blob: 803001a45aa16e6b5a372ab385dba8e9c09bd2f0 [file] [log] [blame]
/*
* IPVS An implementation of the IP virtual server support for the
* LINUX operating system. IPVS is now implemented as a module
* over the NetFilter framework. IPVS can be used to build a
* high-performance and highly available server based on a
* cluster of servers.
*
* Version 1, is capable of handling both version 0 and 1 messages.
* Version 0 is the plain old format.
* Note Version 0 receivers will just drop Ver 1 messages.
* Version 1 is capable of handle IPv6, Persistence data,
* time-outs, and firewall marks.
* In ver.1 "ip_vs_sync_conn_options" will be sent in netw. order.
* Ver. 0 can be turned on by sysctl -w net.ipv4.vs.sync_version=0
*
* Definitions Message: is a complete datagram
* Sync_conn: is a part of a Message
* Param Data is an option to a Sync_conn.
*
* Authors: Wensong Zhang <wensong@linuxvirtualserver.org>
*
* ip_vs_sync: sync connection info from master load balancer to backups
* through multicast
*
* Changes:
* Alexandre Cassen : Added master & backup support at a time.
* Alexandre Cassen : Added SyncID support for incoming sync
* messages filtering.
* Justin Ossevoort : Fix endian problem on sync message size.
* Hans Schillstrom : Added Version 1: i.e. IPv6,
* Persistence support, fwmark and time-out.
*/
#define KMSG_COMPONENT "IPVS"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/inetdevice.h>
#include <linux/net.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/igmp.h> /* for ip_mc_join_group */
#include <linux/udp.h>
#include <linux/err.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/kernel.h>
#include <asm/unaligned.h> /* Used for ntoh_seq and hton_seq */
#include <net/ip.h>
#include <net/sock.h>
#include <net/ip_vs.h>
#define IP_VS_SYNC_GROUP 0xe0000051 /* multicast addr - 224.0.0.81 */
#define IP_VS_SYNC_PORT 8848 /* multicast port */
#define SYNC_PROTO_VER 1 /* Protocol version in header */
static struct lock_class_key __ipvs_sync_key;
/*
* IPVS sync connection entry
* Version 0, i.e. original version.
*/
struct ip_vs_sync_conn_v0 {
__u8 reserved;
/* Protocol, addresses and port numbers */
__u8 protocol; /* Which protocol (TCP/UDP) */
__be16 cport;
__be16 vport;
__be16 dport;
__be32 caddr; /* client address */
__be32 vaddr; /* virtual address */
__be32 daddr; /* destination address */
/* Flags and state transition */
__be16 flags; /* status flags */
__be16 state; /* state info */
/* The sequence options start here */
};
struct ip_vs_sync_conn_options {
struct ip_vs_seq in_seq; /* incoming seq. struct */
struct ip_vs_seq out_seq; /* outgoing seq. struct */
};
/*
Sync Connection format (sync_conn)
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Protocol | Ver. | Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| State | cport |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| vport | dport |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| fwmark |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| timeout (in sec.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
| IP-Addresses (v4 or v6) |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Optional Parameters.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Param. Type | Param. Length | Param. data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| ... |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Param Type | Param. Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Param data |
| Last Param data should be padded for 32 bit alignment |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
/*
* Type 0, IPv4 sync connection format
*/
struct ip_vs_sync_v4 {
__u8 type;
__u8 protocol; /* Which protocol (TCP/UDP) */
__be16 ver_size; /* Version msb 4 bits */
/* Flags and state transition */
__be32 flags; /* status flags */
__be16 state; /* state info */
/* Protocol, addresses and port numbers */
__be16 cport;
__be16 vport;
__be16 dport;
__be32 fwmark; /* Firewall mark from skb */
__be32 timeout; /* cp timeout */
__be32 caddr; /* client address */
__be32 vaddr; /* virtual address */
__be32 daddr; /* destination address */
/* The sequence options start here */
/* PE data padded to 32bit alignment after seq. options */
};
/*
* Type 2 messages IPv6
*/
struct ip_vs_sync_v6 {
__u8 type;
__u8 protocol; /* Which protocol (TCP/UDP) */
__be16 ver_size; /* Version msb 4 bits */
/* Flags and state transition */
__be32 flags; /* status flags */
__be16 state; /* state info */
/* Protocol, addresses and port numbers */
__be16 cport;
__be16 vport;
__be16 dport;
__be32 fwmark; /* Firewall mark from skb */
__be32 timeout; /* cp timeout */
struct in6_addr caddr; /* client address */
struct in6_addr vaddr; /* virtual address */
struct in6_addr daddr; /* destination address */
/* The sequence options start here */
/* PE data padded to 32bit alignment after seq. options */
};
union ip_vs_sync_conn {
struct ip_vs_sync_v4 v4;
struct ip_vs_sync_v6 v6;
};
/* Bits in Type field in above */
#define STYPE_INET6 0
#define STYPE_F_INET6 (1 << STYPE_INET6)
#define SVER_SHIFT 12 /* Shift to get version */
#define SVER_MASK 0x0fff /* Mask to strip version */
#define IPVS_OPT_SEQ_DATA 1
#define IPVS_OPT_PE_DATA 2
#define IPVS_OPT_PE_NAME 3
#define IPVS_OPT_PARAM 7
#define IPVS_OPT_F_SEQ_DATA (1 << (IPVS_OPT_SEQ_DATA-1))
#define IPVS_OPT_F_PE_DATA (1 << (IPVS_OPT_PE_DATA-1))
#define IPVS_OPT_F_PE_NAME (1 << (IPVS_OPT_PE_NAME-1))
#define IPVS_OPT_F_PARAM (1 << (IPVS_OPT_PARAM-1))
struct ip_vs_sync_thread_data {
struct netns_ipvs *ipvs;
struct socket *sock;
char *buf;
int id;
};
/* Version 0 definition of packet sizes */
#define SIMPLE_CONN_SIZE (sizeof(struct ip_vs_sync_conn_v0))
#define FULL_CONN_SIZE \
(sizeof(struct ip_vs_sync_conn_v0) + sizeof(struct ip_vs_sync_conn_options))
/*
The master mulitcasts messages (Datagrams) to the backup load balancers
in the following format.
Version 1:
Note, first byte should be Zero, so ver 0 receivers will drop the packet.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | SyncID | Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Count Conns | Version | Reserved, set to Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPVS Sync Connection (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
~ . ~
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPVS Sync Connection (n) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Version 0 Header
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Count Conns | SyncID | Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPVS Sync Connection (1) |
*/
#define SYNC_MESG_HEADER_LEN 4
#define MAX_CONNS_PER_SYNCBUFF 255 /* nr_conns in ip_vs_sync_mesg is 8 bit */
/* Version 0 header */
struct ip_vs_sync_mesg_v0 {
__u8 nr_conns;
__u8 syncid;
__be16 size;
/* ip_vs_sync_conn entries start here */
};
/* Version 1 header */
struct ip_vs_sync_mesg {
__u8 reserved; /* must be zero */
__u8 syncid;
__be16 size;
__u8 nr_conns;
__s8 version; /* SYNC_PROTO_VER */
__u16 spare;
/* ip_vs_sync_conn entries start here */
};
union ipvs_sockaddr {
struct sockaddr_in in;
struct sockaddr_in6 in6;
};
struct ip_vs_sync_buff {
struct list_head list;
unsigned long firstuse;
/* pointers for the message data */
struct ip_vs_sync_mesg *mesg;
unsigned char *head;
unsigned char *end;
};
/*
* Copy of struct ip_vs_seq
* From unaligned network order to aligned host order
*/
static void ntoh_seq(struct ip_vs_seq *no, struct ip_vs_seq *ho)
{
ho->init_seq = get_unaligned_be32(&no->init_seq);
ho->delta = get_unaligned_be32(&no->delta);
ho->previous_delta = get_unaligned_be32(&no->previous_delta);
}
/*
* Copy of struct ip_vs_seq
* From Aligned host order to unaligned network order
*/
static void hton_seq(struct ip_vs_seq *ho, struct ip_vs_seq *no)
{
put_unaligned_be32(ho->init_seq, &no->init_seq);
put_unaligned_be32(ho->delta, &no->delta);
put_unaligned_be32(ho->previous_delta, &no->previous_delta);
}
static inline struct ip_vs_sync_buff *
sb_dequeue(struct netns_ipvs *ipvs, struct ipvs_master_sync_state *ms)
{
struct ip_vs_sync_buff *sb;
spin_lock_bh(&ipvs->sync_lock);
if (list_empty(&ms->sync_queue)) {
sb = NULL;
__set_current_state(TASK_INTERRUPTIBLE);
} else {
sb = list_entry(ms->sync_queue.next, struct ip_vs_sync_buff,
list);
list_del(&sb->list);
ms->sync_queue_len--;
if (!ms->sync_queue_len)
ms->sync_queue_delay = 0;
}
spin_unlock_bh(&ipvs->sync_lock);
return sb;
}
/*
* Create a new sync buffer for Version 1 proto.
