GPIO);
write_nic_byte(dev, GP_ENABLE, 0);
force_pci_posting(dev);
mdelay(200);
/* bit 6 is for RF on/off detection */
write_nic_word(dev, GP_ENABLE, 0xff & (~(1 << 6)));
}
static void rtl8225_rf_set_chan(struct net_device *dev, short ch)
{
struct r8180_priv *priv = ieee80211_priv(dev);
short gset = (priv->ieee80211->state == IEEE80211_LINKED &&
ieee80211_is_54g(priv->ieee80211->current_network)) ||
priv->ieee80211->iw_mode == IW_MODE_MONITOR;
rtl8225_SetTXPowerLevel(dev, ch);
write_rtl8225(dev, 0x7, rtl8225_chan[ch]);
force_pci_posting(dev);
mdelay(10);
if (gset) {
write_nic_byte(dev, SIFS, 0x22);
write_nic_byte(dev, DIFS, 0x14);
} else {
write_nic_byte(dev, SIFS, 0x44);
write_nic_byte(dev, DIFS, 0x24);
}
if (priv->ieee80211->state == IEEE80211_LINKED &&
ieee80211_is_shortslot(priv->ieee80211->current_network))
write_nic_byte(dev, SLOT, 0x9);
else
write_nic_byte(dev, SLOT, 0x14);
if (gset) {
write_nic_byte(dev, EIFS, 81);
write_nic_byte(dev, CW_VAL, 0x73);
} else {
write_nic_byte(dev, EIFS, 81);
write_nic_byte(dev, CW_VAL, 0xa5);
}
}
void rtl8225z2_rf_init(struct net_device *dev)
{
struct r8180_priv *priv = ieee80211_priv(dev);
int i;
short channel = 1;
u16 brsr;
u32 data, addr;
priv->chan = channel;
rtl8225_host_pci_init(dev);
write_nic_dword(dev, RF_TIMING, 0x000a8008);
brsr = read_nic_word(dev, BRSR);
write_nic_word(dev, BRSR, 0xffff);
write_nic_dword(dev, RF_PARA, 0x100044);
rtl8180_set_mode(dev, EPROM_CMD_CONFIG);
write_nic_byte(dev, CONFIG3, 0x44);
rtl8180_set_mode(dev, EPROM_CMD_NORMAL);
rtl8185_rf_pins_enable(dev);
write_rtl8225(dev, 0x0, 0x2bf); mdelay(1);
write_rtl8225(dev, 0x1, 0xee0); mdelay(1);
write_rtl8225(dev, 0x2, 0x44d); mdelay(1);
write_rtl8225(dev, 0x3, 0x441); mdelay(1);
write_rtl8225(dev, 0x4, 0x8c3); mdelay(1);
write_rtl8225(dev, 0x5, 0xc72); mdelay(1);
write_rtl8225(dev, 0x6, 0xe6); mdelay(1);
write_rtl8225(dev, 0x7, rtl8225_chan[channel]); mdelay(1);
write_rtl8225(dev, 0x8, 0x3f); mdelay(1);
write_rtl8225(dev, 0x9, 0x335); mdelay(1);
write_rtl8225(dev, 0xa, 0x9d4); mdelay(1);
write_rtl8225(dev, 0xb, 0x7bb); mdelay(1);
write_rtl8225(dev, 0xc, 0x850); mdelay(1);
write_rtl8225(dev, 0xd, 0xcdf); mdelay(1);
write_rtl8225(dev, 0xe, 0x2b); mdelay(1);
write_rtl8225(dev, 0xf, 0x114);
mdelay(100);
write_rtl8225(dev, 0x0, 0x1b7);
for (i = 0; i < 95; i++) {
write_rtl8225(dev, 0x1, (u8)(i + 1));
write_rtl8225(dev, 0x2, rtl8225z2_rxgain[i]);
}
write_rtl8225(dev, 0x3, 0x80);
write_rtl8225(dev, 0x5, 0x4);
write_rtl8225(dev, 0x0, 0xb7);
write_rtl8225(dev, 0x2, 0xc4d);
/* FIXME!! rtl8187 we have to check if calibrarion
* is successful and eventually cal. again (repeat
* the two write on reg 2)
*/
data = read_rtl8225(dev, 6);
if (!(data & 0x00000080)) {
write_rtl8225(dev, 0x02, 0x0c4d);
force_pci_posting(dev); mdelay(200);
write_rtl8225(dev, 0x02, 0x044d);
force_pci_posting(dev); mdelay(100);
data = read_rtl8225(dev, 6);
