blob: ba57e9546f72f0bf634bb4392c349e4f58a37aef [file] [log] [blame]
/*
* Copyright 2003 Digi International (www.digi.com)
* Scott H Kilau <Scott_Kilau at digi dot com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/sched.h> /* For jiffies, task states */
#include <linux/interrupt.h> /* For tasklet and interrupt structs/defines */
#include <linux/delay.h> /* For udelay */
#include <linux/io.h> /* For read[bwl]/write[bwl] */
#include <linux/serial.h> /* For struct async_serial */
#include <linux/serial_reg.h> /* For the various UART offsets */
#include "dgnc_driver.h" /* Driver main header file */
#include "dgnc_neo.h" /* Our header file */
#include "dgnc_tty.h"
static inline void neo_parse_lsr(struct dgnc_board *brd, uint port);
static inline void neo_parse_isr(struct dgnc_board *brd, uint port);
static void neo_copy_data_from_uart_to_queue(struct channel_t *ch);
static inline void neo_clear_break(struct channel_t *ch, int force);
static inline void neo_set_cts_flow_control(struct channel_t *ch);
static inline void neo_set_rts_flow_control(struct channel_t *ch);
static inline void neo_set_ixon_flow_control(struct channel_t *ch);
static inline void neo_set_ixoff_flow_control(struct channel_t *ch);
static inline void neo_set_no_output_flow_control(struct channel_t *ch);
static inline void neo_set_no_input_flow_control(struct channel_t *ch);
static inline void neo_set_new_start_stop_chars(struct channel_t *ch);
static void neo_parse_modem(struct channel_t *ch, unsigned char signals);
static void neo_tasklet(unsigned long data);
static void neo_vpd(struct dgnc_board *brd);
static void neo_uart_init(struct channel_t *ch);
static void neo_uart_off(struct channel_t *ch);
static int neo_drain(struct tty_struct *tty, uint seconds);
static void neo_param(struct tty_struct *tty);
static void neo_assert_modem_signals(struct channel_t *ch);
static void neo_flush_uart_write(struct channel_t *ch);
static void neo_flush_uart_read(struct channel_t *ch);
static void neo_disable_receiver(struct channel_t *ch);
static void neo_enable_receiver(struct channel_t *ch);
static void neo_send_break(struct channel_t *ch, int msecs);
static void neo_send_start_character(struct channel_t *ch);
static void neo_send_stop_character(struct channel_t *ch);
static void neo_copy_data_from_queue_to_uart(struct channel_t *ch);
static uint neo_get_uart_bytes_left(struct channel_t *ch);
static void neo_send_immediate_char(struct channel_t *ch, unsigned char c);
static irqreturn_t neo_intr(int irq, void *voidbrd);
struct board_ops dgnc_neo_ops = {
.tasklet = neo_tasklet,
.intr = neo_intr,
.uart_init = neo_uart_init,
.uart_off = neo_uart_off,
.drain = neo_drain,
.param = neo_param,
.vpd = neo_vpd,
.assert_modem_signals = neo_assert_modem_signals,
.flush_uart_write = neo_flush_uart_write,
.flush_uart_read = neo_flush_uart_read,
.disable_receiver = neo_disable_receiver,
.enable_receiver = neo_enable_receiver,
.send_break = neo_send_break,
.send_start_character = neo_send_start_character,
.send_stop_character = neo_send_stop_character,
.copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
.get_uart_bytes_left = neo_get_uart_bytes_left,
.send_immediate_char = neo_send_immediate_char
};
/*
* This function allows calls to ensure that all outstanding
* PCI writes have been completed, by doing a PCI read against
* a non-destructive, read-only location on the Neo card.
*
* In this case, we are reading the DVID (Read-only Device Identification)
* value of the Neo card.
*/
static inline void neo_pci_posting_flush(struct dgnc_board *bd)
{
readb(bd->re_map_membase + 0x8D);
}
static inline void neo_set_cts_flow_control(struct channel_t *ch)
{
unsigned char ier = readb(&ch->ch_neo_uart->ier);
unsigned char efr = readb(&ch->ch_neo_uart->efr);
/* Turn on auto CTS flow control */
#if 1
ier |= UART_17158_IER_CTSDSR;
#else
ier &= ~(UART_17158_IER_CTSDSR);
#endif
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
/* Turn off auto Xon flow control */
efr &= ~UART_17158_EFR_IXON;
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY,
&ch->ch_neo_uart->fctr);
/* Feed the UART our trigger levels */
writeb(8, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 8;
writeb(ier, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
static inline void neo_set_rts_flow_control(struct channel_t *ch)
{
unsigned char ier = readb(&ch->ch_neo_uart->ier);
unsigned char efr = readb(&ch->ch_neo_uart->efr);
/* Turn on auto RTS flow control */
#if 1
ier |= UART_17158_IER_RTSDTR;
#else
ier &= ~(UART_17158_IER_RTSDTR);
#endif
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
/* Turn off auto Xoff flow control */
ier &= ~UART_17158_IER_XOFF;
efr &= ~UART_17158_EFR_IXOFF;
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY,
&ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 4;
writeb(32, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 32;
writeb(ier, &ch->ch_neo_uart->ier);
/*
* From the Neo UART spec sheet:
* The auto RTS/DTR function must be started by asserting
* RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
* it is enabled.