*/
static inline struct ip_vs_sync_buff *
ip_vs_sync_buff_create(struct netns_ipvs *ipvs, unsigned int len)
{
struct ip_vs_sync_buff *sb;
if (!(sb=kmalloc(sizeof(struct ip_vs_sync_buff), GFP_ATOMIC)))
return NULL;
len = max_t(unsigned int, len + sizeof(struct ip_vs_sync_mesg),
ipvs->mcfg.sync_maxlen);
sb->mesg = kmalloc(len, GFP_ATOMIC);
if (!sb->mesg) {
kfree(sb);
return NULL;
}
sb->mesg->reserved = 0; /* old nr_conns i.e. must be zero now */
sb->mesg->version = SYNC_PROTO_VER;
sb->mesg->syncid = ipvs->mcfg.syncid;
sb->mesg->size = htons(sizeof(struct ip_vs_sync_mesg));
sb->mesg->nr_conns = 0;
sb->mesg->spare = 0;
sb->head = (unsigned char *)sb->mesg + sizeof(struct ip_vs_sync_mesg);
sb->end = (unsigned char *)sb->mesg + len;
sb->firstuse = jiffies;
return sb;
}
static inline void ip_vs_sync_buff_release(struct ip_vs_sync_buff *sb)
{
kfree(sb->mesg);
kfree(sb);
}
static inline void sb_queue_tail(struct netns_ipvs *ipvs,
struct ipvs_master_sync_state *ms)
{
struct ip_vs_sync_buff *sb = ms->sync_buff;
spin_lock(&ipvs->sync_lock);
if (ipvs->sync_state & IP_VS_STATE_MASTER &&
ms->sync_queue_len < sysctl_sync_qlen_max(ipvs)) {
if (!ms->sync_queue_len)
schedule_delayed_work(&ms->master_wakeup_work,
max(IPVS_SYNC_SEND_DELAY, 1));
ms->sync_queue_len++;
list_add_tail(&sb->list, &ms->sync_queue);
if ((++ms->sync_queue_delay) == IPVS_SYNC_WAKEUP_RATE)
wake_up_process(ms->master_thread);
} else
ip_vs_sync_buff_release(sb);
spin_unlock(&ipvs->sync_lock);
}
/*
* Get the current sync buffer if it has been created for more
* than the specified time or the specified time is zero.
*/
static inline struct ip_vs_sync_buff *
get_curr_sync_buff(struct netns_ipvs *ipvs, struct ipvs_master_sync_state *ms,
unsigned long time)
{
struct ip_vs_sync_buff *sb;
spin_lock_bh(&ipvs->sync_buff_lock);
sb = ms->sync_buff;
if (sb && time_after_eq(jiffies - sb->firstuse, time)) {
ms->sync_buff = NULL;
__set_current_state(TASK_RUNNING);
} else
sb = NULL;
spin_unlock_bh(&ipvs->sync_buff_lock);
return sb;
}
static inline int
select_master_thread_id(struct netns_ipvs *ipvs, struct ip_vs_conn *cp)
{
return ((long) cp >> (1 + ilog2(sizeof(*cp)))) & ipvs->threads_mask;
}
/*
* Create a new sync buffer for Version 0 proto.
*/
static inline struct ip_vs_sync_buff *
ip_vs_sync_buff_create_v0(struct netns_ipvs *ipvs, unsigned int len)
{
struct ip_vs_sync_buff *sb;
struct ip_vs_sync_mesg_v0 *mesg;
if (!(sb=kmalloc(sizeof(struct ip_vs_sync_buff), GFP_ATOMIC)))
return NULL;
len = max_t(unsigned int, len + sizeof(struct ip_vs_sync_mesg_v0),
ipvs->mcfg.sync_maxlen);
sb->mesg = kmalloc(len, GFP_ATOMIC);
if (!sb->mesg) {
kfree(sb);
return NULL;
}
mesg = (struct ip_vs_sync_mesg_v0 *)sb->mesg;
mesg->nr_conns = 0;
mesg->syncid = ipvs->mcfg.syncid;
mesg->size = htons(sizeof(struct ip_vs_sync_mesg_v0));
sb->head = (unsigned char *)mesg + sizeof(struct ip_vs_sync_mesg_v0);
sb->end = (unsigned char *)mesg + len;
sb->firstuse = jiffies;
return sb;
}
/* Check if connection is controlled by persistence */
static inline bool in_persistence(struct ip_vs_conn *cp)
{
for (cp = cp->control; cp; cp = cp->control) {
if (cp->flags & IP_VS_CONN_F_TEMPLATE)
return true;
}
return false;
}
/* Check if conn should be synced.
* pkts: conn packets, use sysctl_sync_threshold to avoid packet check
* - (1) sync_refresh_period: reduce sync rate. Additionally, retry
* sync_retries times with period of sync_refresh_period/8
* - (2) if both sync_refresh_period and sync_period are 0 send sync only
* for state changes or only once when pkts matches sync_threshold
* - (3) templates: rate can be reduced only with sync_refresh_period or
* with (2)
*/
static int ip_vs_sync_conn_needed(struct netns_ipvs *ipvs,
struct ip_vs_conn *cp, int pkts)
{
unsigned long orig = ACCESS_ONCE(cp->sync_endtime);
unsigned long now = jiffies;
unsigned long n = (now + cp->timeout) & ~3UL;
unsigned int sync_refresh_period;
int sync_period;
int force;
/* Check if we sync in current state */
if (unlikely(cp->flags & IP_VS_CONN_F_TEMPLATE))
force = 0;
else if (unlikely(sysctl_sync_persist_mode(ipvs) && in_persistence(cp)))
return 0;
else if (likely(cp->protocol == IPPROTO_TCP)) {
if (!((1 << cp->state) &
((1 << IP_VS_TCP_S_ESTABLISHED) |
(1 << IP_VS_TCP_S_FIN_WAIT) |
(1 << IP_VS_TCP_S_CLOSE) |
(1 << IP_VS_TCP_S_CLOSE_WAIT) |
(1 << IP_VS_TCP_S_TIME_WAIT))))
return 0;
force = cp->state != cp->old_state;
if (force && cp->state != IP_VS_TCP_S_ESTABLISHED)
goto set;
} else if (unlikely(cp->protocol == IPPROTO_SCTP)) {
if (!((1 << cp->state) &
((1 << IP_VS_SCTP_S_ESTABLISHED) |
(1 << IP_VS_SCTP_S_SHUTDOWN_SENT) |
(1 << IP_VS_SCTP_S_SHUTDOWN_RECEIVED) |
(1 << IP_VS_SCTP_S_SHUTDOWN_ACK_SENT) |
(1 << IP_VS_SCTP_S_CLOSED))))
return 0;
force = cp->state != cp->old_state;
if (force && cp->state != IP_VS_SCTP_S_ESTABLISHED)
goto set;
} else {
/* UDP or another protocol with single state */
force = 0;
}
sync_refresh_period = sysctl_sync_refresh_period(ipvs);
if (sync_refresh_period > 0) {
long diff = n - orig;
long min_diff = max(cp->timeout >> 1, 10UL * HZ);
/* Avoid sync if difference is below sync_refresh_period
* and below the half timeout.
