blob: 51ceaee98f9feb8c7275a9877cb54866ffe2375a [file] [log] [blame]
/*
* Disk Array driver for HP Smart Array controllers.
* (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307, USA.
*
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/dma-mapping.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#include <linux/completion.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <scsi/scsi_ioctl.h>
#include <linux/cdrom.h>
#include <linux/scatterlist.h>
#include <linux/kthread.h>
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
" SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
" Smart Array G2 Series SAS/SATA Controllers");
MODULE_VERSION("3.6.20");
MODULE_LICENSE("GPL");
static int cciss_allow_hpsa;
module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(cciss_allow_hpsa,
"Prevent cciss driver from accessing hardware known to be "
" supported by the hpsa driver");
#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>
/* define the PCI info for the cards we can control */
static const struct pci_device_id cciss_pci_device_id[] = {
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
{0,}
};
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{0x40700E11, "Smart Array 5300", &SA5_access},
{0x40800E11, "Smart Array 5i", &SA5B_access},
{0x40820E11, "Smart Array 532", &SA5B_access},
{0x40830E11, "Smart Array 5312", &SA5B_access},
{0x409A0E11, "Smart Array 641", &SA5_access},
{0x409B0E11, "Smart Array 642", &SA5_access},
{0x409C0E11, "Smart Array 6400", &SA5_access},
{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
{0x40910E11, "Smart Array 6i", &SA5_access},
{0x3225103C, "Smart Array P600", &SA5_access},
{0x3235103C, "Smart Array P400i", &SA5_access},
{0x3211103C, "Smart Array E200i", &SA5_access},
{0x3212103C, "Smart Array E200", &SA5_access},
{0x3213103C, "Smart Array E200i", &SA5_access},
{0x3214103C, "Smart Array E200i", &SA5_access},
{0x3215103C, "Smart Array E200i", &SA5_access},
{0x3237103C, "Smart Array E500", &SA5_access},
/* controllers below this line are also supported by the hpsa driver. */
#define HPSA_BOUNDARY 0x3223103C
{0x3223103C, "Smart Array P800", &SA5_access},
{0x3234103C, "Smart Array P400", &SA5_access},
{0x323D103C, "Smart Array P700m", &SA5_access},
{0x3241103C, "Smart Array P212", &SA5_access},
{0x3243103C, "Smart Array P410", &SA5_access},
{0x3245103C, "Smart Array P410i", &SA5_access},
{0x3247103C, "Smart Array P411", &SA5_access},
{0x3249103C, "Smart Array P812", &SA5_access},
{0x324A103C, "Smart Array P712m", &SA5_access},
{0x324B103C, "Smart Array P711m", &SA5_access},
};
/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000
/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3
#define MAX_CTLR 32
/* Originally cciss driver only supports 8 major numbers */
#define MAX_CTLR_ORIG 8
static ctlr_info_t *hba[MAX_CTLR];
static struct task_struct *cciss_scan_thread;
static DEFINE_MUTEX(scan_mutex);
static LIST_HEAD(scan_q);
static void do_cciss_request(struct request_queue *q);
static irqreturn_t do_cciss_intr(int irq, void *dev_id);
static int cciss_open(struct block_device *bdev, fmode_t mode);
static int cciss_release(struct gendisk *disk, fmode_t mode);
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
static int cciss_revalidate(struct gendisk *disk);
static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
static int deregister_disk(ctlr_info_t *h, int drv_index,
int clear_all, int via_ioctl);
static void cciss_read_capacity(int ctlr, int logvol,
sector_t *total_size, unsigned int *block_size);
static void cciss_read_capacity_16(int ctlr, int logvol,
sector_t *total_size, unsigned int *block_size);
static void cciss_geometry_inquiry(int ctlr, int logvol,
sector_t total_size,
unsigned int block_size, InquiryData_struct *inq_buff,
drive_info_struct *drv);
static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
__u32);
static void start_io(ctlr_info_t *h);
static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
__u8 page_code, unsigned char scsi3addr[],
int cmd_type);
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
int attempt_retry);
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
static void fail_all_cmds(unsigned long ctlr);
static int add_to_scan_list(struct ctlr_info *h);
static int scan_thread(void *data);
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
static void cciss_hba_release(struct device *dev);
static void cciss_device_release(struct device *dev);
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
#ifdef CONFIG_PROC_FS
static void cciss_procinit(int i);
#else
static void cciss_procinit(int i)
{
}
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_COMPAT
static int cciss_compat_ioctl(struct block_device *, fmode_t,
unsigned, unsigned long);
#endif
static const struct block_device_operations cciss_fops = {
.owner = THIS_MODULE,
.open = cciss_open,
.release = cciss_release,
.locked_ioctl = cciss_ioctl,
.getgeo = cciss_getgeo,
#ifdef CONFIG_COMPAT
.compat_ioctl = cciss_compat_ioctl,
#endif
.revalidate_disk = cciss_revalidate,
};
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(struct hlist_head *list, CommandList_struct *c)
{
hlist_add_head(&c->list, list);
}
static inline void removeQ(CommandList_struct *c)
{
/*
* After kexec/dump some commands might still
* be in flight, which the firmware will try
* to complete. Resetting the firmware doesn't work
* with old fw revisions, so we have to mark
* them off as 'stale' to prevent the driver from
* falling over.
*/
if (WARN_ON(hlist_unhashed(&c->list))) {
c->cmd_type = CMD_MSG_STALE;
return;
}
hlist_del_init(&c->list);
}
static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
int nr_cmds)
{
int i;
if (!cmd_sg_list)
return;
for (i = 0; i < nr_cmds; i++) {
kfree(cmd_sg_list[i]);
cmd_sg_list[i] = NULL;
}
kfree(cmd_sg_list);
}
static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
ctlr_info_t *h, int chainsize, int nr_cmds)
{
int j;
SGDescriptor_struct **cmd_sg_list;
if (chainsize <= 0)
return NULL;
cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
if (!cmd_sg_list)
return NULL;
/* Build up chain blocks for each command */
for (j = 0; j < nr_cmds; j++) {
/* Need a block of chainsized s/g elements. */
cmd_sg_list[j] = kmalloc((chainsize *
sizeof(*cmd_sg_list[j])), GFP_KERNEL);
if (!cmd_sg_list[j]) {
dev_err(&h->pdev->dev, "Cannot get memory "
"for s/g chains.\n");
goto clean;
}
}
return cmd_sg_list;
clean:
cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
return NULL;
}
static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
{
SGDescriptor_struct *chain_sg;
u64bit temp64;
if (c->Header.SGTotal <= h->max_cmd_sgentries)
return;
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
temp64.val32.lower = chain_sg->Addr.lower;
temp64.val32.upper = chain_sg->Addr.upper;
pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}
static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
SGDescriptor_struct *chain_block, int len)
{
SGDescriptor_struct *chain_sg;
u64bit temp64;
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
chain_sg->Ext = CCISS_SG_CHAIN;
chain_sg->Len = len;
temp64.val = pci_map_single(h->pdev, chain_block, len,
PCI_DMA_TODEVICE);
chain_sg->Addr.lower = temp64.val32.lower;
chain_sg->Addr.upper = temp64.val32.upper;
}
#include "cciss_scsi.c" /* For SCSI tape support */
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
"UNKNOWN"
};
#define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
#ifdef CONFIG_PROC_FS
/*
* Report information about this controller.
