blob: 0ad2127c46c342e119bfc65bce960ff34e638161 [file] [log] [blame]
/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* vineetg: Aug 2011
* -Reintroduce duplicate PD fixup - some customer chips still have the issue
*
* vineetg: May 2011
* -No need to flush_cache_page( ) for each call to update_mmu_cache()
* some of the LMBench tests improved amazingly
* = page-fault thrice as fast (75 usec to 28 usec)
* = mmap twice as fast (9.6 msec to 4.6 msec),
* = fork (5.3 msec to 3.7 msec)
*
* vineetg: April 2011 :
* -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
helps avoid a shift when preparing PD0 from PTE
* -CONFIG_ARC_MMU_SASID: support for ARC MMU Shared Address spaces
* update_mmu_cache can create shared TLB entries now.
*
* vineetg: April 2011 : Preparing for MMU V3
* -MMU v2/v3 BCRs decoded differently
* -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
* -tlb_entry_erase( ) can be void
* -local_flush_tlb_range( ):
* = need not "ceil" @end
* = walks MMU only if range spans < 32 entries, as opposed to 256
* -Machine check for duplicate TLB need not fix the err, simply panic
*
* Vineetg: Sept 10th 2008
* -Changes related to MMU v2 (Rel 4.8)
*
* Vineetg: Aug 29th 2008
* -In TLB Flush operations (Metal Fix MMU) there is a explict command to
* flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
* it fails. Thus need to load it with ANY valid value before invoking
* TLBIVUTLB cmd
*
* Vineetg: Aug 21th 2008:
* -Reduced the duration of IRQ lockouts in TLB Flush routines
* -Multiple copies of TLB erase code seperated into a "single" function
* -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
* in interrupt-safe region.
*
* Vineetg: April 23rd Bug #93131
* Problem: tlb_flush_kernel_range() doesnt do anything if the range to
* flush is more than the size of TLB itself.
*
* Rahul Trivedi : Codito Technologies 2004
*/
#include <linux/module.h>
#include <asm/arcregs.h>
#include <asm/mmu_context.h>
#include <asm/system.h>
#include <asm/tlb.h>
/* Need for MMU v2
*
* ARC700 MMU-v1 has a Joint-TLB for Code and Data and is 2 way set-assoc.
* For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
* map into same set, there would be contention for the 2 ways causing severe
* Thrashing.
*
* Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS
* The assoc of uTLB is much higer. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
* Given this, the thrasing problem should never happen because once the 3
* J-TLB entries are created (even though 3rd will knock out one of the prev
* two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
*
* Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
* This is a simple design for keeping them in sync. So what do we do?
* The solution which James came up was pretty neat. It utilised the assoc
* of uTLBs by not invalidating always but only when absolutely necessary.
*
*===========================================================================
*
* General fix: option 1 : New command for uTLB write without clearing uTLBs
*
* - Existing TLB commands work as before
* - New command (TLBWriteNI) for TLB write without clearing uTLBs
* - New command (TLBIVUTLB) to invalidate uTLBs.
*
* The uTLBs need only be invalidated when pages are being removed from the
* OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
* as a result of a miss, the removed entry is still allowed to exist in the
* uTLBs as it is still valid and present in the OS page table. This allows the
* full associativity of the uTLBs to hide the limited associativity of the main
* TLB.
*
* During a miss handler, the new "TLBWriteNI" command is used to load
* entries without clearing the uTLBs.
*
* When the OS page table is updated, TLB entries that may be associated with a
* removed page are removed (flushed) from the TLB using TLBWrite. In this
* circumstance, the uTLBs must also be cleared. This is done by using the
* existing TLBWrite command. An explicit IVUTLB is also required for those
* corner cases when TLBWrite was not executed at all because the corresp
* J-TLB entry got evicted/replaced.
*
*
*===========================================================================
*
* For some customer this hardware change was not acceptable so a smaller
* hardware change (dubbed Metal Fix) was done.
*
* Metal fix option 2 : New command for uTLB clearing
*
* - The existing TLBWrite command no longer clears uTLBs.
* - A new command (TLBIVUTLB) is added to invalidate uTLBs.