*/
if (abs(diff) < min_t(long, sync_refresh_period, min_diff)) {
int retries = orig & 3;
if (retries >= sysctl_sync_retries(ipvs))
return 0;
if (time_before(now, orig - cp->timeout +
(sync_refresh_period >> 3)))
return 0;
n |= retries + 1;
}
}
sync_period = sysctl_sync_period(ipvs);
if (sync_period > 0) {
if (!(cp->flags & IP_VS_CONN_F_TEMPLATE) &&
pkts % sync_period != sysctl_sync_threshold(ipvs))
return 0;
} else if (sync_refresh_period <= 0 &&
pkts != sysctl_sync_threshold(ipvs))
return 0;
set:
cp->old_state = cp->state;
n = cmpxchg(&cp->sync_endtime, orig, n);
return n == orig || force;
}
/*
* Version 0 , could be switched in by sys_ctl.
* Add an ip_vs_conn information into the current sync_buff.
*/
static void ip_vs_sync_conn_v0(struct netns_ipvs *ipvs, struct ip_vs_conn *cp,
int pkts)
{
struct ip_vs_sync_mesg_v0 *m;
struct ip_vs_sync_conn_v0 *s;
struct ip_vs_sync_buff *buff;
struct ipvs_master_sync_state *ms;
int id;
unsigned int len;
if (unlikely(cp->af != AF_INET))
return;
/* Do not sync ONE PACKET */
if (cp->flags & IP_VS_CONN_F_ONE_PACKET)
return;
if (!ip_vs_sync_conn_needed(ipvs, cp, pkts))
return;
spin_lock_bh(&ipvs->sync_buff_lock);
if (!(ipvs->sync_state & IP_VS_STATE_MASTER)) {
spin_unlock_bh(&ipvs->sync_buff_lock);
return;
}
id = select_master_thread_id(ipvs, cp);
ms = &ipvs->ms[id];
buff = ms->sync_buff;
len = (cp->flags & IP_VS_CONN_F_SEQ_MASK) ? FULL_CONN_SIZE :
SIMPLE_CONN_SIZE;
if (buff) {
m = (struct ip_vs_sync_mesg_v0 *) buff->mesg;
/* Send buffer if it is for v1 */
if (buff->head + len > buff->end || !m->nr_conns) {
sb_queue_tail(ipvs, ms);
ms->sync_buff = NULL;
buff = NULL;
}
}
if (!buff) {
buff = ip_vs_sync_buff_create_v0(ipvs, len);
if (!buff) {
spin_unlock_bh(&ipvs->sync_buff_lock);
pr_err("ip_vs_sync_buff_create failed.\n");
return;
}
ms->sync_buff = buff;
}
m = (struct ip_vs_sync_mesg_v0 *) buff->mesg;
s = (struct ip_vs_sync_conn_v0 *) buff->head;
/* copy members */
s->reserved = 0;
s->protocol = cp->protocol;
s->cport = cp->cport;
s->vport = cp->vport;
s->dport = cp->dport;
s->caddr = cp->caddr.ip;
s->vaddr = cp->vaddr.ip;
s->daddr = cp->daddr.ip;
s->flags = htons(cp->flags & ~IP_VS_CONN_F_HASHED);
s->state = htons(cp->state);
if (cp->flags & IP_VS_CONN_F_SEQ_MASK) {
struct ip_vs_sync_conn_options *opt =
(struct ip_vs_sync_conn_options *)&s[1];
memcpy(opt, &cp->in_seq, sizeof(*opt));
}
m->nr_conns++;
m->size = htons(ntohs(m->size) + len);
buff->head += len;
spin_unlock_bh(&ipvs->sync_buff_lock);
/* synchronize its controller if it has */
cp = cp->control;
if (cp) {
if (cp->flags & IP_VS_CONN_F_TEMPLATE)
pkts = atomic_add_return(1, &cp->in_pkts);
else
pkts = sysctl_sync_threshold(ipvs);
ip_vs_sync_conn(ipvs, cp, pkts);
}
}
/*
* Add an ip_vs_conn information into the current sync_buff.
* Called by ip_vs_in.
* Sending Version 1 messages
*/
void ip_vs_sync_conn(struct netns_ipvs *ipvs, struct ip_vs_conn *cp, int pkts)
{
struct ip_vs_sync_mesg *m;
union ip_vs_sync_conn *s;
struct ip_vs_sync_buff *buff;
struct ipvs_master_sync_state *ms;
int id;
__u8 *p;
unsigned int len, pe_name_len, pad;
/* Handle old version of the protocol */
if (sysctl_sync_ver(ipvs) == 0) {
ip_vs_sync_conn_v0(ipvs, cp, pkts);
return;
}
/* Do not sync ONE PACKET */
if (cp->flags & IP_VS_CONN_F_ONE_PACKET)
goto control;
sloop:
if (!ip_vs_sync_conn_needed(ipvs, cp, pkts))
goto control;
/* Sanity checks */
pe_name_len = 0;
if (cp->pe_data_len) {
if (!cp->pe_data || !cp->dest) {
IP_VS_ERR_RL("SYNC, connection pe_data invalid\n");
return;
}
pe_name_len = strnlen(cp->pe->name, IP_VS_PENAME_MAXLEN);
}
spin_lock_bh(&ipvs->sync_buff_lock);
if (!(ipvs->sync_state & IP_VS_STATE_MASTER)) {
spin_unlock_bh(&ipvs->sync_buff_lock);
return;
}
id = select_master_thread_id(ipvs, cp);
ms = &ipvs->ms[id];
#ifdef CONFIG_IP_VS_IPV6
if (cp->af == AF_INET6)
len = sizeof(struct ip_vs_sync_v6);
else
#endif
len = sizeof(struct ip_vs_sync_v4);
if (cp->flags & IP_VS_CONN_F_SEQ_MASK)
len += sizeof(struct ip_vs_sync_conn_options) + 2;
if (cp->pe_data_len)
len += cp->pe_data_len + 2; /* + Param hdr field */
if (pe_name_len)
len += pe_name_len + 2;
/* check if there is a space for this one */
pad = 0;
buff = ms->sync_buff;
if (buff) {
m = buff->mesg;
pad = (4 - (size_t) buff->head) & 3;
/* Send buffer if it is for v0 */
if (buff->head + len + pad > buff->end || m->reserved) {
sb_queue_tail(ipvs, ms);
ms->sync_buff = NULL;
buff = NULL;
pad = 0;
}
}
if (!buff) {
buff = ip_vs_sync_buff_create(ipvs, len);
if (!buff) {
spin_unlock_bh(&ipvs->sync_buff_lock);
pr_err("ip_vs_sync_buff_create failed.\n");
return;
}
ms->sync_buff = buff;
m = buff->mesg;
}
p = buff->head;
buff->head += pad + len;
m->size = htons(ntohs(m->size) + pad + len);
/* Add ev. padding from prev. sync_conn */
while (pad--)
*(p++) = 0;
s = (union ip_vs_sync_conn *)p;
/* Set message type & copy members */
s->v4.type = (cp->af == AF_INET6 ? STYPE_F_INET6 : 0);
s->v4.ver_size = htons(len & SVER_MASK); /* Version 0 */
s->v4.flags = htonl(cp->flags & ~IP_VS_CONN_F_HASHED);
s->v4.state = htons(cp->state);
s->v4.protocol = cp->protocol;
s->v4.cport = cp->cport;