*/
#define ENG_GIG 1000000000
#define ENG_GIG_FACTOR (ENG_GIG/512)
#define ENGAGE_SCSI "engage scsi"
static struct proc_dir_entry *proc_cciss;
static void cciss_seq_show_header(struct seq_file *seq)
{
ctlr_info_t *h = seq->private;
seq_printf(seq, "%s: HP %s Controller\n"
"Board ID: 0x%08lx\n"
"Firmware Version: %c%c%c%c\n"
"IRQ: %d\n"
"Logical drives: %d\n"
"Current Q depth: %d\n"
"Current # commands on controller: %d\n"
"Max Q depth since init: %d\n"
"Max # commands on controller since init: %d\n"
"Max SG entries since init: %d\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
h->num_luns,
h->Qdepth, h->commands_outstanding,
h->maxQsinceinit, h->max_outstanding, h->maxSG);
#ifdef CONFIG_CISS_SCSI_TAPE
cciss_seq_tape_report(seq, h->ctlr);
#endif /* CONFIG_CISS_SCSI_TAPE */
}
static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
{
ctlr_info_t *h = seq->private;
unsigned ctlr = h->ctlr;
unsigned long flags;
/* prevent displaying bogus info during configuration
* or deconfiguration of a logical volume
*/
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
return ERR_PTR(-EBUSY);
}
h->busy_configuring = 1;
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
if (*pos == 0)
cciss_seq_show_header(seq);
return pos;
}
static int cciss_seq_show(struct seq_file *seq, void *v)
{
sector_t vol_sz, vol_sz_frac;
ctlr_info_t *h = seq->private;
unsigned ctlr = h->ctlr;
loff_t *pos = v;
drive_info_struct *drv = h->drv[*pos];
if (*pos > h->highest_lun)
return 0;
if (drv == NULL) /* it's possible for h->drv[] to have holes. */
return 0;
if (drv->heads == 0)
return 0;
vol_sz = drv->nr_blocks;
vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
vol_sz_frac *= 100;
sector_div(vol_sz_frac, ENG_GIG_FACTOR);
if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
drv->raid_level = RAID_UNKNOWN;
seq_printf(seq, "cciss/c%dd%d:"
"\t%4u.%02uGB\tRAID %s\n",
ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
raid_label[drv->raid_level]);
return 0;
}
static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
ctlr_info_t *h = seq->private;
if (*pos > h->highest_lun)
return NULL;
*pos += 1;
return pos;
}
static void cciss_seq_stop(struct seq_file *seq, void *v)
{
ctlr_info_t *h = seq->private;
/* Only reset h->busy_configuring if we succeeded in setting
* it during cciss_seq_start. */
if (v == ERR_PTR(-EBUSY))
return;
h->busy_configuring = 0;
}
static const struct seq_operations cciss_seq_ops = {
.start = cciss_seq_start,
.show = cciss_seq_show,
.next = cciss_seq_next,
.stop = cciss_seq_stop,
};
static int cciss_seq_open(struct inode *inode, struct file *file)
{
int ret = seq_open(file, &cciss_seq_ops);
struct seq_file *seq = file->private_data;
if (!ret)
seq->private = PDE(inode)->data;
return ret;
}
static ssize_t
cciss_proc_write(struct file *file, const char __user *buf,
size_t length, loff_t *ppos)
{
int err;
char *buffer;
#ifndef CONFIG_CISS_SCSI_TAPE
return -EINVAL;
#endif
if (!buf || length > PAGE_SIZE - 1)
return -EINVAL;
buffer = (char *)__get_free_page(GFP_KERNEL);
if (!buffer)
return -ENOMEM;
err = -EFAULT;
if (copy_from_user(buffer, buf, length))
goto out;
buffer[length] = '\0';
#ifdef CONFIG_CISS_SCSI_TAPE
if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
struct seq_file *seq = file->private_data;
ctlr_info_t *h = seq->private;
err = cciss_engage_scsi(h->ctlr);
if (err == 0)
err = length;
} else
#endif /* CONFIG_CISS_SCSI_TAPE */
err = -EINVAL;
/* might be nice to have "disengage" too, but it's not
safely possible. (only 1 module use count, lock issues.) */
out:
free_page((unsigned long)buffer);
return err;
}
static const struct file_operations cciss_proc_fops = {
.owner = THIS_MODULE,
.open = cciss_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
.write = cciss_proc_write,
};
static void __devinit cciss_procinit(int i)
{
struct proc_dir_entry *pde;
if (proc_cciss == NULL)
proc_cciss = proc_mkdir("driver/cciss", NULL);
if (!proc_cciss)
return;
pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
S_IROTH, proc_cciss,
&cciss_proc_fops, hba[i]);
}
#endif /* CONFIG_PROC_FS */
#define MAX_PRODUCT_NAME_LEN 19
#define to_hba(n) container_of(n, struct ctlr_info, dev)
#define to_drv(n) container_of(n, drive_info_struct, dev)
static ssize_t host_store_rescan(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ctlr_info *h = to_hba(dev);
add_to_scan_list(h);
wake_up_process(cciss_scan_thread);
wait_for_completion_interruptible(&h->scan_wait);
return count;
}
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
static ssize_t dev_show_unique_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
__u8 sn[16];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(sn, drv->serial_no, sizeof(sn));
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
if (ret)
return ret;
else
return snprintf(buf, 16 * 2 + 2,
"%02X%02X%02X%02X%02X%02X%02X%02X"
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
sn[0], sn[1], sn[2], sn[3],
sn[4], sn[5], sn[6], sn[7],
sn[8], sn[9], sn[10], sn[11],
sn[12], sn[13], sn[14], sn[15]);
}
static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
static ssize_t dev_show_vendor(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char vendor[VENDOR_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
}
static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
static ssize_t dev_show_model(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char model[MODEL_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(model, drv->model, MODEL_LEN + 1);
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
}
static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
static ssize_t dev_show_rev(struct device *dev,
struct device_attribute *attr,
char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
char rev[REV_LEN + 1];
unsigned long flags;
int ret = 0;
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring)
ret = -EBUSY;
else
memcpy(rev, drv->rev, REV_LEN + 1);
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
if (ret)
return ret;
else
return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
}
static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
static ssize_t cciss_show_lunid(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
unsigned long flags;
unsigned char lunid[8];
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return -EBUSY;
}
if (!drv->heads) {
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return -ENOTTY;
}
memcpy(lunid, drv->LunID, sizeof(lunid));
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
lunid[0], lunid[1], lunid[2], lunid[3],
lunid[4], lunid[5], lunid[6], lunid[7]);
}
static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
static ssize_t cciss_show_raid_level(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
int raid;
unsigned long flags;
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return -EBUSY;
}
raid = drv->raid_level;
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
if (raid < 0 || raid > RAID_UNKNOWN)
raid = RAID_UNKNOWN;
return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
raid_label[raid]);
}
static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
static ssize_t cciss_show_usage_count(struct device *dev,
struct device_attribute *attr, char *buf)
{
drive_info_struct *drv = to_drv(dev);
struct ctlr_info *h = to_hba(drv->dev.parent);
unsigned long flags;
int count;
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return -EBUSY;
}
count = drv->usage_count;
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return snprintf(buf, 20, "%d\n", count);
}
static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
static struct attribute *cciss_host_attrs[] = {
&dev_attr_rescan.attr,
NULL
};
static struct attribute_group cciss_host_attr_group = {
.attrs = cciss_host_attrs,
};
static const struct attribute_group *cciss_host_attr_groups[] = {
&cciss_host_attr_group,
NULL
};
static struct device_type cciss_host_type = {
.name = "cciss_host",
.groups = cciss_host_attr_groups,
.release = cciss_hba_release,
};
static struct attribute *cciss_dev_attrs[] = {
&dev_attr_unique_id.attr,
&dev_attr_model.attr,
&dev_attr_vendor.attr,
&dev_attr_rev.attr,
&dev_attr_lunid.attr,
&dev_attr_raid_level.attr,
&dev_attr_usage_count.attr,
NULL
};
static struct attribute_group cciss_dev_attr_group = {
.attrs = cciss_dev_attrs,
};
static const struct attribute_group *cciss_dev_attr_groups[] = {
&cciss_dev_attr_group,
NULL
};
static struct device_type cciss_dev_type = {
.name = "cciss_device",
.groups = cciss_dev_attr_groups,
.release = cciss_device_release,
};
static struct bus_type cciss_bus_type = {
.name = "cciss",
};
/*
* cciss_hba_release is called when the reference count
* of h->dev goes to zero.
*/
static void cciss_hba_release(struct device *dev)
{
/*
* nothing to do, but need this to avoid a warning
* about not having a release handler from lib/kref.c.