*
* When the OS page table is updated, TLB entries that may be associated with a
* removed page are removed (flushed) from the TLB using TLBWrite. In this
* circumstance, the uTLBs must also be cleared. This is done explicitly with
* the new TLBIVUTLB command (5).
*
* The TLBProbe command is used to find any TLB entries matching the affected
* address. If an entry matches, it is removed by over-writing with a blank TLB
* entry. To ensure that micro-TLBs are cleared, the new command TLBIVUTLB
* is used to invalidate the micro-TLBs after all main TLB updates have been
* completed. It is necessary to clear the micro-TLBs even if the TLBProbe found
* no matching entries. With the metal-fix option 2 revised MMU, a page-table
* entry can exist in micro-TLBs without being in the main TLB. TLBProbe does
* not return results from the micro-TLBs. Hence to ensure micro-TLBs are
* coherent with the OS page table, micro-TLBs must be cleared on removal or
* alteration of any entry in the OS page table.
*/
/* Sameer: We have to define this as we are using asm-generic code for TLB.
This will go once we stop using generic code. */
struct mmu_gather mmu_gathers;
/* A copy of the ASID from the PID reg is kept in asid_cache */
int asid_cache;
/* ASID to mm struct mapping. We have one extra entry corresponding to
* NO_ASID to save us a compare when clearing the mm entry for old asid
* see get_new_mmu_context (asm-arc/mmu_context.h)
*/
struct mm_struct *asid_mm_map[NUM_ASID + 1];
/* Needed to avoid Cache aliasing */
unsigned int ARC_shmlba;
static struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[0].mmu;
/*=========================================================================
* ARC700 MMU has 256 J-TLB entries organised as 128 SETs with 2 WAYs each.
* For TLB Operations, Linux uses "HW" Index to write entry into a particular
* location, which is a linear value from 0 to 255.
*
* MMU converts it into Proper SET+WAY
* e.g. Index 5 is SET: 5/2 = 2 and WAY: 5%2 = 1.
*
*=========================================================================*/
/****************************************************************************
* Utility Routine to erase a J-TLB entry
* The procedure is to look it up in the MMU. If found, ERASE it by
* issuing a TlbWrite CMD with PD0 = PD1 = 0
****************************************************************************/
static void tlb_entry_erase(unsigned int vaddr_n_asid)
{
unsigned int idx;
/* Locate the TLb entry for this vaddr + ASID */
write_new_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
idx = read_new_aux_reg(ARC_REG_TLBINDEX);
/* No error means entry found, zero it out */
if (likely(!(idx & TLB_LKUP_ERR))) {
write_new_aux_reg(ARC_REG_TLBPD1, 0);
write_new_aux_reg(ARC_REG_TLBPD0, 0);
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
}
else { /* Some sort of Error */
/* Duplicate entry error */
if ( idx & 0x1 ) {
// TODO we need to handle this case too
printk("#### unhandled Duplicate flush for %x\n", vaddr_n_asid);
}
else {
/* else entry not found so nothing to do */
}
}
}
/****************************************************************************
* ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
*
* New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
*
* utlb_invalidate ( )
* -For v2 MMU calls Flush uTLB Cmd
* -For v1 MMU does nothing (except for Metal Fix v1 MMU)
* This is because in v1 TLBWrite itself invalidate uTLBs
***************************************************************************/
static void utlb_invalidate(void)
{
#if (METAL_FIX || CONFIG_ARC_MMU_VER >= 2)
{
unsigned int idx;
/* make sure INDEX Reg is valid */
idx = read_new_aux_reg(ARC_REG_TLBINDEX);
/* If not write some dummy val */
if (unlikely(idx & TLB_LKUP_ERR)) {
write_new_aux_reg(ARC_REG_TLBINDEX, 0xa);
}
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
}
#endif
}
/*
* Un-conditionally (without lookup) erase the entire MMU contents
*/
void noinline local_flush_tlb_all(void)
{
unsigned long flags;
unsigned int entry;
take_snap(SNAP_TLB_FLUSH_ALL, 0, 0);
local_irq_save(flags);
/* Load PD0 and PD1 with template for a Blank Entry */
write_new_aux_reg(ARC_REG_TLBPD1, 0);
write_new_aux_reg(ARC_REG_TLBPD0, 0);
for (entry = 0; entry < mmu->num_tlb; entry++) {
/* write this entry to the TLB */
write_new_aux_reg(ARC_REG_TLBINDEX, entry);
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
}
utlb_invalidate();
local_irq_restore(flags);
}
/*
* Flush the entrie MM for userland. The fastest way is to move to Next ASID
*/
void noinline local_flush_tlb_mm(struct mm_struct *mm)
{
/* Small optimisation courtesy IA64
* flush_mm called during fork, exit, munmap etc, multiple times as well.