s->v4.vport = cp->vport;
s->v4.dport = cp->dport;
s->v4.fwmark = htonl(cp->fwmark);
s->v4.timeout = htonl(cp->timeout / HZ);
m->nr_conns++;
#ifdef CONFIG_IP_VS_IPV6
if (cp->af == AF_INET6) {
p += sizeof(struct ip_vs_sync_v6);
s->v6.caddr = cp->caddr.in6;
s->v6.vaddr = cp->vaddr.in6;
s->v6.daddr = cp->daddr.in6;
} else
#endif
{
p += sizeof(struct ip_vs_sync_v4); /* options ptr */
s->v4.caddr = cp->caddr.ip;
s->v4.vaddr = cp->vaddr.ip;
s->v4.daddr = cp->daddr.ip;
}
if (cp->flags & IP_VS_CONN_F_SEQ_MASK) {
*(p++) = IPVS_OPT_SEQ_DATA;
*(p++) = sizeof(struct ip_vs_sync_conn_options);
hton_seq((struct ip_vs_seq *)p, &cp->in_seq);
p += sizeof(struct ip_vs_seq);
hton_seq((struct ip_vs_seq *)p, &cp->out_seq);
p += sizeof(struct ip_vs_seq);
}
/* Handle pe data */
if (cp->pe_data_len && cp->pe_data) {
*(p++) = IPVS_OPT_PE_DATA;
*(p++) = cp->pe_data_len;
memcpy(p, cp->pe_data, cp->pe_data_len);
p += cp->pe_data_len;
if (pe_name_len) {
/* Add PE_NAME */
*(p++) = IPVS_OPT_PE_NAME;
*(p++) = pe_name_len;
memcpy(p, cp->pe->name, pe_name_len);
p += pe_name_len;
}
}
spin_unlock_bh(&ipvs->sync_buff_lock);
control:
/* synchronize its controller if it has */
cp = cp->control;
if (!cp)
return;
if (cp->flags & IP_VS_CONN_F_TEMPLATE)
pkts = atomic_add_return(1, &cp->in_pkts);
else
pkts = sysctl_sync_threshold(ipvs);
goto sloop;
}
/*
* fill_param used by version 1
*/
static inline int
ip_vs_conn_fill_param_sync(struct netns_ipvs *ipvs, int af, union ip_vs_sync_conn *sc,
struct ip_vs_conn_param *p,
__u8 *pe_data, unsigned int pe_data_len,
__u8 *pe_name, unsigned int pe_name_len)
{
#ifdef CONFIG_IP_VS_IPV6
if (af == AF_INET6)
ip_vs_conn_fill_param(ipvs, af, sc->v6.protocol,
(const union nf_inet_addr *)&sc->v6.caddr,
sc->v6.cport,
(const union nf_inet_addr *)&sc->v6.vaddr,
sc->v6.vport, p);
else
#endif
ip_vs_conn_fill_param(ipvs, af, sc->v4.protocol,
(const union nf_inet_addr *)&sc->v4.caddr,
sc->v4.cport,
(const union nf_inet_addr *)&sc->v4.vaddr,
sc->v4.vport, p);
/* Handle pe data */
if (pe_data_len) {
if (pe_name_len) {
char buff[IP_VS_PENAME_MAXLEN+1];
memcpy(buff, pe_name, pe_name_len);
buff[pe_name_len]=0;
p->pe = __ip_vs_pe_getbyname(buff);
if (!p->pe) {
IP_VS_DBG(3, "BACKUP, no %s engine found/loaded\n",
buff);
return 1;
}
} else {
IP_VS_ERR_RL("BACKUP, Invalid PE parameters\n");
return 1;
}
p->pe_data = kmemdup(pe_data, pe_data_len, GFP_ATOMIC);
if (!p->pe_data) {
module_put(p->pe->module);
return -ENOMEM;
}
p->pe_data_len = pe_data_len;
}
return 0;
}
/*
* Connection Add / Update.
* Common for version 0 and 1 reception of backup sync_conns.
* Param: ...
* timeout is in sec.
*/
static void ip_vs_proc_conn(struct netns_ipvs *ipvs, struct ip_vs_conn_param *param,
unsigned int flags, unsigned int state,
unsigned int protocol, unsigned int type,
const union nf_inet_addr *daddr, __be16 dport,
unsigned long timeout, __u32 fwmark,
struct ip_vs_sync_conn_options *opt)
{
struct ip_vs_dest *dest;
struct ip_vs_conn *cp;
if (!(flags & IP_VS_CONN_F_TEMPLATE)) {
cp = ip_vs_conn_in_get(param);
if (cp && ((cp->dport != dport) ||
!ip_vs_addr_equal(cp->daf, &cp->daddr, daddr))) {
if (!(flags & IP_VS_CONN_F_INACTIVE)) {
ip_vs_conn_expire_now(cp);
__ip_vs_conn_put(cp);
cp = NULL;
} else {
/* This is the expiration message for the
* connection that was already replaced, so we
* just ignore it.
*/
__ip_vs_conn_put(cp);
kfree(param->pe_data);
return;
}
}
} else {
cp = ip_vs_ct_in_get(param);
}
if (cp) {
/* Free pe_data */
kfree(param->pe_data);
dest = cp->dest;
spin_lock_bh(&cp->lock);
if ((cp->flags ^ flags) & IP_VS_CONN_F_INACTIVE &&
!(flags & IP_VS_CONN_F_TEMPLATE) && dest) {
if (flags & IP_VS_CONN_F_INACTIVE) {
atomic_dec(&dest->activeconns);
atomic_inc(&dest->inactconns);
} else {
atomic_inc(&dest->activeconns);
atomic_dec(&dest->inactconns);
}
}
flags &= IP_VS_CONN_F_BACKUP_UPD_MASK;
flags |= cp->flags & ~IP_VS_CONN_F_BACKUP_UPD_MASK;
cp->flags = flags;
spin_unlock_bh(&cp->lock);
if (!dest)
ip_vs_try_bind_dest(cp);
} else {
/*
* Find the appropriate destination for the connection.
* If it is not found the connection will remain unbound
* but still handled.
*/
rcu_read_lock();
/* This function is only invoked by the synchronization
* code. We do not currently support heterogeneous pools
* with synchronization, so we can make the assumption that
* the svc_af is the same as the dest_af
*/
dest = ip_vs_find_dest(ipvs, type, type, daddr, dport,
param->vaddr, param->vport, protocol,
fwmark, flags);
cp = ip_vs_conn_new(param, type, daddr, dport, flags, dest,
fwmark);
rcu_read_unlock();
if (!cp) {
kfree(param->pe_data);
IP_VS_DBG(2, "BACKUP, add new conn. failed\n");
return;
}
if (!(flags & IP_VS_CONN_F_TEMPLATE))
kfree(param->pe_data);
}
if (opt)
memcpy(&cp->in_seq, opt, sizeof(*opt));
atomic_set(&cp->in_pkts, sysctl_sync_threshold(ipvs));
cp->state = state;
cp->old_state = cp->state;
/*
* For Ver 0 messages style
* - Not possible to recover the right timeout for templates
* - can not find the right fwmark
* virtual service. If needed, we can do it for
* non-fwmark persistent services.
* Ver 1 messages style.
* - No problem.