*/
}
/*
* Initialize sysfs entry for each controller. This sets up and registers
* the 'cciss#' directory for each individual controller under
* /sys/bus/pci/devices/<dev>/.
*/
static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
{
device_initialize(&h->dev);
h->dev.type = &cciss_host_type;
h->dev.bus = &cciss_bus_type;
dev_set_name(&h->dev, "%s", h->devname);
h->dev.parent = &h->pdev->dev;
return device_add(&h->dev);
}
/*
* Remove sysfs entries for an hba.
*/
static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
{
device_del(&h->dev);
put_device(&h->dev); /* final put. */
}
/* cciss_device_release is called when the reference count
* of h->drv[x]dev goes to zero.
*/
static void cciss_device_release(struct device *dev)
{
drive_info_struct *drv = to_drv(dev);
kfree(drv);
}
/*
* Initialize sysfs for each logical drive. This sets up and registers
* the 'c#d#' directory for each individual logical drive under
* /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
* /sys/block/cciss!c#d# to this entry.
*/
static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
int drv_index)
{
struct device *dev;
if (h->drv[drv_index]->device_initialized)
return 0;
dev = &h->drv[drv_index]->dev;
device_initialize(dev);
dev->type = &cciss_dev_type;
dev->bus = &cciss_bus_type;
dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
dev->parent = &h->dev;
h->drv[drv_index]->device_initialized = 1;
return device_add(dev);
}
/*
* Remove sysfs entries for a logical drive.
*/
static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
int ctlr_exiting)
{
struct device *dev = &h->drv[drv_index]->dev;
/* special case for c*d0, we only destroy it on controller exit */
if (drv_index == 0 && !ctlr_exiting)
return;
device_del(dev);
put_device(dev); /* the "final" put. */
h->drv[drv_index] = NULL;
}
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use. For operations that can wait for kmalloc
* to possible sleep, this routine can be called with get_from_pool set to 0.
* cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
*/
static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
{
CommandList_struct *c;
int i;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
if (!get_from_pool) {
c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
sizeof(CommandList_struct), &cmd_dma_handle);
if (c == NULL)
return NULL;
memset(c, 0, sizeof(CommandList_struct));
c->cmdindex = -1;
c->err_info = (ErrorInfo_struct *)
pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
&err_dma_handle);
if (c->err_info == NULL) {
pci_free_consistent(h->pdev,
sizeof(CommandList_struct), c, cmd_dma_handle);
return NULL;
}
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
} else { /* get it out of the controllers pool */
do {
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
if (i == h->nr_cmds)
return NULL;
} while (test_and_set_bit
(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
#endif
c = h->cmd_pool + i;
memset(c, 0, sizeof(CommandList_struct));
cmd_dma_handle = h->cmd_pool_dhandle
+ i * sizeof(CommandList_struct);
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
err_dma_handle = h->errinfo_pool_dhandle
+ i * sizeof(ErrorInfo_struct);
h->nr_allocs++;
c->cmdindex = i;
}
INIT_HLIST_NODE(&c->list);
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
/*
* Frees a command block that was previously allocated with cmd_alloc().
*/
static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
{
int i;
u64bit temp64;
if (!got_from_pool) {
temp64.val32.lower = c->ErrDesc.Addr.lower;
temp64.val32.upper = c->ErrDesc.Addr.upper;
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
c->err_info, (dma_addr_t) temp64.val);
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
c, (dma_addr_t) c->busaddr);
} else {
i = c - h->cmd_pool;
clear_bit(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG));
h->nr_frees++;
}
}
static inline ctlr_info_t *get_host(struct gendisk *disk)
{
return disk->queue->queuedata;
}
static inline drive_info_struct *get_drv(struct gendisk *disk)
{
return disk->private_data;
}
/*
* Open. Make sure the device is really there.
*/
static int cciss_open(struct block_device *bdev, fmode_t mode)
{
ctlr_info_t *host = get_host(bdev->bd_disk);
drive_info_struct *drv = get_drv(bdev->bd_disk);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
#endif /* CCISS_DEBUG */
if (drv->busy_configuring)
return -EBUSY;
/*
* Root is allowed to open raw volume zero even if it's not configured
* so array config can still work. Root is also allowed to open any
* volume that has a LUN ID, so it can issue IOCTL to reread the
* disk information. I don't think I really like this
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (drv->heads == 0) {
if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
/* if not node 0 make sure it is a partition = 0 */
if (MINOR(bdev->bd_dev) & 0x0f) {
return -ENXIO;
/* if it is, make sure we have a LUN ID */
} else if (memcmp(drv->LunID, CTLR_LUNID,
sizeof(drv->LunID))) {
return -ENXIO;
}
}
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
}
drv->usage_count++;
host->usage_count++;
return 0;
}
/*
* Close. Sync first.
*/
static int cciss_release(struct gendisk *disk, fmode_t mode)
{
ctlr_info_t *host = get_host(disk);
drive_info_struct *drv = get_drv(disk);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
#endif /* CCISS_DEBUG */
drv->usage_count--;
host->usage_count--;
return 0;
}
#ifdef CONFIG_COMPAT
static int do_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
int ret;
lock_kernel();
ret = cciss_ioctl(bdev, mode, cmd, arg);
unlock_kernel();
return ret;
}
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg);
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg);
static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
switch (cmd) {
case CCISS_GETPCIINFO:
case CCISS_GETINTINFO:
case CCISS_SETINTINFO:
case CCISS_GETNODENAME:
case CCISS_SETNODENAME:
case CCISS_GETHEARTBEAT:
case CCISS_GETBUSTYPES:
case CCISS_GETFIRMVER:
case CCISS_GETDRIVVER:
case CCISS_REVALIDVOLS:
case CCISS_DEREGDISK:
case CCISS_REGNEWDISK:
case CCISS_REGNEWD:
case CCISS_RESCANDISK:
case CCISS_GETLUNINFO:
return do_ioctl(bdev, mode, cmd, arg);
case CCISS_PASSTHRU32:
return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
case CCISS_BIG_PASSTHRU32:
return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
default:
return -ENOIOCTLCMD;
}
}
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
IOCTL32_Command_struct __user *arg32 =
(IOCTL32_Command_struct __user *) arg;
IOCTL_Command_struct arg64;
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |=
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |=
copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |=
copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
if (err)
return err;
err |=
copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
BIG_IOCTL32_Command_struct __user *arg32 =
(BIG_IOCTL32_Command_struct __user *) arg;
BIG_IOCTL_Command_struct arg64;
BIG_IOCTL_Command_struct __user *p =
compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |=
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |=
copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |=
copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
if (err)
return err;
err |=
copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
#endif
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
drive_info_struct *drv = get_drv(bdev->bd_disk);
if (!drv->cylinders)
return -ENXIO;
geo->heads = drv->heads;
geo->sectors = drv->sectors;
geo->cylinders = drv->cylinders;
return 0;
}
static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
{
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
(void)check_for_unit_attention(host, c);
}
/*
* ioctl
*/
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct gendisk *disk = bdev->bd_disk;
ctlr_info_t *host = get_host(disk);
drive_info_struct *drv = get_drv(disk);
int ctlr = host->ctlr;
void __user *argp = (void __user *)arg;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
#endif /* CCISS_DEBUG */
switch (cmd) {
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct pciinfo;
if (!arg)
return -EINVAL;
pciinfo.domain = pci_domain_nr(host->pdev->bus);
pciinfo.bus = host->pdev->bus->number;
pciinfo.dev_fn = host->pdev->devfn;
pciinfo.board_id = host->board_id;
if (copy_to_user
(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
return -EFAULT;
return 0;
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct intinfo;
if (!arg)
return -EINVAL;
intinfo.delay =
readl(&host->cfgtable->HostWrite.CoalIntDelay);
intinfo.count =
readl(&host->cfgtable->HostWrite.CoalIntCount);
if (copy_to_user
(argp, &intinfo, sizeof(cciss_coalint_struct)))
return -EFAULT;
return 0;
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct intinfo;
unsigned long flags;
int i;
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user
(&intinfo, argp, sizeof(cciss_coalint_struct)))
return -EFAULT;
if ((intinfo.delay == 0) && (intinfo.count == 0))
{
// printk("cciss_ioctl: delay and count cannot be 0\n");
return -EINVAL;
}
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* Update the field, and then ring the doorbell */
writel(intinfo.delay,
&(host->cfgtable->HostWrite.CoalIntDelay));