*/
ch->ch_mostat |= UART_MCR_RTS;
neo_pci_posting_flush(ch->ch_bd);
}
static inline void neo_set_ixon_flow_control(struct channel_t *ch)
{
unsigned char ier = readb(&ch->ch_neo_uart->ier);
unsigned char efr = readb(&ch->ch_neo_uart->efr);
/* Turn off auto CTS flow control */
ier &= ~UART_17158_IER_CTSDSR;
efr &= ~UART_17158_EFR_CTSDSR;
/* Turn on auto Xon flow control */
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY,
&ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 4;
writeb(32, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 32;
/* Tell UART what start/stop chars it should be looking for */
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
writeb(0, &ch->ch_neo_uart->xonchar2);
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
writeb(0, &ch->ch_neo_uart->xoffchar2);
writeb(ier, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
static inline void neo_set_ixoff_flow_control(struct channel_t *ch)
{
unsigned char ier = readb(&ch->ch_neo_uart->ier);
unsigned char efr = readb(&ch->ch_neo_uart->efr);
/* Turn off auto RTS flow control */
ier &= ~UART_17158_IER_RTSDTR;
efr &= ~UART_17158_EFR_RTSDTR;
/* Turn on auto Xoff flow control */
ier |= UART_17158_IER_XOFF;
efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY,
&ch->ch_neo_uart->fctr);
writeb(8, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 8;
/* Tell UART what start/stop chars it should be looking for */
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
writeb(0, &ch->ch_neo_uart->xonchar2);
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
writeb(0, &ch->ch_neo_uart->xoffchar2);
writeb(ier, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
static inline void neo_set_no_input_flow_control(struct channel_t *ch)
{
unsigned char ier = readb(&ch->ch_neo_uart->ier);
unsigned char efr = readb(&ch->ch_neo_uart->efr);
/* Turn off auto RTS flow control */
ier &= ~UART_17158_IER_RTSDTR;
efr &= ~UART_17158_EFR_RTSDTR;
/* Turn off auto Xoff flow control */
ier &= ~UART_17158_IER_XOFF;
if (ch->ch_c_iflag & IXON)
efr &= ~(UART_17158_EFR_IXOFF);
else
efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY,
&ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 0;
writeb(16, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 16;
writeb(16, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 16;
writeb(ier, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
static inline void neo_set_no_output_flow_control(struct channel_t *ch)
{
unsigned char ier = readb(&ch->ch_neo_uart->ier);
unsigned char efr = readb(&ch->ch_neo_uart->efr);
/* Turn off auto CTS flow control */
ier &= ~UART_17158_IER_CTSDSR;
efr &= ~UART_17158_EFR_CTSDSR;
/* Turn off auto Xon flow control */
if (ch->ch_c_iflag & IXOFF)
efr &= ~UART_17158_EFR_IXON;
else
efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
/* Why? Becuz Exar's spec says we have to zero it out before setting it */
writeb(0, &ch->ch_neo_uart->efr);
/* Turn on UART enhanced bits */
writeb(efr, &ch->ch_neo_uart->efr);
/* Turn on table D, with 8 char hi/low watermarks */
writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY,
&ch->ch_neo_uart->fctr);
ch->ch_r_watermark = 0;
writeb(16, &ch->ch_neo_uart->tfifo);
ch->ch_t_tlevel = 16;
writeb(16, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 16;
writeb(ier, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
/* change UARTs start/stop chars */
static inline void neo_set_new_start_stop_chars(struct channel_t *ch)
{
/* if hardware flow control is set, then skip this whole thing */
if (ch->ch_digi.digi_flags & (CTSPACE | RTSPACE) ||
ch->ch_c_cflag & CRTSCTS)
return;
/* Tell UART what start/stop chars it should be looking for */
writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
writeb(0, &ch->ch_neo_uart->xonchar2);
writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
writeb(0, &ch->ch_neo_uart->xoffchar2);
neo_pci_posting_flush(ch->ch_bd);
}
/*
* No locks are assumed to be held when calling this function.
*/
static inline void neo_clear_break(struct channel_t *ch, int force)
{
unsigned long flags;
spin_lock_irqsave(&ch->ch_lock, flags);
/* Bail if we aren't currently sending a break. */
if (!ch->ch_stop_sending_break) {
spin_unlock_irqrestore(&ch->ch_lock, flags);
return;
}
/* Turn break off, and unset some variables */
if (ch->ch_flags & CH_BREAK_SENDING) {
if (force ||
time_after_eq(jiffies, ch->ch_stop_sending_break)) {
unsigned char temp = readb(&ch->ch_neo_uart->lcr);
writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
neo_pci_posting_flush(ch->ch_bd);
ch->ch_flags &= ~(CH_BREAK_SENDING);
ch->ch_stop_sending_break = 0;
}
}
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/*
* Parse the ISR register.
*/
static inline void neo_parse_isr(struct dgnc_board *brd, uint port)
{
struct channel_t *ch;
unsigned char isr;
unsigned char cause;
unsigned long flags;
ch = brd->channels[port];
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
/* Here we try to figure out what caused the interrupt to happen */
while (1) {
isr = readb(&ch->ch_neo_uart->isr_fcr);
/* Bail if no pending interrupt */
if (isr & UART_IIR_NO_INT)
break;
/*
* Yank off the upper 2 bits,
* which just show that the FIFO's are enabled.
*/
isr &= ~(UART_17158_IIR_FIFO_ENABLED);
if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
/* Read data from uart -> queue */
brd->intr_rx++;
ch->ch_intr_rx++;
neo_copy_data_from_uart_to_queue(ch);
/* Call our tty layer to enforce queue flow control if needed. */
spin_lock_irqsave(&ch->ch_lock, flags);
dgnc_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
if (isr & UART_IIR_THRI) {
brd->intr_tx++;
ch->ch_intr_tx++;
/* Transfer data (if any) from Write Queue -> UART. */
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
spin_unlock_irqrestore(&ch->ch_lock, flags);
neo_copy_data_from_queue_to_uart(ch);
}
if (isr & UART_17158_IIR_XONXOFF) {
cause = readb(&ch->ch_neo_uart->xoffchar1);
/*
* Since the UART detected either an XON or
* XOFF match, we need to figure out which
* one it was, so we can suspend or resume data flow.
*/
if (cause == UART_17158_XON_DETECT) {
/* Is output stopped right now, if so, resume it */
if (brd->channels[port]->ch_flags & CH_STOP) {
spin_lock_irqsave(&ch->ch_lock,
flags);
ch->ch_flags &= ~(CH_STOP);
spin_unlock_irqrestore(&ch->ch_lock,
flags);
}
} else if (cause == UART_17158_XOFF_DETECT) {
if (!(brd->channels[port]->ch_flags & CH_STOP)) {
spin_lock_irqsave(&ch->ch_lock,
flags);
ch->ch_flags |= CH_STOP;
spin_unlock_irqrestore(&ch->ch_lock,
flags);
}
}
}
if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
/*
* If we get here, this means the hardware is doing auto flow control.
* Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
*/
brd->intr_modem++;
ch->ch_intr_modem++;
cause = readb(&ch->ch_neo_uart->mcr);
/* Which pin is doing auto flow? RTS or DTR? */
if ((cause & 0x4) == 0) {
if (cause & UART_MCR_RTS) {
spin_lock_irqsave(&ch->ch_lock,
flags);
ch->ch_mostat |= UART_MCR_RTS;
spin_unlock_irqrestore(&ch->ch_lock,
flags);
} else {
spin_lock_irqsave(&ch->ch_lock,
flags);
ch->ch_mostat &= ~(UART_MCR_RTS);
spin_unlock_irqrestore(&ch->ch_lock,
flags);
}
} else {
if (cause & UART_MCR_DTR) {
spin_lock_irqsave(&ch->ch_lock,
flags);
ch->ch_mostat |= UART_MCR_DTR;
spin_unlock_irqrestore(&ch->ch_lock,
flags);
} else {
spin_lock_irqsave(&ch->ch_lock,
flags);
ch->ch_mostat &= ~(UART_MCR_DTR);
spin_unlock_irqrestore(&ch->ch_lock,
flags);
}
}
}
/* Parse any modem signal changes */
neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
}
}
static inline void neo_parse_lsr(struct dgnc_board *brd, uint port)
{
struct channel_t *ch;
int linestatus;
unsigned long flags;
/*
* Check to make sure it didn't receive interrupt with a null board
* associated or a board pointer that wasn't ours.
*/
if (!brd || brd->magic != DGNC_BOARD_MAGIC)
return;
if (port >= brd->maxports)
return;
ch = brd->channels[port];
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
linestatus = readb(&ch->ch_neo_uart->lsr);
ch->ch_cached_lsr |= linestatus;
if (ch->ch_cached_lsr & UART_LSR_DR) {
brd->intr_rx++;
ch->ch_intr_rx++;
/* Read data from uart -> queue */
neo_copy_data_from_uart_to_queue(ch);
spin_lock_irqsave(&ch->ch_lock, flags);
dgnc_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/*
* The next 3 tests should *NOT* happen, as the above test
* should encapsulate all 3... At least, thats what Exar says.
*/
if (linestatus & UART_LSR_PE)
ch->ch_err_parity++;
if (linestatus & UART_LSR_FE)
ch->ch_err_frame++;
if (linestatus & UART_LSR_BI)
ch->ch_err_break++;
if (linestatus & UART_LSR_OE) {
/*
* Rx Oruns. Exar says that an orun will NOT corrupt
* the FIFO. It will just replace the holding register
* with this new data byte. So basically just ignore this.
* Probably we should eventually have an orun stat in our driver...
*/
ch->ch_err_overrun++;
}
if (linestatus & UART_LSR_THRE) {
brd->intr_tx++;
ch->ch_intr_tx++;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
spin_unlock_irqrestore(&ch->ch_lock, flags);
/* Transfer data (if any) from Write Queue -> UART. */
neo_copy_data_from_queue_to_uart(ch);
} else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
brd->intr_tx++;
ch->ch_intr_tx++;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
spin_unlock_irqrestore(&ch->ch_lock, flags);
/* Transfer data (if any) from Write Queue -> UART. */
neo_copy_data_from_queue_to_uart(ch);
}
}
/*
* neo_param()
* Send any/all changes to the line to the UART.
*/
static void neo_param(struct tty_struct *tty)
{
unsigned char lcr = 0;
unsigned char uart_lcr = 0;
unsigned char ier = 0;
unsigned char uart_ier = 0;
uint baud = 9600;
int quot = 0;
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
if (!tty || tty->magic != TTY_MAGIC)
return;
un = (struct un_t *)tty->driver_data;
if (!un || un->magic != DGNC_UNIT_MAGIC)
return;
ch = un->un_ch;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
bd = ch->ch_bd;
if (!bd || bd->magic != DGNC_BOARD_MAGIC)
return;
/*
* If baud rate is zero, flush queues, and set mval to drop DTR.
*/
if ((ch->ch_c_cflag & (CBAUD)) == 0) {
ch->ch_r_head = 0;
ch->ch_r_tail = 0;
ch->ch_e_head = 0;
ch->ch_e_tail = 0;
ch->ch_w_head = 0;
ch->ch_w_tail = 0;
neo_flush_uart_write(ch);
neo_flush_uart_read(ch);
/* The baudrate is B0 so all modem lines are to be dropped. */
ch->ch_flags |= (CH_BAUD0);
ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
neo_assert_modem_signals(ch);
ch->ch_old_baud = 0;
return;
} else if (ch->ch_custom_speed) {
baud = ch->ch_custom_speed;
/* Handle transition from B0 */
if (ch->ch_flags & CH_BAUD0) {
ch->ch_flags &= ~(CH_BAUD0);
/*
* Bring back up RTS and DTR...
* Also handle RTS or DTR toggle if set.
*/
if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE))
ch->ch_mostat |= (UART_MCR_RTS);
if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE))
ch->ch_mostat |= (UART_MCR_DTR);
}
} else {
int iindex = 0;
int jindex = 0;
ulong bauds[4][16] = {
{ /* slowbaud */
0, 50, 75, 110,
134, 150, 200, 300,
600, 1200, 1800, 2400,
4800, 9600, 19200, 38400 },
{ /* slowbaud & CBAUDEX */
0, 57600, 115200, 230400,
460800, 150, 200, 921600,
600, 1200, 1800, 2400,
4800, 9600, 19200, 38400 },
{ /* fastbaud */
0, 57600, 76800, 115200,
131657, 153600, 230400, 460800,
921600, 1200, 1800, 2400,
4800, 9600, 19200, 38400 },
{ /* fastbaud & CBAUDEX */
0, 57600, 115200, 230400,
460800, 150, 200, 921600,
600, 1200, 1800, 2400,
4800, 9600, 19200, 38400 }
};
/* Only use the TXPrint baud rate if the terminal unit is NOT open */
if (!(ch->ch_tun.un_flags & UN_ISOPEN) &&
(un->un_type == DGNC_PRINT))
baud = C_BAUD(ch->ch_pun.un_tty) & 0xff;
else
baud = C_BAUD(ch->ch_tun.un_tty) & 0xff;
if (ch->ch_c_cflag & CBAUDEX)
iindex = 1;
if (ch->ch_digi.digi_flags & DIGI_FAST)
iindex += 2;
jindex = baud;
if ((iindex >= 0) && (iindex < 4) &&
(jindex >= 0) && (jindex < 16))
baud = bauds[iindex][jindex];
else
baud = 0;
if (baud == 0)
baud = 9600;
/* Handle transition from B0 */
if (ch->ch_flags & CH_BAUD0) {
ch->ch_flags &= ~(CH_BAUD0);
/*
* Bring back up RTS and DTR...