*/
if (timeout) {
if (timeout > MAX_SCHEDULE_TIMEOUT / HZ)
timeout = MAX_SCHEDULE_TIMEOUT / HZ;
cp->timeout = timeout*HZ;
} else {
struct ip_vs_proto_data *pd;
pd = ip_vs_proto_data_get(ipvs, protocol);
if (!(flags & IP_VS_CONN_F_TEMPLATE) && pd && pd->timeout_table)
cp->timeout = pd->timeout_table[state];
else
cp->timeout = (3*60*HZ);
}
ip_vs_conn_put(cp);
}
/*
* Process received multicast message for Version 0
*/
static void ip_vs_process_message_v0(struct netns_ipvs *ipvs, const char *buffer,
const size_t buflen)
{
struct ip_vs_sync_mesg_v0 *m = (struct ip_vs_sync_mesg_v0 *)buffer;
struct ip_vs_sync_conn_v0 *s;
struct ip_vs_sync_conn_options *opt;
struct ip_vs_protocol *pp;
struct ip_vs_conn_param param;
char *p;
int i;
p = (char *)buffer + sizeof(struct ip_vs_sync_mesg_v0);
for (i=0; i<m->nr_conns; i++) {
unsigned int flags, state;
if (p + SIMPLE_CONN_SIZE > buffer+buflen) {
IP_VS_ERR_RL("BACKUP v0, bogus conn\n");
return;
}
s = (struct ip_vs_sync_conn_v0 *) p;
flags = ntohs(s->flags) | IP_VS_CONN_F_SYNC;
flags &= ~IP_VS_CONN_F_HASHED;
if (flags & IP_VS_CONN_F_SEQ_MASK) {
opt = (struct ip_vs_sync_conn_options *)&s[1];
p += FULL_CONN_SIZE;
if (p > buffer+buflen) {
IP_VS_ERR_RL("BACKUP v0, Dropping buffer bogus conn options\n");
return;
}
} else {
opt = NULL;
p += SIMPLE_CONN_SIZE;
}
state = ntohs(s->state);
if (!(flags & IP_VS_CONN_F_TEMPLATE)) {
pp = ip_vs_proto_get(s->protocol);
if (!pp) {
IP_VS_DBG(2, "BACKUP v0, Unsupported protocol %u\n",
s->protocol);
continue;
}
if (state >= pp->num_states) {
IP_VS_DBG(2, "BACKUP v0, Invalid %s state %u\n",
pp->name, state);
continue;
}
} else {
/* protocol in templates is not used for state/timeout */
if (state > 0) {
IP_VS_DBG(2, "BACKUP v0, Invalid template state %u\n",
state);
state = 0;
}
}
ip_vs_conn_fill_param(ipvs, AF_INET, s->protocol,
(const union nf_inet_addr *)&s->caddr,
s->cport,
(const union nf_inet_addr *)&s->vaddr,
s->vport, &param);
/* Send timeout as Zero */
ip_vs_proc_conn(ipvs, &param, flags, state, s->protocol, AF_INET,
(union nf_inet_addr *)&s->daddr, s->dport,
0, 0, opt);
}
}
/*
* Handle options
*/
static inline int ip_vs_proc_seqopt(__u8 *p, unsigned int plen,
__u32 *opt_flags,
struct ip_vs_sync_conn_options *opt)
{
struct ip_vs_sync_conn_options *topt;
topt = (struct ip_vs_sync_conn_options *)p;
if (plen != sizeof(struct ip_vs_sync_conn_options)) {
IP_VS_DBG(2, "BACKUP, bogus conn options length\n");
return -EINVAL;
}
if (*opt_flags & IPVS_OPT_F_SEQ_DATA) {
IP_VS_DBG(2, "BACKUP, conn options found twice\n");
return -EINVAL;
}
ntoh_seq(&topt->in_seq, &opt->in_seq);
ntoh_seq(&topt->out_seq, &opt->out_seq);
*opt_flags |= IPVS_OPT_F_SEQ_DATA;
return 0;
}
static int ip_vs_proc_str(__u8 *p, unsigned int plen, unsigned int *data_len,
__u8 **data, unsigned int maxlen,
__u32 *opt_flags, __u32 flag)
{
if (plen > maxlen) {
IP_VS_DBG(2, "BACKUP, bogus par.data len > %d\n", maxlen);
return -EINVAL;
}
if (*opt_flags & flag) {
IP_VS_DBG(2, "BACKUP, Par.data found twice 0x%x\n", flag);
return -EINVAL;
}
*data_len = plen;
*data = p;
*opt_flags |= flag;
return 0;
}
/*
* Process a Version 1 sync. connection
*/
static inline int ip_vs_proc_sync_conn(struct netns_ipvs *ipvs, __u8 *p, __u8 *msg_end)
{
struct ip_vs_sync_conn_options opt;
union ip_vs_sync_conn *s;
struct ip_vs_protocol *pp;
struct ip_vs_conn_param param;
__u32 flags;
unsigned int af, state, pe_data_len=0, pe_name_len=0;
__u8 *pe_data=NULL, *pe_name=NULL;
__u32 opt_flags=0;
int retc=0;
s = (union ip_vs_sync_conn *) p;
if (s->v6.type & STYPE_F_INET6) {
#ifdef CONFIG_IP_VS_IPV6
af = AF_INET6;
p += sizeof(struct ip_vs_sync_v6);
#else
IP_VS_DBG(3,"BACKUP, IPv6 msg received, and IPVS is not compiled for IPv6\n");
retc = 10;
goto out;
#endif
} else if (!s->v4.type) {
af = AF_INET;
p += sizeof(struct ip_vs_sync_v4);
} else {
return -10;
}
if (p > msg_end)
return -20;
/* Process optional params check Type & Len. */
while (p < msg_end) {
int ptype;
int plen;
if (p+2 > msg_end)
return -30;
ptype = *(p++);
plen = *(p++);
if (!plen || ((p + plen) > msg_end))
return -40;
/* Handle seq option p = param data */
switch (ptype & ~IPVS_OPT_F_PARAM) {
case IPVS_OPT_SEQ_DATA:
if (ip_vs_proc_seqopt(p, plen, &opt_flags, &opt))
return -50;
break;
case IPVS_OPT_PE_DATA:
if (ip_vs_proc_str(p, plen, &pe_data_len, &pe_data,
IP_VS_PEDATA_MAXLEN, &opt_flags,
IPVS_OPT_F_PE_DATA))
return -60;
break;
case IPVS_OPT_PE_NAME:
if (ip_vs_proc_str(p, plen,&pe_name_len, &pe_name,
IP_VS_PENAME_MAXLEN, &opt_flags,
IPVS_OPT_F_PE_NAME))
return -70;
break;
default:
/* Param data mandatory ? */
if (!(ptype & IPVS_OPT_F_PARAM)) {
IP_VS_DBG(3, "BACKUP, Unknown mandatory param %d found\n",
ptype & ~IPVS_OPT_F_PARAM);
retc = 20;
goto out;
}
}
p += plen; /* Next option */
}
/* Get flags and Mask off unsupported */
flags = ntohl(s->v4.flags) & IP_VS_CONN_F_BACKUP_MASK;
flags |= IP_VS_CONN_F_SYNC;
state = ntohs(s->v4.state);
if (!(flags & IP_VS_CONN_F_TEMPLATE)) {
pp = ip_vs_proto_get(s->v4.protocol);
if (!pp) {
IP_VS_DBG(3,"BACKUP, Unsupported protocol %u\n",
s->v4.protocol);
retc = 30;
goto out;
}
if (state >= pp->num_states) {
IP_VS_DBG(3, "BACKUP, Invalid %s state %u\n",
pp->name, state);
retc = 40;
goto out;
}
} else {
/* protocol in templates is not used for state/timeout */
if (state > 0) {
IP_VS_DBG(3, "BACKUP, Invalid template state %u\n",
state);
state = 0;
}
}
if (ip_vs_conn_fill_param_sync(ipvs, af, s, &param, pe_data,
pe_data_len, pe_name, pe_name_len)) {
retc = 50;
goto out;
}
/* If only IPv4, just silent skip IPv6 */
if (af == AF_INET)
ip_vs_proc_conn(ipvs, &param, flags, state, s->v4.protocol, af,
(union nf_inet_addr *)&s->v4.daddr, s->v4.dport,
ntohl(s->v4.timeout), ntohl(s->v4.fwmark),
(opt_flags & IPVS_OPT_F_SEQ_DATA ? &opt : NULL)
);
#ifdef CONFIG_IP_VS_IPV6
else
ip_vs_proc_conn(ipvs, &param, flags, state, s->v6.protocol, af,
(union nf_inet_addr *)&s->v6.daddr, s->v6.dport,
ntohl(s->v6.timeout), ntohl(s->v6.fwmark),
(opt_flags & IPVS_OPT_F_SEQ_DATA ? &opt : NULL)
);
#endif
ip_vs_pe_put(param.pe);
return 0;
/* Error exit */
out:
IP_VS_DBG(2, "BACKUP, Single msg dropped err:%d\n", retc);
return retc;
}
/*
* Process received multicast message and create the corresponding
* ip_vs_conn entries.
