blob: 41f85c4d09387a8bd03299ef00f6e79482f68b40 [file] [log] [blame]
#include <linux/cgroup.h>
#include <linux/slab.h>
#include <linux/percpu.h>
#include <linux/spinlock.h>
#include <linux/cpumask.h>
#include <linux/seq_file.h>
#include <linux/rcupdate.h>
#include <linux/kernel_stat.h>
#include <linux/err.h>
#include "sched.h"
/*
* CPU accounting code for task groups.
*
* Based on the work by Paul Menage (menage@google.com) and Balbir Singh
* (balbir@in.ibm.com).
*/
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
CPUACCT_STAT_USER, /* ... user mode */
CPUACCT_STAT_SYSTEM, /* ... kernel mode */
CPUACCT_STAT_NSTATS,
};
enum cpuacct_usage_index {
CPUACCT_USAGE_USER, /* ... user mode */
CPUACCT_USAGE_SYSTEM, /* ... kernel mode */
CPUACCT_USAGE_NRUSAGE,
};
struct cpuacct_usage {
u64 usages[CPUACCT_USAGE_NRUSAGE];
};
/* track cpu usage of a group of tasks and its child groups */
struct cpuacct {
struct cgroup_subsys_state css;
/* cpuusage holds pointer to a u64-type object on every cpu */
struct cpuacct_usage __percpu *cpuusage;
struct kernel_cpustat __percpu *cpustat;
};
static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css)
{
return css ? container_of(css, struct cpuacct, css) : NULL;
}
/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
return css_ca(task_css(tsk, cpuacct_cgrp_id));
}
static inline struct cpuacct *parent_ca(struct cpuacct *ca)
{
return css_ca(ca->css.parent);
}
static DEFINE_PER_CPU(struct cpuacct_usage, root_cpuacct_cpuusage);
static struct cpuacct root_cpuacct = {
.cpustat = &kernel_cpustat,
.cpuusage = &root_cpuacct_cpuusage,
};
/* create a new cpu accounting group */
static struct cgroup_subsys_state *
cpuacct_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct cpuacct *ca;
if (!parent_css)
return &root_cpuacct.css;
ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca)
goto out;
ca->cpuusage = alloc_percpu(struct cpuacct_usage);
if (!ca->cpuusage)
goto out_free_ca;
ca->cpustat = alloc_percpu(struct kernel_cpustat);
if (!ca->cpustat)
goto out_free_cpuusage;
return &ca->css;
out_free_cpuusage:
free_percpu(ca->cpuusage);
out_free_ca:
kfree(ca);
out:
return ERR_PTR(-ENOMEM);
}
/* destroy an existing cpu accounting group */
static void cpuacct_css_free(struct cgroup_subsys_state *css)
{
struct cpuacct *ca = css_ca(css);
free_percpu(ca->cpustat);
free_percpu(ca->cpuusage);
kfree(ca);
}
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu,
enum cpuacct_usage_index index)
{
struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
u64 data;
/*
* We allow index == CPUACCT_USAGE_NRUSAGE here to read
* the sum of suages.
*/
BUG_ON(index > CPUACCT_USAGE_NRUSAGE);
#ifndef CONFIG_64BIT
/*
* Take rq->lock to make 64-bit read safe on 32-bit platforms.
*/
raw_spin_lock_irq(&cpu_rq(cpu)->lock);
#endif
if (index == CPUACCT_USAGE_NRUSAGE) {
int i = 0;
data = 0;
for (i = 0; i < CPUACCT_USAGE_NRUSAGE; i++)
data += cpuusage->usages[i];
} else {
data = cpuusage->usages[index];
}
#ifndef CONFIG_64BIT
raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
#endif
return data;
}
static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
int i;
#ifndef CONFIG_64BIT
/*
* Take rq->lock to make 64-bit write safe on 32-bit platforms.
*/
raw_spin_lock_irq(&cpu_rq(cpu)->lock);
#endif
for (i = 0; i < CPUACCT_USAGE_NRUSAGE; i++)
cpuusage->usages[i] = val;
#ifndef CONFIG_64BIT
raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
#endif
}
/* return total cpu usage (in nanoseconds) of a group */
static u64 __cpuusage_read(struct cgroup_subsys_state *css,
enum cpuacct_usage_index index)
{
struct cpuacct *ca = css_ca(css);
u64 totalcpuusage = 0;
int i;
for_each_possible_cpu(i)
totalcpuusage += cpuacct_cpuusage_read(ca, i, index);
return totalcpuusage;
}
static u64 cpuusage_user_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return __cpuusage_read(css, CPUACCT_USAGE_USER);
}
static u64 cpuusage_sys_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return __cpuusage_read(css, CPUACCT_USAGE_SYSTEM);
}
static u64 cpuusage_read(struct cgroup_subsys_state *css, struct cftype *cft)
{
return __cpuusage_read(css, CPUACCT_USAGE_NRUSAGE);
}
static int cpuusage_write(struct cgroup_subsys_state *css, struct cftype *cft,
u64 val)
{
struct cpuacct *ca = css_ca(css);
int cpu;
/*
* Only allow '0' here to do a reset.