writel(intinfo.count,
&(host->cfgtable->HostWrite.CoalIntCount));
writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
if (!(readl(host->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return 0;
}
case CCISS_GETNODENAME:
{
NodeName_type NodeName;
int i;
if (!arg)
return -EINVAL;
for (i = 0; i < 16; i++)
NodeName[i] =
readb(&host->cfgtable->ServerName[i]);
if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
return -EFAULT;
return 0;
}
case CCISS_SETNODENAME:
{
NodeName_type NodeName;
unsigned long flags;
int i;
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user
(NodeName, argp, sizeof(NodeName_type)))
return -EFAULT;
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* Update the field, and then ring the doorbell */
for (i = 0; i < 16; i++)
writeb(NodeName[i],
&host->cfgtable->ServerName[i]);
writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
if (!(readl(host->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return 0;
}
case CCISS_GETHEARTBEAT:
{
Heartbeat_type heartbeat;
if (!arg)
return -EINVAL;
heartbeat = readl(&host->cfgtable->HeartBeat);
if (copy_to_user
(argp, &heartbeat, sizeof(Heartbeat_type)))
return -EFAULT;
return 0;
}
case CCISS_GETBUSTYPES:
{
BusTypes_type BusTypes;
if (!arg)
return -EINVAL;
BusTypes = readl(&host->cfgtable->BusTypes);
if (copy_to_user
(argp, &BusTypes, sizeof(BusTypes_type)))
return -EFAULT;
return 0;
}
case CCISS_GETFIRMVER:
{
FirmwareVer_type firmware;
if (!arg)
return -EINVAL;
memcpy(firmware, host->firm_ver, 4);
if (copy_to_user
(argp, firmware, sizeof(FirmwareVer_type)))
return -EFAULT;
return 0;
}
case CCISS_GETDRIVVER:
{
DriverVer_type DriverVer = DRIVER_VERSION;
if (!arg)
return -EINVAL;
if (copy_to_user
(argp, &DriverVer, sizeof(DriverVer_type)))
return -EFAULT;
return 0;
}
case CCISS_DEREGDISK:
case CCISS_REGNEWD:
case CCISS_REVALIDVOLS:
return rebuild_lun_table(host, 0, 1);
case CCISS_GETLUNINFO:{
LogvolInfo_struct luninfo;
memcpy(&luninfo.LunID, drv->LunID,
sizeof(luninfo.LunID));
luninfo.num_opens = drv->usage_count;
luninfo.num_parts = 0;
if (copy_to_user(argp, &luninfo,
sizeof(LogvolInfo_struct)))
return -EFAULT;
return 0;
}
case CCISS_PASSTHRU:
{
IOCTL_Command_struct iocommand;
CommandList_struct *c;
char *buff = NULL;
u64bit temp64;
unsigned long flags;
DECLARE_COMPLETION_ONSTACK(wait);
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (copy_from_user
(&iocommand, argp, sizeof(IOCTL_Command_struct)))
return -EFAULT;
if ((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE)) {
return -EINVAL;
}
#if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
/* Check kmalloc limits */
if (iocommand.buf_size > 128000)
return -EINVAL;
#endif
if (iocommand.buf_size > 0) {
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if (buff == NULL)
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_WRITE) {
/* Copy the data into the buffer we created */
if (copy_from_user
(buff, iocommand.buf, iocommand.buf_size)) {
kfree(buff);
return -EFAULT;
}
} else {
memset(buff, 0, iocommand.buf_size);
}
if ((c = cmd_alloc(host, 0)) == NULL) {
kfree(buff);
return -ENOMEM;
}
/* Fill in the command type */
c->cmd_type = CMD_IOCTL_PEND;
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (iocommand.buf_size > 0) /* buffer to fill */
{
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else /* no buffers to fill */
{
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.LUN = iocommand.LUN_info;
/* use the kernel address the cmd block for tag */
c->Header.Tag.lower = c->busaddr;
/* Fill in Request block */
c->Request = iocommand.Request;
/* Fill in the scatter gather information */
if (iocommand.buf_size > 0) {
temp64.val = pci_map_single(host->pdev, buff,
iocommand.buf_size,
PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; /* we are not chaining */
}
c->waiting = &wait;
/* Put the request on the tail of the request queue */
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
addQ(&host->reqQ, c);
host->Qdepth++;
start_io(host);
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
temp64.val32.lower = c->SG[0].Addr.lower;
temp64.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
iocommand.buf_size,
PCI_DMA_BIDIRECTIONAL);
check_ioctl_unit_attention(host, c);
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if (copy_to_user
(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
kfree(buff);
cmd_free(host, c, 0);
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
if (copy_to_user
(iocommand.buf, buff, iocommand.buf_size)) {
kfree(buff);
cmd_free(host, c, 0);
return -EFAULT;
}
}
kfree(buff);
cmd_free(host, c, 0);
return 0;
}
case CCISS_BIG_PASSTHRU:{
BIG_IOCTL_Command_struct *ioc;
CommandList_struct *c;
unsigned char **buff = NULL;
int *buff_size = NULL;
u64bit temp64;
unsigned long flags;
BYTE sg_used = 0;
int status = 0;
int i;
DECLARE_COMPLETION_ONSTACK(wait);
__u32 left;
__u32 sz;
BYTE __user *data_ptr;
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
ioc = (BIG_IOCTL_Command_struct *)
kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc) {
status = -ENOMEM;
goto cleanup1;
}
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
status = -EFAULT;
goto cleanup1;
}
if ((ioc->buf_size < 1) &&
(ioc->Request.Type.Direction != XFER_NONE)) {
status = -EINVAL;
goto cleanup1;
}
/* Check kmalloc limits using all SGs */
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
status = -EINVAL;
goto cleanup1;
}
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
status = -EINVAL;
goto cleanup1;
}
buff =
kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
if (!buff) {
status = -ENOMEM;
goto cleanup1;
}
buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
GFP_KERNEL);
if (!buff_size) {
status = -ENOMEM;
goto cleanup1;
}
left = ioc->buf_size;
data_ptr = ioc->buf;
while (left) {
sz = (left >
ioc->malloc_size) ? ioc->
malloc_size : left;
buff_size[sg_used] = sz;
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
if (buff[sg_used] == NULL) {
status = -ENOMEM;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_WRITE) {
if (copy_from_user
(buff[sg_used], data_ptr, sz)) {
status = -EFAULT;
goto cleanup1;
}
} else {
memset(buff[sg_used], 0, sz);
}
left -= sz;
data_ptr += sz;
sg_used++;
}
if ((c = cmd_alloc(host, 0)) == NULL) {
status = -ENOMEM;
goto cleanup1;
}
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if (ioc->buf_size > 0) {
c->Header.SGList = sg_used;
c->Header.SGTotal = sg_used;
} else {
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.LUN = ioc->LUN_info;
c->Header.Tag.lower = c->busaddr;
c->Request = ioc->Request;
if (ioc->buf_size > 0) {
for (i = 0; i < sg_used; i++) {
temp64.val =
pci_map_single(host->pdev, buff[i],
buff_size[i],
PCI_DMA_BIDIRECTIONAL);
c->SG[i].Addr.lower =
temp64.val32.lower;
c->SG[i].Addr.upper =
temp64.val32.upper;
c->SG[i].Len = buff_size[i];
c->SG[i].Ext = 0; /* we are not chaining */
}
}
c->waiting = &wait;
/* Put the request on the tail of the request queue */
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
addQ(&host->reqQ, c);
host->Qdepth++;
start_io(host);
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
for (i = 0; i < sg_used; i++) {
temp64.val32.lower = c->SG[i].Addr.lower;
temp64.val32.upper = c->SG[i].Addr.upper;
pci_unmap_single(host->pdev,
(dma_addr_t) temp64.val, buff_size[i],
PCI_DMA_BIDIRECTIONAL);
}
check_ioctl_unit_attention(host, c);
/* Copy the error information out */
ioc->error_info = *(c->err_info);
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
cmd_free(host, c, 0);
status = -EFAULT;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
BYTE __user *ptr = ioc->buf;
for (i = 0; i < sg_used; i++) {
if (copy_to_user
(ptr, buff[i], buff_size[i])) {
cmd_free(host, c, 0);
status = -EFAULT;
goto cleanup1;
}
ptr += buff_size[i];
}
}
cmd_free(host, c, 0);
status = 0;
cleanup1:
if (buff) {
for (i = 0; i < sg_used; i++)
kfree(buff[i]);
kfree(buff);
}
kfree(buff_size);
kfree(ioc);
return status;
}
/* scsi_cmd_ioctl handles these, below, though some are not */
/* very meaningful for cciss. SG_IO is the main one people want. */
case SG_GET_VERSION_NUM:
case SG_SET_TIMEOUT:
case SG_GET_TIMEOUT:
case SG_GET_RESERVED_SIZE:
case SG_SET_RESERVED_SIZE:
case SG_EMULATED_HOST:
case SG_IO:
case SCSI_IOCTL_SEND_COMMAND:
return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
/* scsi_cmd_ioctl would normally handle these, below, but */
/* they aren't a good fit for cciss, as CD-ROMs are */
/* not supported, and we don't have any bus/target/lun */
/* which we present to the kernel. */
case CDROM_SEND_PACKET:
case CDROMCLOSETRAY:
case CDROMEJECT:
case SCSI_IOCTL_GET_IDLUN:
case SCSI_IOCTL_GET_BUS_NUMBER:
default:
return -ENOTTY;
}
}
static void cciss_check_queues(ctlr_info_t *h)
{
int start_queue = h->next_to_run;
int i;
/* check to see if we have maxed out the number of commands that can
* be placed on the queue. If so then exit. We do this check here
* in case the interrupt we serviced was from an ioctl and did not
* free any new commands.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
return;
/* We have room on the queue for more commands. Now we need to queue
* them up. We will also keep track of the next queue to run so
* that every queue gets a chance to be started first.