* Handles Version 0 & 1
*/
static void ip_vs_process_message(struct netns_ipvs *ipvs, __u8 *buffer,
const size_t buflen)
{
struct ip_vs_sync_mesg *m2 = (struct ip_vs_sync_mesg *)buffer;
__u8 *p, *msg_end;
int i, nr_conns;
if (buflen < sizeof(struct ip_vs_sync_mesg_v0)) {
IP_VS_DBG(2, "BACKUP, message header too short\n");
return;
}
if (buflen != ntohs(m2->size)) {
IP_VS_DBG(2, "BACKUP, bogus message size\n");
return;
}
/* SyncID sanity check */
if (ipvs->bcfg.syncid != 0 && m2->syncid != ipvs->bcfg.syncid) {
IP_VS_DBG(7, "BACKUP, Ignoring syncid = %d\n", m2->syncid);
return;
}
/* Handle version 1 message */
if ((m2->version == SYNC_PROTO_VER) && (m2->reserved == 0)
&& (m2->spare == 0)) {
msg_end = buffer + sizeof(struct ip_vs_sync_mesg);
nr_conns = m2->nr_conns;
for (i=0; i<nr_conns; i++) {
union ip_vs_sync_conn *s;
unsigned int size;
int retc;
p = msg_end;
if (p + sizeof(s->v4) > buffer+buflen) {
IP_VS_ERR_RL("BACKUP, Dropping buffer, to small\n");
return;
}
s = (union ip_vs_sync_conn *)p;
size = ntohs(s->v4.ver_size) & SVER_MASK;
msg_end = p + size;
/* Basic sanity checks */
if (msg_end > buffer+buflen) {
IP_VS_ERR_RL("BACKUP, Dropping buffer, msg > buffer\n");
return;
}
if (ntohs(s->v4.ver_size) >> SVER_SHIFT) {
IP_VS_ERR_RL("BACKUP, Dropping buffer, Unknown version %d\n",
ntohs(s->v4.ver_size) >> SVER_SHIFT);
return;
}
/* Process a single sync_conn */
retc = ip_vs_proc_sync_conn(ipvs, p, msg_end);
if (retc < 0) {
IP_VS_ERR_RL("BACKUP, Dropping buffer, Err: %d in decoding\n",
retc);
return;
}
/* Make sure we have 32 bit alignment */
msg_end = p + ((size + 3) & ~3);
}
} else {
/* Old type of message */
ip_vs_process_message_v0(ipvs, buffer, buflen);
return;
}
}
/*
* Setup sndbuf (mode=1) or rcvbuf (mode=0)
*/
static void set_sock_size(struct sock *sk, int mode, int val)
{
/* setsockopt(sock, SOL_SOCKET, SO_SNDBUF, &val, sizeof(val)); */
/* setsockopt(sock, SOL_SOCKET, SO_RCVBUF, &val, sizeof(val)); */
lock_sock(sk);
if (mode) {
val = clamp_t(int, val, (SOCK_MIN_SNDBUF + 1) / 2,
sysctl_wmem_max);
sk->sk_sndbuf = val * 2;
sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
} else {
val = clamp_t(int, val, (SOCK_MIN_RCVBUF + 1) / 2,
sysctl_rmem_max);
sk->sk_rcvbuf = val * 2;
sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
}
release_sock(sk);
}
/*
* Setup loopback of outgoing multicasts on a sending socket
*/
static void set_mcast_loop(struct sock *sk, u_char loop)
{
struct inet_sock *inet = inet_sk(sk);
/* setsockopt(sock, SOL_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop)); */
lock_sock(sk);
inet->mc_loop = loop ? 1 : 0;
#ifdef CONFIG_IP_VS_IPV6
if (sk->sk_family == AF_INET6) {
struct ipv6_pinfo *np = inet6_sk(sk);
/* IPV6_MULTICAST_LOOP */
np->mc_loop = loop ? 1 : 0;
}
#endif
release_sock(sk);
}
/*
* Specify TTL for outgoing multicasts on a sending socket
*/
static void set_mcast_ttl(struct sock *sk, u_char ttl)
{
struct inet_sock *inet = inet_sk(sk);
/* setsockopt(sock, SOL_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)); */
lock_sock(sk);
inet->mc_ttl = ttl;
#ifdef CONFIG_IP_VS_IPV6
if (sk->sk_family == AF_INET6) {
struct ipv6_pinfo *np = inet6_sk(sk);
/* IPV6_MULTICAST_HOPS */
np->mcast_hops = ttl;
}
#endif
release_sock(sk);
}
/* Control fragmentation of messages */
static void set_mcast_pmtudisc(struct sock *sk, int val)
{
struct inet_sock *inet = inet_sk(sk);
/* setsockopt(sock, SOL_IP, IP_MTU_DISCOVER, &val, sizeof(val)); */
lock_sock(sk);
inet->pmtudisc = val;
#ifdef CONFIG_IP_VS_IPV6
if (sk->sk_family == AF_INET6) {
struct ipv6_pinfo *np = inet6_sk(sk);
/* IPV6_MTU_DISCOVER */
np->pmtudisc = val;
}
#endif
release_sock(sk);
}
/*
* Specifiy default interface for outgoing multicasts
*/
static int set_mcast_if(struct sock *sk, char *ifname)
{
struct net_device *dev;
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
dev = __dev_get_by_name(net, ifname);
if (!dev)
return -ENODEV;
if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if)
return -EINVAL;
lock_sock(sk);
inet->mc_index = dev->ifindex;
/* inet->mc_addr = 0; */
#ifdef CONFIG_IP_VS_IPV6
if (sk->sk_family == AF_INET6) {
struct ipv6_pinfo *np = inet6_sk(sk);
/* IPV6_MULTICAST_IF */
np->mcast_oif = dev->ifindex;
}
#endif
release_sock(sk);
return 0;
}
/*
* Join a multicast group.
* the group is specified by a class D multicast address 224.0.0.0/8
* in the in_addr structure passed in as a parameter.
*/
static int
join_mcast_group(struct sock *sk, struct in_addr *addr, char *ifname)
{
struct net *net = sock_net(sk);
struct ip_mreqn mreq;
struct net_device *dev;
int ret;
memset(&mreq, 0, sizeof(mreq));
memcpy(&mreq.imr_multiaddr, addr, sizeof(struct in_addr));
dev = __dev_get_by_name(net, ifname);
if (!dev)
return -ENODEV;
if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if)
return -EINVAL;
mreq.imr_ifindex = dev->ifindex;
lock_sock(sk);
ret = ip_mc_join_group(sk, &mreq);
release_sock(sk);
return ret;
}
#ifdef CONFIG_IP_VS_IPV6
static int join_mcast_group6(struct sock *sk, struct in6_addr *addr,
char *ifname)
{
struct net *net = sock_net(sk);
struct net_device *dev;
int ret;
dev = __dev_get_by_name(net, ifname);
if (!dev)
return -ENODEV;
if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if)
return -EINVAL;
lock_sock(sk);
ret = ipv6_sock_mc_join(sk, dev->ifindex, addr);
release_sock(sk);
return ret;
}
#endif
static int bind_mcastif_addr(struct socket *sock, char *ifname)
{
struct net *net = sock_net(sock->sk);
struct net_device *dev;
__be32 addr;
struct sockaddr_in sin;
dev = __dev_get_by_name(net, ifname);
if (!dev)
return -ENODEV;
addr = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
if (!addr)
pr_err("You probably need to specify IP address on "
"multicast interface.\n");
IP_VS_DBG(7, "binding socket with (%s) %pI4\n",
ifname, &addr);
/* Now bind the socket with the address of multicast interface */
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = addr;
sin.sin_port = 0;
return sock->ops->bind(sock, (struct sockaddr*)&sin, sizeof(sin));
}
static void get_mcast_sockaddr(union ipvs_sockaddr *sa, int *salen,
struct ipvs_sync_daemon_cfg *c, int id)
{
if (AF_INET6 == c->mcast_af) {
sa->in6 = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_port = htons(c->mcast_port + id),
};
sa->in6.sin6_addr = c->mcast_group.in6;
*salen = sizeof(sa->in6);
} else {
sa->in = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_port = htons(c->mcast_port + id),
};
sa->in.sin_addr = c->mcast_group.in;
*salen = sizeof(sa->in);
}
}
/*
* Set up sending multicast socket over UDP
*/
static struct socket *make_send_sock(struct netns_ipvs *ipvs, int id)
{
/* multicast addr */
union ipvs_sockaddr mcast_addr;
struct socket *sock;
int result, salen;
/* First create a socket */
result = sock_create_kern(ipvs->net, ipvs->mcfg.mcast_af, SOCK_DGRAM,
IPPROTO_UDP, &sock);
if (result < 0) {
pr_err("Error during creation of socket; terminating\n");
return ERR_PTR(result);
}
result = set_mcast_if(sock->sk, ipvs->mcfg.mcast_ifn);
if (result < 0) {