* Only for fork( ) do we need to move parent to a new MMU ctxt,
* all other cases are NOPs, hence this check.
*/
if (atomic_read(&mm->mm_users) == 0)
return;
get_new_mmu_context(mm);
}
/*
* Flush a Range of TLB entries for userland.
* @start is inclusive, while @end is exclusive
* Difference between this and Kernel Range Flush is
* -Here the fastest way (if range is too large) is to move to next ASID
* without doing any explicit Shootdown
* -In case of kernel Flush, entry has to be shot down explictly
*/
void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
unsigned long flags;
/* If range @start to @end is more than 32 TLB entries deep,
* its better to move to a new ASID rather than searching for
* individual entries and then shooting them down
*
* The calc above is rough, doesn;t account for unaligned parts,
* since this is heuristics based anyways
*/
if (likely((end - start) < PAGE_SIZE * 32)) {
/* @start moved to page start: this alone suffices for checking loop
* end condition below, w/o need for aligning @end to page end
* e.g. 2000 to 4001 will anyhow loop twice
*/
start &= PAGE_MASK;
local_irq_save(flags);
if (vma->vm_mm->context.asid != NO_ASID) {
while (start < end) {
tlb_entry_erase(start | (vma->vm_mm->context.asid & 0xff));
start += PAGE_SIZE;
}
}
utlb_invalidate();
local_irq_restore(flags);
}
else {
local_flush_tlb_mm(vma->vm_mm);
}
}
/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
* @start, @end interpreted as kvaddr
* Interestingly, shared TLB entries can also be flushed using just
* @start,@end alone (interpreted as user vaddr), although technically SASID
* is also needed. However our smart TLbProbe lookup takes care of that.
*/
void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
unsigned long flags;
/* exactly same as above, except for TLB entry not taking ASID */
if (likely((end - start) < PAGE_SIZE * 32)) {
start &= PAGE_MASK;
local_irq_save(flags);
while (start < end) {
tlb_entry_erase(start);
start += PAGE_SIZE;
}
utlb_invalidate();
local_irq_restore(flags);
}
else {
local_flush_tlb_all();
}
}
/*
* Delete TLB entry in MMU for a given page (??? address)
* NOTE One TLB entry contains translation for single PAGE
*/
void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
unsigned long flags;
/* Note that it is critical that interrupts are DISABLED between
* checking the ASID and using it flush the TLB entry
*/
local_irq_save(flags);
if (vma->vm_mm->context.asid != NO_ASID) {
tlb_entry_erase((page & PAGE_MASK) | (vma->vm_mm->context.asid & 0xff));
utlb_invalidate();
}
local_irq_restore(flags);
}
/*
* Routine to create a TLB entry
*/
void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
{
unsigned long flags;
unsigned int idx, asid_or_sasid;
unsigned long pd0_flags;
local_irq_save(flags);
#ifdef CONFIG_ARC_TLB_PARANOIA
/* vineetg- April 2008
* Diagnostic Code to verify if sw and hw ASIDs are in lockstep
*/
{
unsigned int pid_sw, pid_hw;
void print_asid_mismatch(int is_fast_path);
pid_sw = vma->vm_mm->context.asid;
pid_hw = read_new_aux_reg(ARC_REG_PID) & 0xff;
if (address < 0x70000000 &&
((pid_hw != pid_sw) || (pid_sw == NO_ASID)))
{
print_asid_mismatch(0);
}
}
#endif
address &= PAGE_MASK;
/* update this PTE credentials */
pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