*/
for (i = 0; i < h->highest_lun + 1; i++) {
int curr_queue = (start_queue + i) % (h->highest_lun + 1);
/* make sure the disk has been added and the drive is real
* because this can be called from the middle of init_one.
*/
if (!h->drv[curr_queue])
continue;
if (!(h->drv[curr_queue]->queue) ||
!(h->drv[curr_queue]->heads))
continue;
blk_start_queue(h->gendisk[curr_queue]->queue);
/* check to see if we have maxed out the number of commands
* that can be placed on the queue.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
if (curr_queue == start_queue) {
h->next_to_run =
(start_queue + 1) % (h->highest_lun + 1);
break;
} else {
h->next_to_run = curr_queue;
break;
}
}
}
}
static void cciss_softirq_done(struct request *rq)
{
CommandList_struct *cmd = rq->completion_data;
ctlr_info_t *h = hba[cmd->ctlr];
SGDescriptor_struct *curr_sg = cmd->SG;
unsigned long flags;
u64bit temp64;
int i, ddir;
int sg_index = 0;
if (cmd->Request.Type.Direction == XFER_READ)
ddir = PCI_DMA_FROMDEVICE;
else
ddir = PCI_DMA_TODEVICE;
/* command did not need to be retried */
/* unmap the DMA mapping for all the scatter gather elements */
for (i = 0; i < cmd->Header.SGList; i++) {
if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
cciss_unmap_sg_chain_block(h, cmd);
/* Point to the next block */
curr_sg = h->cmd_sg_list[cmd->cmdindex];
sg_index = 0;
}
temp64.val32.lower = curr_sg[sg_index].Addr.lower;
temp64.val32.upper = curr_sg[sg_index].Addr.upper;
pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
ddir);
++sg_index;
}
#ifdef CCISS_DEBUG
printk("Done with %p\n", rq);
#endif /* CCISS_DEBUG */
/* set the residual count for pc requests */
if (blk_pc_request(rq))
rq->resid_len = cmd->err_info->ResidualCnt;
blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
spin_lock_irqsave(&h->lock, flags);
cmd_free(h, cmd, 1);
cciss_check_queues(h);
spin_unlock_irqrestore(&h->lock, flags);
}
static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
unsigned char scsi3addr[], uint32_t log_unit)
{
memcpy(scsi3addr, h->drv[log_unit]->LunID,
sizeof(h->drv[log_unit]->LunID));
}
/* This function gets the SCSI vendor, model, and revision of a logical drive
* via the inquiry page 0. Model, vendor, and rev are set to empty strings if
* they cannot be read.
*/
static void cciss_get_device_descr(int ctlr, int logvol,
char *vendor, char *model, char *rev)
{
int rc;
InquiryData_struct *inq_buf;
unsigned char scsi3addr[8];
*vendor = '\0';
*model = '\0';
*rev = '\0';
inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (!inq_buf)
return;
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
scsi3addr, TYPE_CMD);
if (rc == IO_OK) {
memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
vendor[VENDOR_LEN] = '\0';
memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
model[MODEL_LEN] = '\0';
memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
rev[REV_LEN] = '\0';
}
kfree(inq_buf);
return;
}
/* This function gets the serial number of a logical drive via
* inquiry page 0x83. Serial no. is 16 bytes. If the serial
* number cannot be had, for whatever reason, 16 bytes of 0xff
* are returned instead.
*/
static void cciss_get_serial_no(int ctlr, int logvol,
unsigned char *serial_no, int buflen)
{
#define PAGE_83_INQ_BYTES 64
int rc;
unsigned char *buf;
unsigned char scsi3addr[8];
if (buflen > 16)
buflen = 16;
memset(serial_no, 0xff, buflen);
buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
if (!buf)
return;
memset(serial_no, 0, buflen);
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
if (rc == IO_OK)
memcpy(serial_no, &buf[8], buflen);
kfree(buf);
return;
}
/*
* cciss_add_disk sets up the block device queue for a logical drive
*/
static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
int drv_index)
{
disk->queue = blk_init_queue(do_cciss_request, &h->lock);
if (!disk->queue)
goto init_queue_failure;
sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
disk->major = h->major;
disk->first_minor = drv_index << NWD_SHIFT;
disk->fops = &cciss_fops;
if (cciss_create_ld_sysfs_entry(h, drv_index))
goto cleanup_queue;
disk->private_data = h->drv[drv_index];
disk->driverfs_dev = &h->drv[drv_index]->dev;
/* Set up queue information */
blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
/* This is a hardware imposed limit. */
blk_queue_max_segments(disk->queue, h->maxsgentries);
blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
blk_queue_softirq_done(disk->queue, cciss_softirq_done);
disk->queue->queuedata = h;
blk_queue_logical_block_size(disk->queue,
h->drv[drv_index]->block_size);
/* Make sure all queue data is written out before */
/* setting h->drv[drv_index]->queue, as setting this */
/* allows the interrupt handler to start the queue */
wmb();
h->drv[drv_index]->queue = disk->queue;
add_disk(disk);
return 0;
cleanup_queue:
blk_cleanup_queue(disk->queue);
disk->queue = NULL;
init_queue_failure:
return -1;
}
/* This function will check the usage_count of the drive to be updated/added.
* If the usage_count is zero and it is a heretofore unknown drive, or,
* the drive's capacity, geometry, or serial number has changed,
* then the drive information will be updated and the disk will be
* re-registered with the kernel. If these conditions don't hold,
* then it will be left alone for the next reboot. The exception to this
* is disk 0 which will always be left registered with the kernel since it
* is also the controller node. Any changes to disk 0 will show up on
* the next reboot.