pr_err("Error setting outbound mcast interface\n");
goto error;
}
set_mcast_loop(sock->sk, 0);
set_mcast_ttl(sock->sk, ipvs->mcfg.mcast_ttl);
/* Allow fragmentation if MTU changes */
set_mcast_pmtudisc(sock->sk, IP_PMTUDISC_DONT);
result = sysctl_sync_sock_size(ipvs);
if (result > 0)
set_sock_size(sock->sk, 1, result);
if (AF_INET == ipvs->mcfg.mcast_af)
result = bind_mcastif_addr(sock, ipvs->mcfg.mcast_ifn);
else
result = 0;
if (result < 0) {
pr_err("Error binding address of the mcast interface\n");
goto error;
}
get_mcast_sockaddr(&mcast_addr, &salen, &ipvs->mcfg, id);
result = sock->ops->connect(sock, (struct sockaddr *) &mcast_addr,
salen, 0);
if (result < 0) {
pr_err("Error connecting to the multicast addr\n");
goto error;
}
return sock;
error:
sock_release(sock);
return ERR_PTR(result);
}
/*
* Set up receiving multicast socket over UDP
*/
static struct socket *make_receive_sock(struct netns_ipvs *ipvs, int id)
{
/* multicast addr */
union ipvs_sockaddr mcast_addr;
struct socket *sock;
int result, salen;
/* First create a socket */
result = sock_create_kern(ipvs->net, ipvs->bcfg.mcast_af, SOCK_DGRAM,
IPPROTO_UDP, &sock);
if (result < 0) {
pr_err("Error during creation of socket; terminating\n");
return ERR_PTR(result);
}
/* it is equivalent to the REUSEADDR option in user-space */
sock->sk->sk_reuse = SK_CAN_REUSE;
result = sysctl_sync_sock_size(ipvs);
if (result > 0)
set_sock_size(sock->sk, 0, result);
get_mcast_sockaddr(&mcast_addr, &salen, &ipvs->bcfg, id);
result = sock->ops->bind(sock, (struct sockaddr *)&mcast_addr, salen);
if (result < 0) {
pr_err("Error binding to the multicast addr\n");
goto error;
}
/* join the multicast group */
#ifdef CONFIG_IP_VS_IPV6
if (ipvs->bcfg.mcast_af == AF_INET6)
result = join_mcast_group6(sock->sk, &mcast_addr.in6.sin6_addr,
ipvs->bcfg.mcast_ifn);
else
#endif
result = join_mcast_group(sock->sk, &mcast_addr.in.sin_addr,
ipvs->bcfg.mcast_ifn);
if (result < 0) {
pr_err("Error joining to the multicast group\n");
goto error;
}
return sock;
error:
sock_release(sock);
return ERR_PTR(result);
}
static int
ip_vs_send_async(struct socket *sock, const char *buffer, const size_t length)
{
struct msghdr msg = {.msg_flags = MSG_DONTWAIT|MSG_NOSIGNAL};
struct kvec iov;
int len;
EnterFunction(7);
iov.iov_base = (void *)buffer;
iov.iov_len = length;
len = kernel_sendmsg(sock, &msg, &iov, 1, (size_t)(length));
LeaveFunction(7);
return len;
}
static int
ip_vs_send_sync_msg(struct socket *sock, struct ip_vs_sync_mesg *msg)
{
int msize;
int ret;
msize = ntohs(msg->size);
ret = ip_vs_send_async(sock, (char *)msg, msize);
if (ret >= 0 || ret == -EAGAIN)
return ret;
pr_err("ip_vs_send_async error %d\n", ret);
return 0;
}
static int
ip_vs_receive(struct socket *sock, char *buffer, const size_t buflen)
{
struct msghdr msg = {NULL,};
struct kvec iov;
int len;
EnterFunction(7);
/* Receive a packet */
iov.iov_base = buffer;
iov.iov_len = (size_t)buflen;
len = kernel_recvmsg(sock, &msg, &iov, 1, buflen, MSG_DONTWAIT);
if (len < 0)
return len;
LeaveFunction(7);
return len;
}
/* Wakeup the master thread for sending */
static void master_wakeup_work_handler(struct work_struct *work)
{
struct ipvs_master_sync_state *ms =
container_of(work, struct ipvs_master_sync_state,
master_wakeup_work.work);
struct netns_ipvs *ipvs = ms->ipvs;
spin_lock_bh(&ipvs->sync_lock);
if (ms->sync_queue_len &&
ms->sync_queue_delay < IPVS_SYNC_WAKEUP_RATE) {
ms->sync_queue_delay = IPVS_SYNC_WAKEUP_RATE;
wake_up_process(ms->master_thread);
}
spin_unlock_bh(&ipvs->sync_lock);
}
/* Get next buffer to send */
static inline struct ip_vs_sync_buff *
next_sync_buff(struct netns_ipvs *ipvs, struct ipvs_master_sync_state *ms)
{
struct ip_vs_sync_buff *sb;
sb = sb_dequeue(ipvs, ms);
if (sb)
return sb;
/* Do not delay entries in buffer for more than 2 seconds */
return get_curr_sync_buff(ipvs, ms, IPVS_SYNC_FLUSH_TIME);
}
static int sync_thread_master(void *data)
{
struct ip_vs_sync_thread_data *tinfo = data;
struct netns_ipvs *ipvs = tinfo->ipvs;
struct ipvs_master_sync_state *ms = &ipvs->ms[tinfo->id];
struct sock *sk = tinfo->sock->sk;
struct ip_vs_sync_buff *sb;
pr_info("sync thread started: state = MASTER, mcast_ifn = %s, "
"syncid = %d, id = %d\n",
ipvs->mcfg.mcast_ifn, ipvs->mcfg.syncid, tinfo->id);
for (;;) {
sb = next_sync_buff(ipvs, ms);
if (unlikely(kthread_should_stop()))
break;
if (!sb) {
schedule_timeout(IPVS_SYNC_CHECK_PERIOD);
continue;
}
while (ip_vs_send_sync_msg(tinfo->sock, sb->mesg) < 0) {
/* (Ab)use interruptible sleep to avoid increasing
* the load avg.
*/
__wait_event_interruptible(*sk_sleep(sk),
sock_writeable(sk) ||
kthread_should_stop());
if (unlikely(kthread_should_stop()))
goto done;
}
ip_vs_sync_buff_release(sb);
}
done:
__set_current_state(TASK_RUNNING);
if (sb)
ip_vs_sync_buff_release(sb);
/* clean up the sync_buff queue */
while ((sb = sb_dequeue(ipvs, ms)))
ip_vs_sync_buff_release(sb);
__set_current_state(TASK_RUNNING);
/* clean up the current sync_buff */
sb = get_curr_sync_buff(ipvs, ms, 0);
if (sb)
ip_vs_sync_buff_release(sb);
/* release the sending multicast socket */
sock_release(tinfo->sock);
kfree(tinfo);
return 0;
}
static int sync_thread_backup(void *data)
{
struct ip_vs_sync_thread_data *tinfo = data;
struct netns_ipvs *ipvs = tinfo->ipvs;
int len;
pr_info("sync thread started: state = BACKUP, mcast_ifn = %s, "
"syncid = %d, id = %d\n",
ipvs->bcfg.mcast_ifn, ipvs->bcfg.syncid, tinfo->id);
while (!kthread_should_stop()) {
wait_event_interruptible(*sk_sleep(tinfo->sock->sk),
!skb_queue_empty(&tinfo->sock->sk->sk_receive_queue)
|| kthread_should_stop());
/* do we have data now? */
while (!skb_queue_empty(&(tinfo->sock->sk->sk_receive_queue))) {
len = ip_vs_receive(tinfo->sock, tinfo->buf,
ipvs->bcfg.sync_maxlen);
if (len <= 0) {
if (len != -EAGAIN)
pr_err("receiving message error\n");
break;
}
ip_vs_process_message(ipvs, tinfo->buf, len);
}
}
/* release the sending multicast socket */
sock_release(tinfo->sock);
kfree(tinfo->buf);
kfree(tinfo);
return 0;
}
int start_sync_thread(struct netns_ipvs *ipvs, struct ipvs_sync_daemon_cfg *c,
int state)
{
struct ip_vs_sync_thread_data *tinfo;
struct task_struct **array = NULL, *task;
struct socket *sock;
struct net_device *dev;
char *name;
int (*threadfn)(void *data);
int id, count, hlen;
int result = -ENOMEM;
u16 mtu, min_mtu;
IP_VS_DBG(7, "%s(): pid %d\n", __func__, task_pid_nr(current));
IP_VS_DBG(7, "Each ip_vs_sync_conn entry needs %Zd bytes\n",
sizeof(struct ip_vs_sync_conn_v0));
if (!ipvs->sync_state) {
count = clamp(sysctl_sync_ports(ipvs), 1, IPVS_SYNC_PORTS_MAX);
ipvs->threads_mask = count - 1;
} else
count = ipvs->threads_mask + 1;
if (c->mcast_af == AF_UNSPEC) {
c->mcast_af = AF_INET;
c->mcast_group.ip = cpu_to_be32(IP_VS_SYNC_GROUP);
}
if (!c->mcast_port)
c->mcast_port = IP_VS_SYNC_PORT;
if (!c->mcast_ttl)
c->mcast_ttl = 1;
dev = __dev_get_by_name(ipvs->net, c->mcast_ifn);
if (!dev) {
pr_err("Unknown mcast interface: %s\n", c->mcast_ifn);
return -ENODEV;
}
hlen = (AF_INET6 == c->mcast_af) ?