if (!(data & 0x00000080))
DMESGW("RF Calibration Failed!!!!\n");
}
mdelay(200);
write_rtl8225(dev, 0x0, 0x2bf);
for (i = 0; i < 128; i++) {
data = rtl8225_agc[i];
addr = i + 0x80; /* enable writing AGC table */
write_phy_ofdm(dev, 0xb, data);
mdelay(1);
write_phy_ofdm(dev, 0xa, addr);
mdelay(1);
}
force_pci_posting(dev);
mdelay(1);
write_phy_ofdm(dev, 0x00, 0x01); mdelay(1);
write_phy_ofdm(dev, 0x01, 0x02); mdelay(1);
write_phy_ofdm(dev, 0x02, 0x62); mdelay(1);
write_phy_ofdm(dev, 0x03, 0x00); mdelay(1);
write_phy_ofdm(dev, 0x04, 0x00); mdelay(1);
write_phy_ofdm(dev, 0x05, 0x00); mdelay(1);
write_phy_ofdm(dev, 0x06, 0x40); mdelay(1);
write_phy_ofdm(dev, 0x07, 0x00); mdelay(1);
write_phy_ofdm(dev, 0x08, 0x40); mdelay(1);
write_phy_ofdm(dev, 0x09, 0xfe); mdelay(1);
write_phy_ofdm(dev, 0x0a, 0x08); mdelay(1);
write_phy_ofdm(dev, 0x0b, 0x80); mdelay(1);
write_phy_ofdm(dev, 0x0c, 0x01); mdelay(1);
write_phy_ofdm(dev, 0x0d, 0x43);
write_phy_ofdm(dev, 0x0e, 0xd3); mdelay(1);
write_phy_ofdm(dev, 0x0f, 0x38); mdelay(1);
write_phy_ofdm(dev, 0x10, 0x84); mdelay(1);
write_phy_ofdm(dev, 0x11, 0x07); mdelay(1);
write_phy_ofdm(dev, 0x12, 0x20); mdelay(1);
write_phy_ofdm(dev, 0x13, 0x20); mdelay(1);
write_phy_ofdm(dev, 0x14, 0x00); mdelay(1);
write_phy_ofdm(dev, 0x15, 0x40); mdelay(1);
write_phy_ofdm(dev, 0x16, 0x00); mdelay(1);
write_phy_ofdm(dev, 0x17, 0x40); mdelay(1);
write_phy_ofdm(dev, 0x18, 0xef); mdelay(1);
write_phy_ofdm(dev, 0x19, 0x19); mdelay(1);
write_phy_ofdm(dev, 0x1a, 0x20); mdelay(1);
write_phy_ofdm(dev, 0x1b, 0x15); mdelay(1);
write_phy_ofdm(dev, 0x1c, 0x04); mdelay(1);
write_phy_ofdm(dev, 0x1d, 0xc5); mdelay(1);
write_phy_ofdm(dev, 0x1e, 0x95); mdelay(1);
write_phy_ofdm(dev, 0x1f, 0x75); mdelay(1);
write_phy_ofdm(dev, 0x20, 0x1f); mdelay(1);
write_phy_ofdm(dev, 0x21, 0x17); mdelay(1);
write_phy_ofdm(dev, 0x22, 0x16); mdelay(1);
write_phy_ofdm(dev, 0x23, 0x80); mdelay(1); /* FIXME maybe not needed */
write_phy_ofdm(dev, 0x24, 0x46); mdelay(1);
write_phy_ofdm(dev, 0x25, 0x00); mdelay(1);
write_phy_ofdm(dev, 0x26, 0x90); mdelay(1);
write_phy_ofdm(dev, 0x27, 0x88); mdelay(1);
rtl8225z2_set_gain(dev, 4);
write_phy_cck(dev, 0x0, 0x98); mdelay(1);
write_phy_cck(dev, 0x3, 0x20); mdelay(1);
write_phy_cck(dev, 0x4, 0x7e); mdelay(1);
write_phy_cck(dev, 0x5, 0x12); mdelay(1);
write_phy_cck(dev, 0x6, 0xfc); mdelay(1);
write_phy_cck(dev, 0x7, 0x78); mdelay(1);
write_phy_cck(dev, 0x8, 0x2e); mdelay(1);
write_phy_cck(dev, 0x10, 0x93); mdelay(1);
write_phy_cck(dev, 0x11, 0x88); mdelay(1);
write_phy_cck(dev, 0x12, 0x47); mdelay(1);
write_phy_cck(dev, 0x13, 0xd0);
write_phy_cck(dev, 0x19, 0x00);
write_phy_cck(dev, 0x1a, 0xa0);
write_phy_cck(dev, 0x1b, 0x08);
write_phy_cck(dev, 0x40, 0x86); /* CCK Carrier Sense Threshold */
write_phy_cck(dev, 0x41, 0x8d); mdelay(1);
write_phy_cck(dev, 0x42, 0x15); mdelay(1);
write_phy_cck(dev, 0x43, 0x18); mdelay(1);