*/
static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
int via_ioctl)
{
ctlr_info_t *h = hba[ctlr];
struct gendisk *disk;
InquiryData_struct *inq_buff = NULL;
unsigned int block_size;
sector_t total_size;
unsigned long flags = 0;
int ret = 0;
drive_info_struct *drvinfo;
/* Get information about the disk and modify the driver structure */
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
if (inq_buff == NULL || drvinfo == NULL)
goto mem_msg;
/* testing to see if 16-byte CDBs are already being used */
if (h->cciss_read == CCISS_READ_16) {
cciss_read_capacity_16(h->ctlr, drv_index,
&total_size, &block_size);
} else {
cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
/* if read_capacity returns all F's this volume is >2TB */
/* in size so we switch to 16-byte CDB's for all */
/* read/write ops */
if (total_size == 0xFFFFFFFFULL) {
cciss_read_capacity_16(ctlr, drv_index,
&total_size, &block_size);
h->cciss_read = CCISS_READ_16;
h->cciss_write = CCISS_WRITE_16;
} else {
h->cciss_read = CCISS_READ_10;
h->cciss_write = CCISS_WRITE_10;
}
}
cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
inq_buff, drvinfo);
drvinfo->block_size = block_size;
drvinfo->nr_blocks = total_size + 1;
cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
drvinfo->model, drvinfo->rev);
cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
sizeof(drvinfo->serial_no));
/* Save the lunid in case we deregister the disk, below. */
memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
sizeof(drvinfo->LunID));
/* Is it the same disk we already know, and nothing's changed? */
if (h->drv[drv_index]->raid_level != -1 &&
((memcmp(drvinfo->serial_no,
h->drv[drv_index]->serial_no, 16) == 0) &&
drvinfo->block_size == h->drv[drv_index]->block_size &&
drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
drvinfo->heads == h->drv[drv_index]->heads &&
drvinfo->sectors == h->drv[drv_index]->sectors &&
drvinfo->cylinders == h->drv[drv_index]->cylinders))
/* The disk is unchanged, nothing to update */
goto freeret;
/* If we get here it's not the same disk, or something's changed,
* so we need to * deregister it, and re-register it, if it's not
* in use.
* If the disk already exists then deregister it before proceeding
* (unless it's the first disk (for the controller node).
*/
if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
printk(KERN_WARNING "disk %d has changed.\n", drv_index);
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
h->drv[drv_index]->busy_configuring = 1;
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
/* deregister_disk sets h->drv[drv_index]->queue = NULL
* which keeps the interrupt handler from starting
* the queue.
*/
ret = deregister_disk(h, drv_index, 0, via_ioctl);
}
/* If the disk is in use return */
if (ret)
goto freeret;
/* Save the new information from cciss_geometry_inquiry
* and serial number inquiry. If the disk was deregistered
* above, then h->drv[drv_index] will be NULL.
*/
if (h->drv[drv_index] == NULL) {
drvinfo->device_initialized = 0;
h->drv[drv_index] = drvinfo;
drvinfo = NULL; /* so it won't be freed below. */
} else {
/* special case for cxd0 */
h->drv[drv_index]->block_size = drvinfo->block_size;
h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
h->drv[drv_index]->heads = drvinfo->heads;
h->drv[drv_index]->sectors = drvinfo->sectors;
h->drv[drv_index]->cylinders = drvinfo->cylinders;
h->drv[drv_index]->raid_level = drvinfo->raid_level;
memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
VENDOR_LEN + 1);
memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
}
++h->num_luns;
disk = h->gendisk[drv_index];
set_capacity(disk, h->drv[drv_index]->nr_blocks);
/* If it's not disk 0 (drv_index != 0)
* or if it was disk 0, but there was previously
* no actual corresponding configured logical drive
* (raid_leve == -1) then we want to update the
* logical drive's information.
*/
if (drv_index || first_time) {
if (cciss_add_disk(h, disk, drv_index) != 0) {
cciss_free_gendisk(h, drv_index);
cciss_free_drive_info(h, drv_index);
printk(KERN_WARNING "cciss:%d could not update "
"disk %d\n", h->ctlr, drv_index);
--h->num_luns;
}
}
freeret:
kfree(inq_buff);
kfree(drvinfo);
return;
mem_msg:
printk(KERN_ERR "cciss: out of memory\n");
goto freeret;
}
/* This function will find the first index of the controllers drive array
* that has a null drv pointer and allocate the drive info struct and
* will return that index This is where new drives will be added.
* If the index to be returned is greater than the highest_lun index for
* the controller then highest_lun is set * to this new index.
* If there are no available indexes or if tha allocation fails, then -1
* is returned. * "controller_node" is used to know if this is a real
* logical drive, or just the controller node, which determines if this
* counts towards highest_lun.
*/
static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
{
int i;
drive_info_struct *drv;
/* Search for an empty slot for our drive info */
for (i = 0; i < CISS_MAX_LUN; i++) {
/* if not cxd0 case, and it's occupied, skip it. */
if (h->drv[i] && i != 0)
continue;
/*
* If it's cxd0 case, and drv is alloc'ed already, and a
* disk is configured there, skip it.
*/
if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
continue;
/*
* We've found an empty slot. Update highest_lun
* provided this isn't just the fake cxd0 controller node.
*/
if (i > h->highest_lun && !controller_node)
h->highest_lun = i;
/* If adding a real disk at cxd0, and it's already alloc'ed */
if (i == 0 && h->drv[i] != NULL)
return i;
/*
* Found an empty slot, not already alloc'ed. Allocate it.
* Mark it with raid_level == -1, so we know it's new later on.
*/
drv = kzalloc(sizeof(*drv), GFP_KERNEL);
if (!drv)
return -1;
drv->raid_level = -1; /* so we know it's new */
h->drv[i] = drv;
return i;
}
return -1;
}
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
{
kfree(h->drv[drv_index]);
h->drv[drv_index] = NULL;
}
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
{
put_disk(h->gendisk[drv_index]);
h->gendisk[drv_index] = NULL;
}
/* cciss_add_gendisk finds a free hba[]->drv structure
* and allocates a gendisk if needed, and sets the lunid
* in the drvinfo structure. It returns the index into
* the ->drv[] array, or -1 if none are free.
* is_controller_node indicates whether highest_lun should
* count this disk, or if it's only being added to provide
* a means to talk to the controller in case no logical
* drives have yet been configured.
*/
static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
int controller_node)
{
int drv_index;
drv_index = cciss_alloc_drive_info(h, controller_node);
if (drv_index == -1)
return -1;
/*Check if the gendisk needs to be allocated */
if (!h->gendisk[drv_index]) {
h->gendisk[drv_index] =
alloc_disk(1 << NWD_SHIFT);
if (!h->gendisk[drv_index]) {
printk(KERN_ERR "cciss%d: could not "
"allocate a new disk %d\n",
h->ctlr, drv_index);
goto err_free_drive_info;
}
}
memcpy(h->drv[drv_index]->LunID, lunid,
sizeof(h->drv[drv_index]->LunID));
if (cciss_create_ld_sysfs_entry(h, drv_index))
goto err_free_disk;
/* Don't need to mark this busy because nobody */
/* else knows about this disk yet to contend */
/* for access to it. */
h->drv[drv_index]->busy_configuring = 0;
wmb();
return drv_index;
err_free_disk:
cciss_free_gendisk(h, drv_index);
err_free_drive_info:
cciss_free_drive_info(h, drv_index);
return -1;
}
/* This is for the special case of a controller which
* has no logical drives. In this case, we still need
* to register a disk so the controller can be accessed
* by the Array Config Utility.
*/
static void cciss_add_controller_node(ctlr_info_t *h)
{
struct gendisk *disk;
int drv_index;
if (h->gendisk[0] != NULL) /* already did this? Then bail. */
return;
drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
if (drv_index == -1)
goto error;
h->drv[drv_index]->block_size = 512;
h->drv[drv_index]->nr_blocks = 0;
h->drv[drv_index]->heads = 0;
h->drv[drv_index]->sectors = 0;
h->drv[drv_index]->cylinders = 0;
h->drv[drv_index]->raid_level = -1;
memset(h->drv[drv_index]->serial_no, 0, 16);
disk = h->gendisk[drv_index];
if (cciss_add_disk(h, disk, drv_index) == 0)
return;
cciss_free_gendisk(h, drv_index);
cciss_free_drive_info(h, drv_index);
error:
printk(KERN_WARNING "cciss%d: could not "
"add disk 0.\n", h->ctlr);
return;
}
/* This function will add and remove logical drives from the Logical
* drive array of the controller and maintain persistency of ordering
* so that mount points are preserved until the next reboot. This allows
* for the removal of logical drives in the middle of the drive array
* without a re-ordering of those drives.