#if (CONFIG_ARC_MMU_VER <= 2)
/* Create HW TLB entry Flags (in PD0) from PTE Flags */
pd0_flags = ((pte_val(*ptep) & PTE_BITS_IN_PD0) >> 1);
#else
pd0_flags = ((pte_val(*ptep) & PTE_BITS_IN_PD0));
#endif
#ifdef CONFIG_ARC_MMU_SASID
if (pte_val(*ptep) & _PAGE_SHARED_CODE) {
unsigned int tsk_sasids;
pd0_flags |= _PAGE_SHARED_CODE_H;
/* SASID for this vaddr mapping */
asid_or_sasid = pte_val(*(ptep + PTRS_PER_PTE));
/* All the SASIDs for this task */
tsk_sasids = is_any_mmapcode_task_subscribed(vma->vm_mm);
BUG_ON(tsk_sasids == 0);
write_new_aux_reg(ARC_REG_SASID, tsk_sasids);
} else
#endif
/* ASID for this task */
asid_or_sasid = read_new_aux_reg(ARC_REG_PID) & 0xff;
write_new_aux_reg(ARC_REG_TLBPD0, address|pd0_flags|asid_or_sasid);
/* Load remaining info in PD1 (Page Frame Addr and Kx/Kw/Kr Flags etc) */
write_new_aux_reg(ARC_REG_TLBPD1, (pte_val(*ptep) & PTE_BITS_IN_PD1));
/* First verify if entry for this vaddr+ASID already exists */
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
idx = read_new_aux_reg(ARC_REG_TLBINDEX);
/* If Not already present get a free slot from MMU.
* Otherwise, Probe would have located the entry and set INDEX Reg
* with existing location. This will cause Write CMD to over-write
* existing entry with new PD0 and PD1
*/
if (likely(idx & TLB_LKUP_ERR)) {
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
}
/* Commit the Entry to MMU
* It doesnt sound safe to use the TLBWriteNI cmd here
* which doesn't flush uTLBs. I'd rather be safe than sorry.
*/
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
local_irq_restore(flags);
}
/* arch hook called by core VM at the end of handle_mm_fault( ),
* when a new PTE is entered in Page Tables or an existing one
* is modified. We aggresively pre-install a TLB entry
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddress, pte_t *ptep)
{
/* XXX: This definitely seems useless */
// BUG_ON(!pfn_valid(pte_pfn(*ptep)));
/* XXX: This is useful - but only once during execve - check why?
* handle_mm_fault()
* __get_user_pages
* copy_strings()
* do_execve()
*/
if (current->active_mm != vma->vm_mm)
return;
create_tlb(vma, vaddress, ptep);
}
/* Read the Cache Build Confuration Registers, Decode them and save into
* the cpuinfo structure for later use.
* No Validation is done here, simply read/convert the BCRs
*/
void __init read_decode_mmu_bcr(void)
{
unsigned int tmp;
struct bcr_mmu_1_2 *mmu2; // encoded MMU2 attributes
struct bcr_mmu_3 *mmu3; // encoded MMU3 attributes
struct cpuinfo_arc_mmu *mmu; // simplified attributes
mmu = &cpuinfo_arc700[0].mmu;
tmp = read_new_aux_reg(ARC_REG_MMU_BCR);
mmu->ver = (tmp >>24);
if (mmu->ver <= 2) {
mmu2 = (struct bcr_mmu_1_2 *)&tmp;
mmu->pg_sz = PAGE_SIZE;
mmu->sets = 1 << mmu2->sets;
mmu->ways = 1 << mmu2->ways;
mmu->u_dtlb = mmu2->u_dtlb;
mmu->u_itlb = mmu2->u_itlb;
}
else {
mmu3 = (struct bcr_mmu_3 *)&tmp;
mmu->pg_sz = 512 << mmu3->pg_sz;
mmu->sets = 1 << mmu3->sets;
mmu->ways = 1 << mmu3->ways;
mmu->u_dtlb = mmu3->u_dtlb;
mmu->u_itlb = mmu3->u_itlb;
}
mmu->num_tlb = mmu->sets * mmu->ways;
}
char * arc_mmu_mumbojumbo(int cpu_id, char *buf)
{
int num=0;
struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[0].mmu;
num += sprintf(buf+num, "ARC700 MMU Ver [%x]",p_mmu->ver);
#if (CONFIG_ARC_MMU_VER > 2)