* Also handle RTS or DTR toggle if set.
*/
if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE))
ch->ch_mostat |= (UART_MCR_RTS);
if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE))
ch->ch_mostat |= (UART_MCR_DTR);
}
}
if (ch->ch_c_cflag & PARENB)
lcr |= UART_LCR_PARITY;
if (!(ch->ch_c_cflag & PARODD))
lcr |= UART_LCR_EPAR;
/*
* Not all platforms support mark/space parity,
* so this will hide behind an ifdef.
*/
#ifdef CMSPAR
if (ch->ch_c_cflag & CMSPAR)
lcr |= UART_LCR_SPAR;
#endif
if (ch->ch_c_cflag & CSTOPB)
lcr |= UART_LCR_STOP;
switch (ch->ch_c_cflag & CSIZE) {
case CS5:
lcr |= UART_LCR_WLEN5;
break;
case CS6:
lcr |= UART_LCR_WLEN6;
break;
case CS7:
lcr |= UART_LCR_WLEN7;
break;
case CS8:
default:
lcr |= UART_LCR_WLEN8;
break;
}
uart_ier = readb(&ch->ch_neo_uart->ier);
ier = uart_ier;
uart_lcr = readb(&ch->ch_neo_uart->lcr);
if (baud == 0)
baud = 9600;
quot = ch->ch_bd->bd_dividend / baud;
if (quot != 0 && ch->ch_old_baud != baud) {
ch->ch_old_baud = baud;
writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
writeb((quot >> 8), &ch->ch_neo_uart->ier);
writeb(lcr, &ch->ch_neo_uart->lcr);
}
if (uart_lcr != lcr)
writeb(lcr, &ch->ch_neo_uart->lcr);
if (ch->ch_c_cflag & CREAD)
ier |= (UART_IER_RDI | UART_IER_RLSI);
else
ier &= ~(UART_IER_RDI | UART_IER_RLSI);
/*
* Have the UART interrupt on modem signal changes ONLY when
* we are in hardware flow control mode, or CLOCAL/FORCEDCD is not set.
*/
if ((ch->ch_digi.digi_flags & CTSPACE) ||
(ch->ch_digi.digi_flags & RTSPACE) ||
(ch->ch_c_cflag & CRTSCTS) ||
!(ch->ch_digi.digi_flags & DIGI_FORCEDCD) ||
!(ch->ch_c_cflag & CLOCAL))
ier |= UART_IER_MSI;
else
ier &= ~UART_IER_MSI;
ier |= UART_IER_THRI;
if (ier != uart_ier)
writeb(ier, &ch->ch_neo_uart->ier);
/* Set new start/stop chars */
neo_set_new_start_stop_chars(ch);
if (ch->ch_digi.digi_flags & CTSPACE || ch->ch_c_cflag & CRTSCTS) {
neo_set_cts_flow_control(ch);
} else if (ch->ch_c_iflag & IXON) {
/* If start/stop is set to disable, then we should disable flow control */
if ((ch->ch_startc == _POSIX_VDISABLE) ||
(ch->ch_stopc == _POSIX_VDISABLE))
neo_set_no_output_flow_control(ch);
else
neo_set_ixon_flow_control(ch);
} else {
neo_set_no_output_flow_control(ch);
}
if (ch->ch_digi.digi_flags & RTSPACE || ch->ch_c_cflag & CRTSCTS) {
neo_set_rts_flow_control(ch);
} else if (ch->ch_c_iflag & IXOFF) {
/* If start/stop is set to disable, then we should disable flow control */
if ((ch->ch_startc == _POSIX_VDISABLE) ||
(ch->ch_stopc == _POSIX_VDISABLE))
neo_set_no_input_flow_control(ch);
else
neo_set_ixoff_flow_control(ch);
} else {
neo_set_no_input_flow_control(ch);
}
/*
* Adjust the RX FIFO Trigger level if baud is less than 9600.
* Not exactly elegant, but this is needed because of the Exar chip's
* delay on firing off the RX FIFO interrupt on slower baud rates.
*/
if (baud < 9600) {
writeb(1, &ch->ch_neo_uart->rfifo);
ch->ch_r_tlevel = 1;
}
neo_assert_modem_signals(ch);
/* Get current status of the modem signals now */
neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
}
/*
* Our board poller function.
*/
static void neo_tasklet(unsigned long data)
{
struct dgnc_board *bd = (struct dgnc_board *)data;
struct channel_t *ch;
unsigned long flags;
int i;
int state = 0;
int ports = 0;
if (!bd || bd->magic != DGNC_BOARD_MAGIC)
return;
/* Cache a couple board values */
spin_lock_irqsave(&bd->bd_lock, flags);
state = bd->state;
ports = bd->nasync;
spin_unlock_irqrestore(&bd->bd_lock, flags);
/*
* Do NOT allow the interrupt routine to read the intr registers
* Until we release this lock.
*/
spin_lock_irqsave(&bd->bd_intr_lock, flags);
/*
* If board is ready, parse deeper to see if there is anything to do.
*/
if ((state == BOARD_READY) && (ports > 0)) {
/* Loop on each port */
for (i = 0; i < ports; i++) {
ch = bd->channels[i];
/* Just being careful... */
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
continue;
/*
* NOTE: Remember you CANNOT hold any channel
* locks when calling the input routine.