* INPUT
* h = The controller to perform the operations on
*/
static int rebuild_lun_table(ctlr_info_t *h, int first_time,
int via_ioctl)
{
int ctlr = h->ctlr;
int num_luns;
ReportLunData_struct *ld_buff = NULL;
int return_code;
int listlength = 0;
int i;
int drv_found;
int drv_index = 0;
unsigned char lunid[8] = CTLR_LUNID;
unsigned long flags;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
/* Set busy_configuring flag for this operation */
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return -EBUSY;
}
h->busy_configuring = 1;
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
goto mem_msg;
return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
sizeof(ReportLunData_struct),
0, CTLR_LUNID, TYPE_CMD);
if (return_code == IO_OK)
listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
else { /* reading number of logical volumes failed */
printk(KERN_WARNING "cciss: report logical volume"
" command failed\n");
listlength = 0;
goto freeret;
}
num_luns = listlength / 8; /* 8 bytes per entry */
if (num_luns > CISS_MAX_LUN) {
num_luns = CISS_MAX_LUN;
printk(KERN_WARNING "cciss: more luns configured"
" on controller than can be handled by"
" this driver.\n");
}
if (num_luns == 0)
cciss_add_controller_node(h);
/* Compare controller drive array to driver's drive array
* to see if any drives are missing on the controller due
* to action of Array Config Utility (user deletes drive)
* and deregister logical drives which have disappeared.
*/
for (i = 0; i <= h->highest_lun; i++) {
int j;
drv_found = 0;
/* skip holes in the array from already deleted drives */
if (h->drv[i] == NULL)
continue;
for (j = 0; j < num_luns; j++) {
memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
if (memcmp(h->drv[i]->LunID, lunid,
sizeof(lunid)) == 0) {
drv_found = 1;
break;
}
}
if (!drv_found) {
/* Deregister it from the OS, it's gone. */
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
h->drv[i]->busy_configuring = 1;
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return_code = deregister_disk(h, i, 1, via_ioctl);
if (h->drv[i] != NULL)
h->drv[i]->busy_configuring = 0;
}
}
/* Compare controller drive array to driver's drive array.
* Check for updates in the drive information and any new drives
* on the controller due to ACU adding logical drives, or changing
* a logical drive's size, etc. Reregister any new/changed drives
*/
for (i = 0; i < num_luns; i++) {
int j;
drv_found = 0;
memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
/* Find if the LUN is already in the drive array
* of the driver. If so then update its info
* if not in use. If it does not exist then find
* the first free index and add it.
*/
for (j = 0; j <= h->highest_lun; j++) {
if (h->drv[j] != NULL &&
memcmp(h->drv[j]->LunID, lunid,
sizeof(h->drv[j]->LunID)) == 0) {
drv_index = j;
drv_found = 1;
break;
}
}
/* check if the drive was found already in the array */
if (!drv_found) {
drv_index = cciss_add_gendisk(h, lunid, 0);
if (drv_index == -1)
goto freeret;
}
cciss_update_drive_info(ctlr, drv_index, first_time,
via_ioctl);
} /* end for */
freeret:
kfree(ld_buff);
h->busy_configuring = 0;
/* We return -1 here to tell the ACU that we have registered/updated
* all of the drives that we can and to keep it from calling us
* additional times.
*/
return -1;
mem_msg:
printk(KERN_ERR "cciss: out of memory\n");
h->busy_configuring = 0;
goto freeret;
}
static void cciss_clear_drive_info(drive_info_struct *drive_info)
{
/* zero out the disk size info */
drive_info->nr_blocks = 0;
drive_info->block_size = 0;
drive_info->heads = 0;
drive_info->sectors = 0;
drive_info->cylinders = 0;
drive_info->raid_level = -1;
memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
memset(drive_info->model, 0, sizeof(drive_info->model));
memset(drive_info->rev, 0, sizeof(drive_info->rev));
memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
/*
* don't clear the LUNID though, we need to remember which
* one this one is.
*/
}
/* This function will deregister the disk and it's queue from the
* kernel. It must be called with the controller lock held and the
* drv structures busy_configuring flag set. It's parameters are:
*
* disk = This is the disk to be deregistered
* drv = This is the drive_info_struct associated with the disk to be
* deregistered. It contains information about the disk used
* by the driver.
* clear_all = This flag determines whether or not the disk information
* is going to be completely cleared out and the highest_lun
* reset. Sometimes we want to clear out information about
* the disk in preparation for re-adding it. In this case
* the highest_lun should be left unchanged and the LunID
* should not be cleared.
* via_ioctl
* This indicates whether we've reached this path via ioctl.
* This affects the maximum usage count allowed for c0d0 to be messed with.
* If this path is reached via ioctl(), then the max_usage_count will
* be 1, as the process calling ioctl() has got to have the device open.
* If we get here via sysfs, then the max usage count will be zero.
*/
static int deregister_disk(ctlr_info_t *h, int drv_index,
int clear_all, int via_ioctl)
{
int i;
struct gendisk *disk;
drive_info_struct *drv;
int recalculate_highest_lun;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
drv = h->drv[drv_index];
disk = h->gendisk[drv_index];
/* make sure logical volume is NOT is use */
if (clear_all || (h->gendisk[0] == disk)) {
if (drv->usage_count > via_ioctl)
return -EBUSY;
} else if (drv->usage_count > 0)
return -EBUSY;
recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
/* invalidate the devices and deregister the disk. If it is disk
* zero do not deregister it but just zero out it's values. This
* allows us to delete disk zero but keep the controller registered.
*/
if (h->gendisk[0] != disk) {
struct request_queue *q = disk->queue;
if (disk->flags & GENHD_FL_UP) {
cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
del_gendisk(disk);
}
if (q)
blk_cleanup_queue(q);
/* If clear_all is set then we are deleting the logical
* drive, not just refreshing its info. For drives
* other than disk 0 we will call put_disk. We do not
* do this for disk 0 as we need it to be able to
* configure the controller.
*/
if (clear_all){
/* This isn't pretty, but we need to find the
* disk in our array and NULL our the pointer.
* This is so that we will call alloc_disk if
* this index is used again later.