write_phy_cck(dev, 0x44, 0x36); mdelay(1);
write_phy_cck(dev, 0x45, 0x35); mdelay(1);
write_phy_cck(dev, 0x46, 0x2e); mdelay(1);
write_phy_cck(dev, 0x47, 0x25); mdelay(1);
write_phy_cck(dev, 0x48, 0x1c); mdelay(1);
write_phy_cck(dev, 0x49, 0x12); mdelay(1);
write_phy_cck(dev, 0x4a, 0x09); mdelay(1);
write_phy_cck(dev, 0x4b, 0x04); mdelay(1);
write_phy_cck(dev, 0x4c, 0x05); mdelay(1);
write_nic_byte(dev, 0x5b, 0x0d); mdelay(1);
rtl8225z2_SetTXPowerLevel(dev, channel);
/* RX antenna default to A */
write_phy_cck(dev, 0x11, 0x9b); mdelay(1); /* B: 0xDB */
write_phy_ofdm(dev, 0x26, 0x90); mdelay(1); /* B: 0x10 */
rtl8185_tx_antenna(dev, 0x03); /* B: 0x00 */
/* switch to high-speed 3-wire
* last digit. 2 for both cck and ofdm
*/
write_nic_dword(dev, 0x94, 0x15c00002);
rtl8185_rf_pins_enable(dev);
rtl8225_rf_set_chan(dev, priv->chan);
}
void rtl8225z2_rf_set_mode(struct net_device *dev)
{
struct r8180_priv *priv = ieee80211_priv(dev);
if (priv->ieee80211->mode == IEEE_A) {
write_rtl8225(dev, 0x5, 0x1865);
write_nic_dword(dev, RF_PARA, 0x10084);
write_nic_dword(dev, RF_TIMING, 0xa8008);
write_phy_ofdm(dev, 0x0, 0x0);
write_phy_ofdm(dev, 0xa, 0x6);
write_phy_ofdm(dev, 0xb, 0x99);
write_phy_ofdm(dev, 0xf, 0x20);
write_phy_ofdm(dev, 0x11, 0x7);
rtl8225z2_set_gain(dev, 4);
write_phy_ofdm(dev, 0x15, 0x40);
write_phy_ofdm(dev, 0x17, 0x40);
write_nic_dword(dev, 0x94, 0x10000000);
} else {
write_rtl8225(dev, 0x5, 0x1864);
write_nic_dword(dev, RF_PARA, 0x10044);
write_nic_dword(dev, RF_TIMING, 0xa8008);
write_phy_ofdm(dev, 0x0, 0x1);
write_phy_ofdm(dev, 0xa, 0x6);
write_phy_ofdm(dev, 0xb, 0x99);
write_phy_ofdm(dev, 0xf, 0x20);
write_phy_ofdm(dev, 0x11, 0x7);
rtl8225z2_set_gain(dev, 4);
write_phy_ofdm(dev, 0x15, 0x40);
write_phy_ofdm(dev, 0x17, 0x40);
write_nic_dword(dev, 0x94, 0x04000002);
}
}
#define MAX_DOZE_WAITING_TIMES_85B 20
#define MAX_POLLING_24F_TIMES_87SE 10
#define LPS_MAX_SLEEP_WAITING_TIMES_87SE 5
bool SetZebraRFPowerState8185(struct net_device *dev,
RT_RF_POWER_STATE eRFPowerState)
{
struct r8180_priv *priv = ieee80211_priv(dev);
u8 btCR9346, btConfig3;
bool bActionAllowed = true, bTurnOffBB = true;
u8 u1bTmp;
int i;
bool bResult = true;
u8 QueueID;
if (priv->SetRFPowerStateInProgress == true)
return false;
priv->SetRFPowerStateInProgress = true;
btCR9346 = read_nic_byte(dev, CR9346);
write_nic_byte(dev, CR9346, (btCR9346 | 0xC0));
btConfig3 = read_nic_byte(dev, CONFIG3);
write_nic_byte(dev, CONFIG3, (btConfig3 | CONFIG3_PARM_En));
switch (eRFPowerState) {
case eRfOn:
write_nic_word(dev, 0x37C, 0x00EC);
/* turn on AFE */
write_nic_byte(dev, 0x54, 0x00);
write_nic_byte(dev, 0x62, 0x00);
/* turn on RF */
RF_WriteReg(dev, 0x0, 0x009f); udelay(500);
RF_WriteReg(dev, 0x4, 0x0972); udelay(500);
/* turn on RF again */
RF_WriteReg(dev, 0x0, 0x009f); udelay(500);
RF_WriteReg(dev, 0x4, 0x0972); udelay(500);
/* turn on BB */