*
* During input processing, its possible we
* will call the Linux ld, which might in turn,
* do a callback right back into us, resulting
* in us trying to grab the channel lock twice!
*/
dgnc_input(ch);
/*
* Channel lock is grabbed and then released
* inside both of these routines, but neither
* call anything else that could call back into us.
*/
neo_copy_data_from_queue_to_uart(ch);
dgnc_wakeup_writes(ch);
/*
* Call carrier carrier function, in case something
* has changed.
*/
dgnc_carrier(ch);
/*
* Check to see if we need to turn off a sending break.
* The timing check is done inside clear_break()
*/
if (ch->ch_stop_sending_break)
neo_clear_break(ch, 0);
}
}
/* Allow interrupt routine to access the interrupt register again */
spin_unlock_irqrestore(&bd->bd_intr_lock, flags);
}
/*
* dgnc_neo_intr()
*
* Neo specific interrupt handler.
*/
static irqreturn_t neo_intr(int irq, void *voidbrd)
{
struct dgnc_board *brd = voidbrd;
struct channel_t *ch;
int port = 0;
int type;
u32 uart_poll;
unsigned long flags;
unsigned long flags2;
/*
* Check to make sure it didn't receive interrupt with a null board
* associated or a board pointer that wasn't ours.
*/
if (!brd || brd->magic != DGNC_BOARD_MAGIC)
return IRQ_NONE;
brd->intr_count++;
/* Lock out the slow poller from running on this board. */
spin_lock_irqsave(&brd->bd_intr_lock, flags);
/*
* Read in "extended" IRQ information from the 32bit Neo register.
* Bits 0-7: What port triggered the interrupt.
* Bits 8-31: Each 3bits indicate what type of interrupt occurred.
*/
uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
/*
* If 0, no interrupts pending.
* This can happen if the IRQ is shared among a couple Neo/Classic boards.
*/
if (!uart_poll) {
spin_unlock_irqrestore(&brd->bd_intr_lock, flags);
return IRQ_NONE;
}
/* At this point, we have at least SOMETHING to service, dig further... */
/* Loop on each port */
while ((uart_poll & 0xff) != 0) {
type = uart_poll >> (8 + (port * 3));
type &= 0x7;
uart_poll &= ~(0x01 << port);
/* Switch on type of interrupt we have */
switch (type) {
case UART_17158_RXRDY_TIMEOUT:
/*
* RXRDY Time-out is cleared by reading data in the
* RX FIFO until it falls below the trigger level.
*/
/* Verify the port is in range. */
if (port >= brd->nasync)
break;
ch = brd->channels[port];
neo_copy_data_from_uart_to_queue(ch);
/* Call our tty layer to enforce queue flow control if needed. */
spin_lock_irqsave(&ch->ch_lock, flags2);
dgnc_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags2);
break;
case UART_17158_RX_LINE_STATUS:
/*
* RXRDY and RX LINE Status (logic OR of LSR[4:1])
*/
neo_parse_lsr(brd, port);
break;
case UART_17158_TXRDY:
/*
* TXRDY interrupt clears after reading ISR register for the UART channel.
*/
/*
* Yes, this is odd...
* Why would I check EVERY possibility of type of
* interrupt, when we know its TXRDY???
* Becuz for some reason, even tho we got triggered for TXRDY,
* it seems to be occasionally wrong. Instead of TX, which
* it should be, I was getting things like RXDY too. Weird.
*/
neo_parse_isr(brd, port);
break;
case UART_17158_MSR:
/*
* MSR or flow control was seen.
*/
neo_parse_isr(brd, port);
break;
default:
/*
* The UART triggered us with a bogus interrupt type.
* It appears the Exar chip, when REALLY bogged down, will throw
* these once and awhile.
* Its harmless, just ignore it and move on.
*/
break;
}
port++;
}
/*
* Schedule tasklet to more in-depth servicing at a better time.
*/
tasklet_schedule(&brd->helper_tasklet);
spin_unlock_irqrestore(&brd->bd_intr_lock, flags);
return IRQ_HANDLED;
}
/*
* Neo specific way of turning off the receiver.
* Used as a way to enforce queue flow control when in
* hardware flow control mode.
*/
static void neo_disable_receiver(struct channel_t *ch)
{
unsigned char tmp = readb(&ch->ch_neo_uart->ier);
tmp &= ~(UART_IER_RDI);
writeb(tmp, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
/*
* Neo specific way of turning on the receiver.
* Used as a way to un-enforce queue flow control when in
* hardware flow control mode.
*/
static void neo_enable_receiver(struct channel_t *ch)
{
unsigned char tmp = readb(&ch->ch_neo_uart->ier);
tmp |= (UART_IER_RDI);
writeb(tmp, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
static void neo_copy_data_from_uart_to_queue(struct channel_t *ch)
{
int qleft = 0;
unsigned char linestatus = 0;
unsigned char error_mask = 0;
int n = 0;
int total = 0;
ushort head;
ushort tail;
unsigned long flags;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
/* cache head and tail of queue */
head = ch->ch_r_head & RQUEUEMASK;
tail = ch->ch_r_tail & RQUEUEMASK;
/* Get our cached LSR */
linestatus = ch->ch_cached_lsr;
ch->ch_cached_lsr = 0;
/* Store how much space we have left in the queue */
qleft = tail - head - 1;
if (qleft < 0)
qleft += RQUEUEMASK + 1;
/*
* If the UART is not in FIFO mode, force the FIFO copy to
* NOT be run, by setting total to 0.
*
* On the other hand, if the UART IS in FIFO mode, then ask
* the UART to give us an approximation of data it has RX'ed.
*/
if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
total = 0;
} else {
total = readb(&ch->ch_neo_uart->rfifo);
/*
* EXAR chip bug - RX FIFO COUNT - Fudge factor.
*
* This resolves a problem/bug with the Exar chip that sometimes
* returns a bogus value in the rfifo register.
* The count can be any where from 0-3 bytes "off".
* Bizarre, but true.
*/
if ((ch->ch_bd->dvid & 0xf0) >= UART_XR17E158_DVID)
total -= 1;
else
total -= 3;
}
/*
* Finally, bound the copy to make sure we don't overflow
* our own queue...