{
num += sprintf(buf+num, " SASID [%s]",
__CONFIG_ARC_MMU_SASID_VAL ? "enabled" : "disabled");
}
#endif
num += sprintf(buf+num, "\n PAGE SIZE %dk\n",TO_KB(p_mmu->pg_sz));
num += sprintf(buf+num, " JTLB %d x %d = %d entries\n",
p_mmu->sets, p_mmu->ways, p_mmu->num_tlb);
num += sprintf(buf+num, " uDTLB %d entr, uITLB %d entr\n",
p_mmu->u_dtlb, p_mmu->u_itlb);
num += sprintf(buf+num,"TLB Refill \"will %s\" Flush uTLBs\n",
p_mmu->ver >= 2 ? "NOT":"");
return buf;
}
void __init arc_mmu_init(void)
{
int i;
static int one_time_init;
char str[512];
printk(arc_mmu_mumbojumbo(0, str));
/* For efficiency sake, kernel is compile time built for a MMU ver
* This must match the hardware it is running on.
* Linux built for MMU V2, if run on MMU V1 will break down because V1
* hardware doesn't understand cmds such as WriteNI, or IVUTLB
* On the other hand, Linux built for V1 if run on MMU V2 will do
* un-needed workarounds to prevent memcpy thrashing.
* Similarly MMU V3 has new features which won't work on older MMU
*/
if (mmu->ver != CONFIG_ARC_MMU_VER) {
panic("MMU ver %d doesn't match kernel built for %d...\n",
mmu->ver, CONFIG_ARC_MMU_VER);
}
if (mmu->pg_sz != PAGE_SIZE) {
panic("MMU pg size != PAGE_SIZE (%luk)\n",TO_KB(PAGE_SIZE));
}
/* Setup data structures for ASID management */
if ( ! one_time_init ) {
asid_cache = FIRST_ASID;
/* clear asid to mm map table */
for (i = 0; i < MAX_ASID; i++) {
asid_mm_map[i] = (struct mm_struct *)NULL;
}
one_time_init = 1;
}
local_flush_tlb_all();
/* Enable the MMU */
write_new_aux_reg(ARC_REG_PID, MMU_ENABLE);
#ifndef CONFIG_SMP // In smp we use this reg for interrupt 1 scratch
/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
write_new_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
#endif
}
/* Handling of Duplicate PD (TLB entry) in MMU.
* -Could be due to buggy customer tapeouts or obscure kernel bugs
* -MMU complaints not at the time of duplicate PD installation, but at the
* time of lookup matching multiple ways.
* -Ideally these should never happen - but if they do - workaround by deleting
* the duplicate one.
* -Two Knobs to influence the handling.(TODO: hook them up to debugfs)
*/
volatile int dup_pd_verbose = 1; /* Be slient abt it or complain (default) */
volatile int dup_pd_fix = 1; /* Repair the error (default) or stop */
void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
struct pt_regs *regs)
{
int set, way, n;
unsigned int tlbpd0[4], tlbpd1[4]; /* assume max 4 ways */
unsigned int flags;
struct cpuinfo_arc_mmu *mmu;
mmu = &cpuinfo_arc700[0].mmu;
local_irq_save(flags);
/* re-enable the MMU */
write_new_aux_reg(ARC_REG_PID, MMU_ENABLE | read_new_aux_reg(ARC_REG_PID));
/* loop thru all sets of TLB */
for(set=0; set < mmu->sets; set++)
{
/* read out all the ways of current set */
for(way=0; way < mmu->ways; way++)
{
write_new_aux_reg(ARC_REG_TLBINDEX, set*mmu->ways + way);
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
tlbpd0[way] = read_new_aux_reg(ARC_REG_TLBPD0);
tlbpd1[way] = read_new_aux_reg(ARC_REG_TLBPD1);
}
/* Scan the set for duplicate ways: needs a nested loop */
for(way=0; way < mmu->ways; way++)
{
/* nested loop need NOT start from 0th - that was dumb */
for(n=way+1; n < mmu->ways; n++)
{
if (tlbpd0[way] == tlbpd0[n] && tlbpd0[way] & _PAGE_VALID) {