*/
for (i=0; i < CISS_MAX_LUN; i++){
if (h->gendisk[i] == disk) {
h->gendisk[i] = NULL;
break;
}
}
put_disk(disk);
}
} else {
set_capacity(disk, 0);
cciss_clear_drive_info(drv);
}
--h->num_luns;
/* if it was the last disk, find the new hightest lun */
if (clear_all && recalculate_highest_lun) {
int newhighest = -1;
for (i = 0; i <= h->highest_lun; i++) {
/* if the disk has size > 0, it is available */
if (h->drv[i] && h->drv[i]->heads)
newhighest = i;
}
h->highest_lun = newhighest;
}
return 0;
}
static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
size_t size, __u8 page_code, unsigned char *scsi3addr,
int cmd_type)
{
ctlr_info_t *h = hba[ctlr];
u64bit buff_dma_handle;
int status = IO_OK;
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if (buff != NULL) {
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else {
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.Tag.lower = c->busaddr;
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
c->Request.Type.Type = cmd_type;
if (cmd_type == TYPE_CMD) {
switch (cmd) {
case CISS_INQUIRY:
/* are we trying to read a vital product page */
if (page_code != 0) {
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
case CISS_REPORT_PHYS:
/* Talking to controller so It's a physical command
mode = 00 target = 0. Nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Request.CDBLen = 10;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
case CCISS_READ_CAPACITY_16:
c->Request.CDBLen = 16;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[1] = 0x10;
c->Request.CDB[10] = (size >> 24) & 0xFF;
c->Request.CDB[11] = (size >> 16) & 0xFF;
c->Request.CDB[12] = (size >> 8) & 0xFF;
c->Request.CDB[13] = size & 0xFF;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
case CCISS_CACHE_FLUSH:
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = BMIC_WRITE;
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
break;
case TEST_UNIT_READY:
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0;
break;
default:
printk(KERN_WARNING
"cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
return IO_ERROR;
}
} else if (cmd_type == TYPE_MSG) {
switch (cmd) {
case 0: /* ABORT message */
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd; /* abort */
c->Request.CDB[1] = 0; /* abort a command */
/* buff contains the tag of the command to abort */
memcpy(&c->Request.CDB[4], buff, 8);
break;
case 1: /* RESET message */
c->Request.CDBLen = 16;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0;
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
c->Request.CDB[0] = cmd; /* reset */
c->Request.CDB[1] = 0x03; /* reset a target */
break;
case 3: /* No-Op message */
c->Request.CDBLen = 1;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
default:
printk(KERN_WARNING
"cciss%d: unknown message type %d\n", ctlr, cmd);
return IO_ERROR;
}
} else {
printk(KERN_WARNING
"cciss%d: unknown command type %d\n", ctlr, cmd_type);
return IO_ERROR;
}
/* Fill in the scatter gather information */
if (size > 0) {
buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
buff, size,
PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; /* we are not chaining */
}
return status;
}
static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
{
switch (c->err_info->ScsiStatus) {
case SAM_STAT_GOOD:
return IO_OK;
case SAM_STAT_CHECK_CONDITION:
switch (0xf & c->err_info->SenseInfo[2]) {
case 0: return IO_OK; /* no sense */
case 1: return IO_OK; /* recovered error */
default:
if (check_for_unit_attention(h, c))
return IO_NEEDS_RETRY;
printk(KERN_WARNING "cciss%d: cmd 0x%02x "
"check condition, sense key = 0x%02x\n",
h->ctlr, c->Request.CDB[0],
c->err_info->SenseInfo[2]);
}
break;
default:
printk(KERN_WARNING "cciss%d: cmd 0x%02x"
"scsi status = 0x%02x\n", h->ctlr,
c->Request.CDB[0], c->err_info->ScsiStatus);
break;
}
return IO_ERROR;
}
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
{
int return_status = IO_OK;
if (c->err_info->CommandStatus == CMD_SUCCESS)
return IO_OK;
switch (c->err_info->CommandStatus) {
case CMD_TARGET_STATUS:
return_status = check_target_status(h, c);
break;
case CMD_DATA_UNDERRUN:
case CMD_DATA_OVERRUN:
/* expected for inquiry and report lun commands */
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: cmd 0x%02x is "
"reported invalid\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd 0x%02x has "
"protocol error \n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd 0x%02x had "
" hardware error\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd 0x%02x had "
"connection lost\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd 0x%02x was "
"aborted\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd 0x%02x reports "
"abort failed\n", c->Request.CDB[0]);
return_status = IO_ERROR;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING
"cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
c->Request.CDB[0]);
return_status = IO_NEEDS_RETRY;
break;
default:
printk(KERN_WARNING "cciss: cmd 0x%02x returned "
"unknown status %x\n", c->Request.CDB[0],
c->err_info->CommandStatus);
return_status = IO_ERROR;
}
return return_status;
}
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
int attempt_retry)
{
DECLARE_COMPLETION_ONSTACK(wait);
u64bit buff_dma_handle;
unsigned long flags;
int return_status = IO_OK;
resend_cmd2:
c->waiting = &wait;
/* Put the request on the tail of the queue and send it */
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
wait_for_completion(&wait);
if (c->err_info->CommandStatus == 0 || !attempt_retry)
goto command_done;
return_status = process_sendcmd_error(h, c);
if (return_status == IO_NEEDS_RETRY &&
c->retry_count < MAX_CMD_RETRIES) {
printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
c->Request.CDB[0]);
c->retry_count++;
/* erase the old error information */
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
return_status = IO_OK;
INIT_COMPLETION(wait);
goto resend_cmd2;
}
command_done:
/* unlock the buffers from DMA */
buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
return return_status;
}
static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
__u8 page_code, unsigned char scsi3addr[],
int cmd_type)
{
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
int return_status;
c = cmd_alloc(h, 0);
if (!c)
return -ENOMEM;
return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
scsi3addr, cmd_type);
if (return_status == IO_OK)
return_status = sendcmd_withirq_core(h, c, 1);
cmd_free(h, c, 0);
return return_status;
}
static void cciss_geometry_inquiry(int ctlr, int logvol,
sector_t total_size,
unsigned int block_size,
InquiryData_struct *inq_buff,
drive_info_struct *drv)
{
int return_code;
unsigned long t;
unsigned char scsi3addr[8];
memset(inq_buff, 0, sizeof(InquiryData_struct));
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
if (inq_buff->data_byte[8] == 0xFF) {
printk(KERN_WARNING
"cciss: reading geometry failed, volume "
"does not support reading geometry\n");
drv->heads = 255;
drv->sectors = 32; /* Sectors per track */
drv->cylinders = total_size + 1;
drv->raid_level = RAID_UNKNOWN;
} else {
drv->heads = inq_buff->data_byte[6];
drv->sectors = inq_buff->data_byte[7];
drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
drv->cylinders += inq_buff->data_byte[5];
drv->raid_level = inq_buff->data_byte[8];
}
drv->block_size = block_size;
drv->nr_blocks = total_size + 1;
t = drv->heads * drv->sectors;
if (t > 1) {
sector_t real_size = total_size + 1;
unsigned long rem = sector_div(real_size, t);
if (rem)
real_size++;
drv->cylinders = real_size;
}
} else { /* Get geometry failed */
printk(KERN_WARNING "cciss: reading geometry failed\n");
}
}
static void
cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
unsigned int *block_size)
{
ReadCapdata_struct *buf;
int return_code;
unsigned char scsi3addr[8];
buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
if (!buf) {
printk(KERN_WARNING "cciss: out of memory\n");
return;
}
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
} else { /* read capacity command failed */
printk(KERN_WARNING "cciss: read capacity failed\n");
*total_size = 0;
*block_size = BLOCK_SIZE;
}
kfree(buf);
}
static void cciss_read_capacity_16(int ctlr, int logvol,
sector_t *total_size, unsigned int *block_size)
{
ReadCapdata_struct_16 *buf;
int return_code;
unsigned char scsi3addr[8];
buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
if (!buf) {
printk(KERN_WARNING "cciss: out of memory\n");
return;
}
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
ctlr, buf, sizeof(ReadCapdata_struct_16),
0, scsi3addr, TYPE_CMD);
if (return_code == IO_OK) {
*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
} else { /* read capacity command failed */
printk(KERN_WARNING "cciss: read capacity failed\n");
*total_size = 0;
*block_size = BLOCK_SIZE;
}
printk(KERN_INFO " blocks= %llu block_size= %d\n",
(unsigned long long)*total_size+1, *block_size);
kfree(buf);
}
static int cciss_revalidate(struct gendisk *disk)
{
ctlr_info_t *h = get_host(disk);
drive_info_struct *drv = get_drv(disk);
int logvol;
int FOUND = 0;
unsigned int block_size;
sector_t total_size;
InquiryData_struct *inq_buff = NULL;
for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
if (memcmp(h->drv[logvol]->LunID, drv->LunID,
sizeof(drv->LunID)) == 0) {
FOUND = 1;
break;
}
}
if (!FOUND)
return 1;
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL) {
printk(KERN_WARNING "cciss: out of memory\n");
return 1;
}
if (h->cciss_read == CCISS_READ_10) {
cciss_read_capacity(h->ctlr, logvol,
&total_size, &block_size);
} else {
cciss_read_capacity_16(h->ctlr, logvol,
&total_size, &block_size);
}
cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
inq_buff, drv);
blk_queue_logical_block_size(drv->queue, drv->block_size);
set_capacity(disk, drv->nr_blocks);
kfree(inq_buff);
return 0;
}