write_phy_ofdm(dev, 0x10, 0x40);
write_phy_ofdm(dev, 0x12, 0x40);
/* Avoid power down at init time. */
write_nic_byte(dev, CONFIG4, priv->RFProgType);
u1bTmp = read_nic_byte(dev, 0x24E);
write_nic_byte(dev, 0x24E, (u1bTmp & (~(BIT5 | BIT6))));
break;
case eRfSleep:
for (QueueID = 0, i = 0; QueueID < 6;) {
if (get_curr_tx_free_desc(dev, QueueID) ==
priv->txringcount) {
QueueID++;
continue;
} else {
priv->TxPollingTimes++;
if (priv->TxPollingTimes >=
LPS_MAX_SLEEP_WAITING_TIMES_87SE) {
bActionAllowed = false;
break;
} else
udelay(10);
}
}
if (bActionAllowed) {
/* turn off BB RXIQ matrix to cut off rx signal */
write_phy_ofdm(dev, 0x10, 0x00);
write_phy_ofdm(dev, 0x12, 0x00);
/* turn off RF */
RF_WriteReg(dev, 0x4, 0x0000);
RF_WriteReg(dev, 0x0, 0x0000);
/* turn off AFE except PLL */
write_nic_byte(dev, 0x62, 0xff);
write_nic_byte(dev, 0x54, 0xec);
mdelay(1);
{
int i = 0;
while (true) {
u8 tmp24F = read_nic_byte(dev, 0x24f);
if ((tmp24F == 0x01) ||
(tmp24F == 0x09)) {
bTurnOffBB = true;
break;
} else {
udelay(10);
i++;
priv->TxPollingTimes++;
if (priv->TxPollingTimes >= LPS_MAX_SLEEP_WAITING_TIMES_87SE) {
bTurnOffBB = false;
break;
} else
udelay(10);
}
}
}
if (bTurnOffBB) {
/* turn off BB */
u1bTmp = read_nic_byte(dev, 0x24E);
write_nic_byte(dev, 0x24E,
(u1bTmp | BIT5 | BIT6));
/* turn off AFE PLL */
write_nic_byte(dev, 0x54, 0xFC);
write_nic_word(dev, 0x37C, 0x00FC);
}
}
break;
case eRfOff:
for (QueueID = 0, i = 0; QueueID < 6;) {
if (get_curr_tx_free_desc(dev, QueueID) ==
priv->txringcount) {
QueueID++;
continue;
} else {
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_85B)
break;
}
/* turn off BB RXIQ matrix to cut off rx signal */
write_phy_ofdm(dev, 0x10, 0x00);
write_phy_ofdm(dev, 0x12, 0x00);
/* turn off RF */
RF_WriteReg(dev, 0x4, 0x0000);
RF_WriteReg(dev, 0x0, 0x0000);
/* turn off AFE except PLL */
write_nic_byte(dev, 0x62, 0xff);
write_nic_byte(dev, 0x54, 0xec);
mdelay(1);
{
int i = 0;
while (true) {
u8 tmp24F = read_nic_byte(dev, 0x24f);
if ((tmp24F == 0x01) || (tmp24F == 0x09)) {
bTurnOffBB = true;
break;
} else {
bTurnOffBB = false;
udelay(10);
i++;
}
if (i > MAX_POLLING_24F_TIMES_87SE)
break;
}
}
if (bTurnOffBB) {
/* turn off BB */
u1bTmp = read_nic_byte(dev, 0x24E);
write_nic_byte(dev, 0x24E, (u1bTmp | BIT5 | BIT6));
/* turn off AFE PLL (80M) */
write_nic_byte(dev, 0x54, 0xFC);
write_nic_word(dev, 0x37C, 0x00FC);
}
break;
}
btConfig3 &= ~(CONFIG3_PARM_En);
write_nic_byte(dev, CONFIG3, btConfig3);
btCR9346 &= ~(0xC0);
write_nic_byte(dev, CR9346, btCR9346);
if (bResult && bActionAllowed)
priv->eRFPowerState = eRFPowerState;
priv->SetRFPowerStateInProgress = false;
return bResult && bActionAllowed;
}
void rtl8225z4_rf_sleep(struct net_device *dev)
{
MgntActSet_RF_State(dev, eRfSleep, RF_CHANGE_BY_PS);
}
void rtl8225z4_rf_wakeup(struct net_device *dev)
{
MgntActSet_RF_State(dev, eRfOn, RF_CHANGE_BY_PS);
}