if (dup_pd_verbose) {
printk("Duplicate PD's @ [%d:%d] and [%d:%d]\n",
set,way,set,n);
printk("TLBPD0[%u]: %08x TLBPD0[%u] : %08x\n",
way,tlbpd0[way], n, tlbpd0[n]);
}
if (dup_pd_fix) {
/* clear the entry @way and not @n
* this is critical to our optimised nested loop
*/
tlbpd0[way] = tlbpd1[way]=0;
write_new_aux_reg(ARC_REG_TLBPD0,0);
write_new_aux_reg(ARC_REG_TLBPD1,0);
write_new_aux_reg(ARC_REG_TLBINDEX,set*mmu->ways+way);
write_new_aux_reg(ARC_REG_TLBCOMMAND,TLBWrite);
}
}
}
}
}
local_irq_restore(flags);
}
/***********************************************************************
* Diagnostic Routines
* -Called from Low Level TLB Hanlders if things don;t look good
**********************************************************************/
#ifdef CONFIG_ARC_TLB_PARANOIA
/*
* Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
* don't match
*/
void print_asid_mismatch(int is_fast_path)
{
int pid_sw, pid_hw;
pid_sw = current->active_mm->context.asid;
pid_hw = read_new_aux_reg(ARC_REG_PID) & 0xff;
#ifdef CONFIG_ARC_DBG_EVENT_TIMELINE
sort_snaps(1);
#endif
printk("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
is_fast_path ? "Fast" : "Slow",
pid_sw, pid_hw);
__asm__ __volatile__ ("flag 1");
}
void print_pgd_mismatch(void)
{
extern struct task_struct *_current_task;
unsigned int reg = read_new_aux_reg(ARC_REG_SCRATCH_DATA0);
printk("HW PDG %x SW PGD %p CURR PDG %p\n", reg, current->active_mm->pgd,
_current_task->active_mm->pgd);
__asm__ __volatile__ ("flag 1");
}
#endif
/***********************************************************************
* Dumping Debug Routines
**********************************************************************/
#ifdef CONFIG_ARC_TLB_DBG_V
typedef struct {
unsigned int pd0, pd1;
int idx;
}
ARC_TLB_T;
/*
* Read TLB entry from a particulat index in MMU
* Caller "MUST" Disable interrupts
*/
void fetch_tlb(int idx, ARC_TLB_T *ptlb)
{
write_new_aux_reg(ARC_REG_TLBINDEX, idx);
write_new_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
ptlb->pd0 = read_new_aux_reg(ARC_REG_TLBPD0);
ptlb->pd1 = read_new_aux_reg(ARC_REG_TLBPD1);
ptlb->idx = idx;
}
/*
* Decode HW Page Descriptors in "Human understandable form"
*/
void decode_tlb(ARC_TLB_T *ptlb)
{
printk("# %2x # ", ptlb->idx);
if (!(ptlb->pd0 & 0x400)) {
printk("\n");
return;
}
printk("PD0: %s %s ASID %3d V-addr %8x",
(ptlb->pd0 & 0x100) ? "G" : " ",
(ptlb->pd0 & 0x400) ? "V" : " ",
(ptlb->pd0 & 0xff), (ptlb->pd0 & ~0x1FFF));
printk(" PD1: %s %s %s %s %s %s %s PHY %8x\n",
(ptlb->pd1 & 0x100) ? "KR" : " ",
(ptlb->pd1 & 0x80) ? "KW" : " ",
(ptlb->pd1 & 0x40) ? "KX" : " ",
(ptlb->pd1 & 0x20) ? "UR" : " ",
(ptlb->pd1 & 0x10) ? "UW" : " ",
(ptlb->pd1 & 0x8) ? "UX" : " ",
(ptlb->pd1 & 0x4) ? "C " : "NC",
(ptlb->pd1 & ~0x1FFF));
}
void print_tlb_at_mmu_idx(int idx)
{
ARC_TLB_T tlb;
fetch_tlb(idx, &tlb);
decode_tlb(&tlb);
}
ARC_TLB_T arr[512];
ARC_TLB_T micro[12];
/*
* Read TLB Entry from MMU for range of virtual address : @start to @vend
*
* Note interrupts are disabled to get a consistent snapshot of MMU,
* so that no changes can be made while we read the entirity
*
* Also we dont print in this routine because printk can cause lot of side
* effects including IRQ enabling, reschedule etc
* There is a seperate routine to dump a snapshot.