sizeof(struct ipv6hdr) + sizeof(struct udphdr) :
sizeof(struct iphdr) + sizeof(struct udphdr);
mtu = (state == IP_VS_STATE_BACKUP) ?
clamp(dev->mtu, 1500U, 65535U) : 1500U;
min_mtu = (state == IP_VS_STATE_BACKUP) ? 1024 : 1;
if (c->sync_maxlen)
c->sync_maxlen = clamp_t(unsigned int,
c->sync_maxlen, min_mtu,
65535 - hlen);
else
c->sync_maxlen = mtu - hlen;
if (state == IP_VS_STATE_MASTER) {
if (ipvs->ms)
return -EEXIST;
ipvs->mcfg = *c;
name = "ipvs-m:%d:%d";
threadfn = sync_thread_master;
} else if (state == IP_VS_STATE_BACKUP) {
if (ipvs->backup_threads)
return -EEXIST;
ipvs->bcfg = *c;
name = "ipvs-b:%d:%d";
threadfn = sync_thread_backup;
} else {
return -EINVAL;
}
if (state == IP_VS_STATE_MASTER) {
struct ipvs_master_sync_state *ms;
ipvs->ms = kzalloc(count * sizeof(ipvs->ms[0]), GFP_KERNEL);
if (!ipvs->ms)
goto out;
ms = ipvs->ms;
for (id = 0; id < count; id++, ms++) {
INIT_LIST_HEAD(&ms->sync_queue);
ms->sync_queue_len = 0;
ms->sync_queue_delay = 0;
INIT_DELAYED_WORK(&ms->master_wakeup_work,
master_wakeup_work_handler);
ms->ipvs = ipvs;
}
} else {
array = kzalloc(count * sizeof(struct task_struct *),
GFP_KERNEL);
if (!array)
goto out;
}
tinfo = NULL;
for (id = 0; id < count; id++) {
if (state == IP_VS_STATE_MASTER)
sock = make_send_sock(ipvs, id);
else
sock = make_receive_sock(ipvs, id);
if (IS_ERR(sock)) {
result = PTR_ERR(sock);
goto outtinfo;
}
tinfo = kmalloc(sizeof(*tinfo), GFP_KERNEL);
if (!tinfo)
goto outsocket;
tinfo->ipvs = ipvs;
tinfo->sock = sock;
if (state == IP_VS_STATE_BACKUP) {
tinfo->buf = kmalloc(ipvs->bcfg.sync_maxlen,
GFP_KERNEL);
if (!tinfo->buf)
goto outtinfo;
} else {
tinfo->buf = NULL;
}
tinfo->id = id;
task = kthread_run(threadfn, tinfo, name, ipvs->gen, id);
if (IS_ERR(task)) {
result = PTR_ERR(task);
goto outtinfo;
}
tinfo = NULL;
if (state == IP_VS_STATE_MASTER)
ipvs->ms[id].master_thread = task;
else
array[id] = task;
}
/* mark as active */
if (state == IP_VS_STATE_BACKUP)
ipvs->backup_threads = array;
spin_lock_bh(&ipvs->sync_buff_lock);
ipvs->sync_state |= state;
spin_unlock_bh(&ipvs->sync_buff_lock);
/* increase the module use count */
ip_vs_use_count_inc();
return 0;
outsocket:
sock_release(sock);
outtinfo:
if (tinfo) {
sock_release(tinfo->sock);
kfree(tinfo->buf);
kfree(tinfo);
}
count = id;
while (count-- > 0) {
if (state == IP_VS_STATE_MASTER)
kthread_stop(ipvs->ms[count].master_thread);
else
kthread_stop(array[count]);
}
kfree(array);
out:
if (!(ipvs->sync_state & IP_VS_STATE_MASTER)) {
kfree(ipvs->ms);
ipvs->ms = NULL;
}
return result;
}
int stop_sync_thread(struct netns_ipvs *ipvs, int state)
{
struct task_struct **array;
int id;
int retc = -EINVAL;
IP_VS_DBG(7, "%s(): pid %d\n", __func__, task_pid_nr(current));
if (state == IP_VS_STATE_MASTER) {
if (!ipvs->ms)
return -ESRCH;
/*
* The lock synchronizes with sb_queue_tail(), so that we don't
* add sync buffers to the queue, when we are already in
* progress of stopping the master sync daemon.
*/
spin_lock_bh(&ipvs->sync_buff_lock);
spin_lock(&ipvs->sync_lock);
ipvs->sync_state &= ~IP_VS_STATE_MASTER;
spin_unlock(&ipvs->sync_lock);
spin_unlock_bh(&ipvs->sync_buff_lock);
retc = 0;
for (id = ipvs->threads_mask; id >= 0; id--) {
struct ipvs_master_sync_state *ms = &ipvs->ms[id];
int ret;
pr_info("stopping master sync thread %d ...\n",
task_pid_nr(ms->master_thread));
cancel_delayed_work_sync(&ms->master_wakeup_work);
ret = kthread_stop(ms->master_thread);
if (retc >= 0)
retc = ret;
}
kfree(ipvs->ms);
ipvs->ms = NULL;
} else if (state == IP_VS_STATE_BACKUP) {
if (!ipvs->backup_threads)
return -ESRCH;
ipvs->sync_state &= ~IP_VS_STATE_BACKUP;
array = ipvs->backup_threads;
retc = 0;
for (id = ipvs->threads_mask; id >= 0; id--) {
int ret;
pr_info("stopping backup sync thread %d ...\n",
task_pid_nr(array[id]));
ret = kthread_stop(array[id]);
if (retc >= 0)
retc = ret;
}
kfree(array);
ipvs->backup_threads = NULL;
}
/* decrease the module use count */
ip_vs_use_count_dec();
return retc;
}
/*
* Initialize data struct for each netns
*/
int __net_init ip_vs_sync_net_init(struct netns_ipvs *ipvs)
{
__mutex_init(&ipvs->sync_mutex, "ipvs->sync_mutex", &__ipvs_sync_key);
spin_lock_init(&ipvs->sync_lock);
spin_lock_init(&ipvs->sync_buff_lock);
return 0;
}
void ip_vs_sync_net_cleanup(struct netns_ipvs *ipvs)
{
int retc;
mutex_lock(&ipvs->sync_mutex);
retc = stop_sync_thread(ipvs, IP_VS_STATE_MASTER);
if (retc && retc != -ESRCH)
pr_err("Failed to stop Master Daemon\n");
retc = stop_sync_thread(ipvs, IP_VS_STATE_BACKUP);
if (retc && retc != -ESRCH)
pr_err("Failed to stop Backup Daemon\n");
mutex_unlock(&ipvs->sync_mutex);
}