* The byte by byte copy loop below this loop this will
* deal with the queue overflow possibility.
*/
total = min(total, qleft);
while (total > 0) {
/*
* Grab the linestatus register, we need to check
* to see if there are any errors in the FIFO.
*/
linestatus = readb(&ch->ch_neo_uart->lsr);
/*
* Break out if there is a FIFO error somewhere.
* This will allow us to go byte by byte down below,
* finding the exact location of the error.
*/
if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
break;
/* Make sure we don't go over the end of our queue */
n = min(((uint)total), (RQUEUESIZE - (uint)head));
/*
* Cut down n even further if needed, this is to fix
* a problem with memcpy_fromio() with the Neo on the
* IBM pSeries platform.
* 15 bytes max appears to be the magic number.
*/
n = min_t(uint, n, 12);
/*
* Since we are grabbing the linestatus register, which
* will reset some bits after our read, we need to ensure
* we don't miss our TX FIFO emptys.
*/
if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
linestatus = 0;
/* Copy data from uart to the queue */
memcpy_fromio(ch->ch_rqueue + head,
&ch->ch_neo_uart->txrxburst, n);
/*
* Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
* that all the data currently in the FIFO is free of
* breaks and parity/frame/orun errors.
*/
memset(ch->ch_equeue + head, 0, n);
/* Add to and flip head if needed */
head = (head + n) & RQUEUEMASK;
total -= n;
qleft -= n;
ch->ch_rxcount += n;
}
/*
* Create a mask to determine whether we should
* insert the character (if any) into our queue.
*/
if (ch->ch_c_iflag & IGNBRK)
error_mask |= UART_LSR_BI;
/*
* Now cleanup any leftover bytes still in the UART.
* Also deal with any possible queue overflow here as well.
*/
while (1) {
/*
* Its possible we have a linestatus from the loop above
* this, so we "OR" on any extra bits.
*/
linestatus |= readb(&ch->ch_neo_uart->lsr);
/*
* If the chip tells us there is no more data pending to
* be read, we can then leave.
* But before we do, cache the linestatus, just in case.
*/
if (!(linestatus & UART_LSR_DR)) {
ch->ch_cached_lsr = linestatus;
break;
}
/* No need to store this bit */
linestatus &= ~UART_LSR_DR;
/*
* Since we are grabbing the linestatus register, which
* will reset some bits after our read, we need to ensure
* we don't miss our TX FIFO emptys.
*/
if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
linestatus &= ~(UART_LSR_THRE |
UART_17158_TX_AND_FIFO_CLR);
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
}
/*
* Discard character if we are ignoring the error mask.
*/
if (linestatus & error_mask) {
unsigned char discard;
linestatus = 0;
memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
continue;
}
/*
* If our queue is full, we have no choice but to drop some data.
* The assumption is that HWFLOW or SWFLOW should have stopped
* things way way before we got to this point.
*
* I decided that I wanted to ditch the oldest data first,
* I hope thats okay with everyone? Yes? Good.
*/
while (qleft < 1) {
tail = (tail + 1) & RQUEUEMASK;
ch->ch_r_tail = tail;
ch->ch_err_overrun++;
qleft++;
}
memcpy_fromio(ch->ch_rqueue + head,
&ch->ch_neo_uart->txrxburst, 1);
ch->ch_equeue[head] = (unsigned char)linestatus;
/* Ditch any remaining linestatus value. */
linestatus = 0;
/* Add to and flip head if needed */
head = (head + 1) & RQUEUEMASK;
qleft--;
ch->ch_rxcount++;
}
/*
* Write new final heads to channel structure.
*/
ch->ch_r_head = head & RQUEUEMASK;
ch->ch_e_head = head & EQUEUEMASK;
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/*
* This function basically goes to sleep for secs, or until
* it gets signalled that the port has fully drained.
*/
static int neo_drain(struct tty_struct *tty, uint seconds)
{
unsigned long flags;
struct channel_t *ch;
struct un_t *un;
int rc = 0;
if (!tty || tty->magic != TTY_MAGIC)
return -ENXIO;
un = (struct un_t *)tty->driver_data;
if (!un || un->magic != DGNC_UNIT_MAGIC)
return -ENXIO;
ch = un->un_ch;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return -ENXIO;
spin_lock_irqsave(&ch->ch_lock, flags);
un->un_flags |= UN_EMPTY;
spin_unlock_irqrestore(&ch->ch_lock, flags);
/*
* Go to sleep waiting for the tty layer to wake me back up when
* the empty flag goes away.
*/
rc = wait_event_interruptible_timeout(un->un_flags_wait,
((un->un_flags & UN_EMPTY) == 0),
msecs_to_jiffies(seconds * 1000));
/* If ret is non-zero, user ctrl-c'ed us */
return rc;
}
/*
* Flush the WRITE FIFO on the Neo.
*
* NOTE: Channel lock MUST be held before calling this function!
*/
static void neo_flush_uart_write(struct channel_t *ch)
{
unsigned char tmp = 0;
int i = 0;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT),
&ch->ch_neo_uart->isr_fcr);
neo_pci_posting_flush(ch->ch_bd);
for (i = 0; i < 10; i++) {
/* Check to see if the UART feels it completely flushed the FIFO. */
tmp = readb(&ch->ch_neo_uart->isr_fcr);
if (tmp & 4)
udelay(10);
else
break;
}
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
}
/*
* Flush the READ FIFO on the Neo.
*
* NOTE: Channel lock MUST be held before calling this function!