*/
if (val)
return -EINVAL;
for_each_possible_cpu(cpu)
cpuacct_cpuusage_write(ca, cpu, 0);
return 0;
}
static int __cpuacct_percpu_seq_show(struct seq_file *m,
enum cpuacct_usage_index index)
{
struct cpuacct *ca = css_ca(seq_css(m));
u64 percpu;
int i;
for_each_possible_cpu(i) {
percpu = cpuacct_cpuusage_read(ca, i, index);
seq_printf(m, "%llu ", (unsigned long long) percpu);
}
seq_printf(m, "\n");
return 0;
}
static int cpuacct_percpu_user_seq_show(struct seq_file *m, void *V)
{
return __cpuacct_percpu_seq_show(m, CPUACCT_USAGE_USER);
}
static int cpuacct_percpu_sys_seq_show(struct seq_file *m, void *V)
{
return __cpuacct_percpu_seq_show(m, CPUACCT_USAGE_SYSTEM);
}
static int cpuacct_percpu_seq_show(struct seq_file *m, void *V)
{
return __cpuacct_percpu_seq_show(m, CPUACCT_USAGE_NRUSAGE);
}
static const char * const cpuacct_stat_desc[] = {
[CPUACCT_STAT_USER] = "user",
[CPUACCT_STAT_SYSTEM] = "system",
};
static int cpuacct_stats_show(struct seq_file *sf, void *v)
{
struct cpuacct *ca = css_ca(seq_css(sf));
int cpu;
s64 val = 0;
for_each_possible_cpu(cpu) {
struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
val += kcpustat->cpustat[CPUTIME_USER];
val += kcpustat->cpustat[CPUTIME_NICE];
}
val = cputime64_to_clock_t(val);
seq_printf(sf, "%s %lld\n", cpuacct_stat_desc[CPUACCT_STAT_USER], val);
val = 0;
for_each_possible_cpu(cpu) {
struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
val += kcpustat->cpustat[CPUTIME_SYSTEM];
val += kcpustat->cpustat[CPUTIME_IRQ];
val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
}
val = cputime64_to_clock_t(val);
seq_printf(sf, "%s %lld\n", cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
return 0;
}
static struct cftype files[] = {
{
.name = "usage",
.read_u64 = cpuusage_read,
.write_u64 = cpuusage_write,
},
{
.name = "usage_user",
.read_u64 = cpuusage_user_read,
},
{
.name = "usage_sys",
.read_u64 = cpuusage_sys_read,
},
{
.name = "usage_percpu",
.seq_show = cpuacct_percpu_seq_show,
},
{
.name = "usage_percpu_user",
.seq_show = cpuacct_percpu_user_seq_show,
},
{
.name = "usage_percpu_sys",
.seq_show = cpuacct_percpu_sys_seq_show,
},
{
.name = "stat",
.seq_show = cpuacct_stats_show,
},
{ } /* terminate */
};
/*
* charge this task's execution time to its accounting group.
*
* called with rq->lock held.
*/
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
struct cpuacct *ca;
int index = CPUACCT_USAGE_SYSTEM;
struct pt_regs *regs = task_pt_regs(tsk);
if (regs && user_mode(regs))
index = CPUACCT_USAGE_USER;
rcu_read_lock();
for (ca = task_ca(tsk); ca; ca = parent_ca(ca))
this_cpu_ptr(ca->cpuusage)->usages[index] += cputime;
rcu_read_unlock();
}
/*
* Add user/system time to cpuacct.
*
* Note: it's the caller that updates the account of the root cgroup.
*/
void cpuacct_account_field(struct task_struct *tsk, int index, u64 val)
{
struct cpuacct *ca;
rcu_read_lock();
for (ca = task_ca(tsk); ca != &root_cpuacct; ca = parent_ca(ca))
this_cpu_ptr(ca->cpustat)->cpustat[index] += val;
rcu_read_unlock();
}
struct cgroup_subsys cpuacct_cgrp_subsys = {
.css_alloc = cpuacct_css_alloc,
.css_free = cpuacct_css_free,
.legacy_cftypes = files,
.early_init = true,
};