*
* JTLB entries are indexed from 0 to 255 (independent of geometry)
* Micro-iTLB entries 0x200 to 0x203
* Micro-dTLB entries 0x400 to 0x407
*/
void mmu_snapshot(unsigned int vstart, unsigned int vend)
{
int ctr=0, idx, i;
unsigned int flags;
local_irq_save(flags);
memset(arr, 0, sizeof(arr));
memset(micro, 0, sizeof(micro));
// This is the set index (0 to 127), not MMU index
idx = ( vstart / 8192 ) % 128;
// MMU index (o to 255) Way 0
idx *= 2;
do
{
fetch_tlb(idx++, &arr[ctr++]);
// MMU index (o to 255) Way 1
fetch_tlb(idx++, &arr[ctr++]);
vstart += PAGE_SIZE;
}
while (vend >= vstart);
ctr = 0;
for ( i = 0x200; i <= 0x203; i++) {
fetch_tlb(i, &micro[ctr++]);
}
ctr = 4; // Four I-uTLBs above
for ( i = 0x400; i <= 0x407; i++) {
fetch_tlb(i, &micro[ctr++]);
}
local_irq_restore(flags);
}
/*
* Dump a previously taken snapshot of MMU
*/
void dump_mmu_snapshot()
{
int i, ctr = 0;
printk("###J-TLB Entry for MMU\n");
for ( i = 0; i < 32; i++) {
decode_tlb(&arr[i]);
}
ctr = 0;
printk("***Dumping Micro I-TLBs\n");
for ( i = 0; i < 4; i++) {
decode_tlb(&micro[ctr++]);
}
printk("***Dumping Micro D-TLBs\n");
for ( i = 0; i < 8; i++) {
decode_tlb(&micro[ctr++]);
}
}
/*
* Print both HW and SW Translation entries for a given virtual address
*/
void print_virt_to_phy(unsigned int vaddr, int hw_only)
{
unsigned long addr = (unsigned long) vaddr;
struct task_struct *tsk = current;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
unsigned int pte_v, phy_addr;
int pass = 1;
if (hw_only) goto TLB_LKUP;
pgd = pgd_offset(tsk->active_mm, addr);
printk("========Virtual Addr %x PGD Ptr %p=====\n",
vaddr, tsk->active_mm->pgd);
PGTBL_2ND_PASS:
if (pass == 2) {
pgd = pgd_offset_k(addr);
printk("========[KERNEL] Virtual Addr %x PGD Ptr %p=====\n",
vaddr, init_mm.pgd);
}
if (!pgd_none(*pgd)) {
pud = pud_offset(pgd, addr);
if (!pud_none(*pud)) {
pmd = pmd_offset(pud, addr);
if (!pmd_none(*pmd)) {
ptep = pte_offset(pmd, addr);
pte = *ptep;
if (pte_present(pte)) {
pte_v = *((unsigned int*)&pte);
printk(" PTE Val %x", pte_v);
printk(" Flags %x, PHY %x\n",(pte_v & 0x1FFF), (pte_v & ~0x1FFF));
// Use this to print from phy addr correspondign to vaddr
phy_addr = (pte_v & ~0x1FFF) + (vaddr & 0x1FFF);
goto TLB_LKUP;
}
}
}
}
printk("PTE Not present\n");
TLB_LKUP:
if ( pass == 1 ) {
pass = 2;
goto PGTBL_2ND_PASS;
}
mmu_snapshot(vaddr, vaddr+PAGE_SIZE);
dump_mmu_snapshot();
}
EXPORT_SYMBOL(print_virt_to_phy);
#endif