*/
static void neo_flush_uart_read(struct channel_t *ch)
{
unsigned char tmp = 0;
int i = 0;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR,
&ch->ch_neo_uart->isr_fcr);
neo_pci_posting_flush(ch->ch_bd);
for (i = 0; i < 10; i++) {
/* Check to see if the UART feels it completely flushed the FIFO. */
tmp = readb(&ch->ch_neo_uart->isr_fcr);
if (tmp & 2)
udelay(10);
else
break;
}
}
static void neo_copy_data_from_queue_to_uart(struct channel_t *ch)
{
ushort head;
ushort tail;
int n;
int s;
int qlen;
uint len_written = 0;
unsigned long flags;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
/* No data to write to the UART */
if (ch->ch_w_tail == ch->ch_w_head)
goto exit_unlock;
/* If port is "stopped", don't send any data to the UART */
if ((ch->ch_flags & CH_FORCED_STOP) ||
(ch->ch_flags & CH_BREAK_SENDING))
goto exit_unlock;
/*
* If FIFOs are disabled. Send data directly to txrx register
*/
if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
unsigned char lsrbits = readb(&ch->ch_neo_uart->lsr);
/* Cache the LSR bits for later parsing */
ch->ch_cached_lsr |= lsrbits;
if (ch->ch_cached_lsr & UART_LSR_THRE) {
ch->ch_cached_lsr &= ~(UART_LSR_THRE);
/*
* If RTS Toggle mode is on, turn on RTS now if not already set,
* and make sure we get an event when the data transfer has completed.
*/
if (ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) {
if (!(ch->ch_mostat & UART_MCR_RTS)) {
ch->ch_mostat |= (UART_MCR_RTS);
neo_assert_modem_signals(ch);
}
ch->ch_tun.un_flags |= (UN_EMPTY);
}
/*
* If DTR Toggle mode is on, turn on DTR now if not already set,
* and make sure we get an event when the data transfer has completed.
*/
if (ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) {
if (!(ch->ch_mostat & UART_MCR_DTR)) {
ch->ch_mostat |= (UART_MCR_DTR);
neo_assert_modem_signals(ch);
}
ch->ch_tun.un_flags |= (UN_EMPTY);
}
writeb(ch->ch_wqueue[ch->ch_w_tail],
&ch->ch_neo_uart->txrx);
ch->ch_w_tail++;
ch->ch_w_tail &= WQUEUEMASK;
ch->ch_txcount++;
}
goto exit_unlock;
}
/*
* We have to do it this way, because of the EXAR TXFIFO count bug.
*/
if ((ch->ch_bd->dvid & 0xf0) < UART_XR17E158_DVID) {
if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
goto exit_unlock;
len_written = 0;
n = readb(&ch->ch_neo_uart->tfifo);
if ((unsigned int)n > ch->ch_t_tlevel)
goto exit_unlock;
n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
} else {
n = UART_17158_TX_FIFOSIZE - readb(&ch->ch_neo_uart->tfifo);
}
/* cache head and tail of queue */
head = ch->ch_w_head & WQUEUEMASK;
tail = ch->ch_w_tail & WQUEUEMASK;
qlen = (head - tail) & WQUEUEMASK;
/* Find minimum of the FIFO space, versus queue length */
n = min(n, qlen);
while (n > 0) {
s = ((head >= tail) ? head : WQUEUESIZE) - tail;
s = min(s, n);
if (s <= 0)
break;
/*
* If RTS Toggle mode is on, turn on RTS now if not already set,
* and make sure we get an event when the data transfer has completed.
*/
if (ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) {
if (!(ch->ch_mostat & UART_MCR_RTS)) {
ch->ch_mostat |= (UART_MCR_RTS);
neo_assert_modem_signals(ch);
}
ch->ch_tun.un_flags |= (UN_EMPTY);
}
/*
* If DTR Toggle mode is on, turn on DTR now if not already set,
* and make sure we get an event when the data transfer has completed.
*/
if (ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) {
if (!(ch->ch_mostat & UART_MCR_DTR)) {
ch->ch_mostat |= (UART_MCR_DTR);
neo_assert_modem_signals(ch);
}
ch->ch_tun.un_flags |= (UN_EMPTY);
}
memcpy_toio(&ch->ch_neo_uart->txrxburst,
ch->ch_wqueue + tail, s);
/* Add and flip queue if needed */
tail = (tail + s) & WQUEUEMASK;
n -= s;
ch->ch_txcount += s;
len_written += s;
}
/* Update the final tail */
ch->ch_w_tail = tail & WQUEUEMASK;
if (len_written > 0) {
neo_pci_posting_flush(ch->ch_bd);
ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
}
exit_unlock:
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
static void neo_parse_modem(struct channel_t *ch, unsigned char signals)
{
unsigned char msignals = signals;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
/*
* Do altpin switching. Altpin switches DCD and DSR.
* This prolly breaks DSRPACE, so we should be more clever here.
*/
if (ch->ch_digi.digi_flags & DIGI_ALTPIN) {
unsigned char mswap = msignals;
if (mswap & UART_MSR_DDCD) {
msignals &= ~UART_MSR_DDCD;
msignals |= UART_MSR_DDSR;
}
if (mswap & UART_MSR_DDSR) {
msignals &= ~UART_MSR_DDSR;
msignals |= UART_MSR_DDCD;
}
if (mswap & UART_MSR_DCD) {
msignals &= ~UART_MSR_DCD;
msignals |= UART_MSR_DSR;
}
if (mswap & UART_MSR_DSR) {
msignals &= ~UART_MSR_DSR;
msignals |= UART_MSR_DCD;
}
}
/* Scrub off lower bits. They signify delta's, which I don't care about */
msignals &= 0xf0;
if (msignals & UART_MSR_DCD)
ch->ch_mistat |= UART_MSR_DCD;
else
ch->ch_mistat &= ~UART_MSR_DCD;
if (msignals & UART_MSR_DSR)
ch->ch_mistat |= UART_MSR_DSR;
else
ch->ch_mistat &= ~UART_MSR_DSR;
if (msignals & UART_MSR_RI)
ch->ch_mistat |= UART_MSR_RI;
else
ch->ch_mistat &= ~UART_MSR_RI;
if (msignals & UART_MSR_CTS)
ch->ch_mistat |= UART_MSR_CTS;
else
ch->ch_mistat &= ~UART_MSR_CTS;
}
/* Make the UART raise any of the output signals we want up */
static void neo_assert_modem_signals(struct channel_t *ch)
{
unsigned char out;
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
out = ch->ch_mostat;
if (ch->ch_flags & CH_LOOPBACK)
out |= UART_MCR_LOOP;
writeb(out, &ch->ch_neo_uart->mcr);
neo_pci_posting_flush(ch->ch_bd);
/* Give time for the UART to actually raise/drop the signals */
udelay(10);
}
static void neo_send_start_character(struct channel_t *ch)
{
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
if (ch->ch_startc != _POSIX_VDISABLE) {
ch->ch_xon_sends++;
writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
neo_pci_posting_flush(ch->ch_bd);
udelay(10);
}
}
static void neo_send_stop_character(struct channel_t *ch)
{
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
if (ch->ch_stopc != _POSIX_VDISABLE) {
ch->ch_xoff_sends++;
writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
neo_pci_posting_flush(ch->ch_bd);
udelay(10);
}
}
/*
* neo_uart_init
*/
static void neo_uart_init(struct channel_t *ch)
{
writeb(0, &ch->ch_neo_uart->ier);
writeb(0, &ch->ch_neo_uart->efr);
writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
/* Clear out UART and FIFO */
readb(&ch->ch_neo_uart->txrx);
writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT,
&ch->ch_neo_uart->isr_fcr);
readb(&ch->ch_neo_uart->lsr);
readb(&ch->ch_neo_uart->msr);
ch->ch_flags |= CH_FIFO_ENABLED;
/* Assert any signals we want up */
writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
neo_pci_posting_flush(ch->ch_bd);
}
/*
* Make the UART completely turn off.
*/
static void neo_uart_off(struct channel_t *ch)
{
/* Turn off UART enhanced bits */
writeb(0, &ch->ch_neo_uart->efr);
/* Stop all interrupts from occurring. */
writeb(0, &ch->ch_neo_uart->ier);
neo_pci_posting_flush(ch->ch_bd);
}
static uint neo_get_uart_bytes_left(struct channel_t *ch)
{
unsigned char left = 0;
unsigned char lsr = readb(&ch->ch_neo_uart->lsr);
/* We must cache the LSR as some of the bits get reset once read... */
ch->ch_cached_lsr |= lsr;
/* Determine whether the Transmitter is empty or not */
if (!(lsr & UART_LSR_TEMT)) {
if (ch->ch_flags & CH_TX_FIFO_EMPTY)
tasklet_schedule(&ch->ch_bd->helper_tasklet);
left = 1;
} else {
ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
left = 0;
}
return left;
}
/* Channel lock MUST be held by the calling function! */
static void neo_send_break(struct channel_t *ch, int msecs)
{
/*
* If we receive a time of 0, this means turn off the break.
*/
if (msecs == 0) {
if (ch->ch_flags & CH_BREAK_SENDING) {
unsigned char temp = readb(&ch->ch_neo_uart->lcr);
writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
neo_pci_posting_flush(ch->ch_bd);
ch->ch_flags &= ~(CH_BREAK_SENDING);
ch->ch_stop_sending_break = 0;
}
return;
}
/*
* Set the time we should stop sending the break.
* If we are already sending a break, toss away the existing
* time to stop, and use this new value instead.
*/
ch->ch_stop_sending_break = jiffies + dgnc_jiffies_from_ms(msecs);
/* Tell the UART to start sending the break */
if (!(ch->ch_flags & CH_BREAK_SENDING)) {
unsigned char temp = readb(&ch->ch_neo_uart->lcr);
writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
neo_pci_posting_flush(ch->ch_bd);
ch->ch_flags |= (CH_BREAK_SENDING);
}
}
/*
* neo_send_immediate_char.
*
* Sends a specific character as soon as possible to the UART,
* jumping over any bytes that might be in the write queue.
*
* The channel lock MUST be held by the calling function.
*/
static void neo_send_immediate_char(struct channel_t *ch, unsigned char c)
{
if (!ch || ch->magic != DGNC_CHANNEL_MAGIC)
return;
writeb(c, &ch->ch_neo_uart->txrx);
neo_pci_posting_flush(ch->ch_bd);
}
static unsigned int neo_read_eeprom(unsigned char __iomem *base,
unsigned int address)
{
unsigned int enable;
unsigned int bits;
unsigned int databit;
unsigned int val;
/* enable chip select */
writeb(NEO_EECS, base + NEO_EEREG);
/* READ */
enable = address | 0x180;
for (bits = 9; bits--; ) {
databit = (enable & (1 << bits)) ? NEO_EEDI : 0;
/* Set read address */
writeb(databit | NEO_EECS, base + NEO_EEREG);
writeb(databit | NEO_EECS | NEO_EECK, base + NEO_EEREG);
}
val = 0;
for (bits = 17; bits--; ) {
/* clock to EEPROM */
writeb(NEO_EECS, base + NEO_EEREG);
writeb(NEO_EECS | NEO_EECK, base + NEO_EEREG);
val <<= 1;
/* read EEPROM */
if (readb(base + NEO_EEREG) & NEO_EEDO)
val |= 1;
}
/* clock falling edge */
writeb(NEO_EECS, base + NEO_EEREG);
/* drop chip select */
writeb(0x00, base + NEO_EEREG);
return val;
}
static void neo_vpd(struct dgnc_board *brd)
{
unsigned int i = 0;
unsigned int a;
if (!brd || brd->magic != DGNC_BOARD_MAGIC)
return;
if (!brd->re_map_membase)
return;
/* Store the VPD into our buffer */
for (i = 0; i < NEO_VPD_IMAGESIZE; i++) {
a = neo_read_eeprom(brd->re_map_membase, i);
brd->vpd[i * 2] = a & 0xff;
brd->vpd[(i * 2) + 1] = (a >> 8) & 0xff;
}
/*
* brd->vpd has different name tags by below index.
* 0x08 : long resource name tag
* 0x10 : long resource name tage (PCI-66 files)
* 0x7F : small resource end tag
*/
if (((brd->vpd[0x08] != 0x82) &&
(brd->vpd[0x10] != 0x82)) ||
(brd->vpd[0x7F] != 0x78)) {
memset(brd->vpd, '\0', NEO_VPD_IMAGESIZE);
} else {
/* Search for the serial number */
for (i = 0; i < NEO_VPD_IMAGEBYTES - 3; i++)
if (brd->vpd[i] == 'S' && brd->vpd[i + 1] == 'N')
strncpy(brd->serial_num, &brd->vpd[i + 3], 9);
}
}