blob: 751f13edece010177d162995e4f8b344722560dc [file] [log] [blame]
/*
* This is the Fusion MPT base driver providing common API layer interface
* for access to MPT (Message Passing Technology) firmware.
*
* This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
* Copyright (C) 2012-2014 LSI Corporation
* Copyright (C) 2013-2014 Avago Technologies
* (mailto: MPT-FusionLinux.pdl@avagotech.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/kthread.h>
#include <linux/aer.h>
#include "mpt3sas_base.h"
static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
/* maximum controller queue depth */
#define MAX_HBA_QUEUE_DEPTH 30000
#define MAX_CHAIN_DEPTH 100000
static int max_queue_depth = -1;
module_param(max_queue_depth, int, 0);
MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
static int max_sgl_entries = -1;
module_param(max_sgl_entries, int, 0);
MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
static int msix_disable = -1;
module_param(msix_disable, int, 0);
MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
static int smp_affinity_enable = 1;
module_param(smp_affinity_enable, int, S_IRUGO);
MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
static int max_msix_vectors = -1;
module_param(max_msix_vectors, int, 0);
MODULE_PARM_DESC(max_msix_vectors,
" max msix vectors");
static int mpt3sas_fwfault_debug;
MODULE_PARM_DESC(mpt3sas_fwfault_debug,
" enable detection of firmware fault and halt firmware - (default=0)");
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
/**
* _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
*
*/
static int
_scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
{
int ret = param_set_int(val, kp);
struct MPT3SAS_ADAPTER *ioc;
if (ret)
return ret;
/* global ioc spinlock to protect controller list on list operations */
pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
spin_lock(&gioc_lock);
list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
ioc->fwfault_debug = mpt3sas_fwfault_debug;
spin_unlock(&gioc_lock);
return 0;
}
module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
param_get_int, &mpt3sas_fwfault_debug, 0644);
/**
* mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
* @arg: input argument, used to derive ioc
*
* Return 0 if controller is removed from pci subsystem.
* Return -1 for other case.
*/
static int mpt3sas_remove_dead_ioc_func(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
struct pci_dev *pdev;
if ((ioc == NULL))
return -1;
pdev = ioc->pdev;
if ((pdev == NULL))
return -1;
pci_stop_and_remove_bus_device_locked(pdev);
return 0;
}
/**
* _base_fault_reset_work - workq handling ioc fault conditions
* @work: input argument, used to derive ioc
* Context: sleep.
*
* Return nothing.
*/
static void
_base_fault_reset_work(struct work_struct *work)
{
struct MPT3SAS_ADAPTER *ioc =
container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
unsigned long flags;
u32 doorbell;
int rc;
struct task_struct *p;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->shost_recovery || ioc->pci_error_recovery)
goto rearm_timer;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
ioc->name);
/* It may be possible that EEH recovery can resolve some of
* pci bus failure issues rather removing the dead ioc function
* by considering controller is in a non-operational state. So
* here priority is given to the EEH recovery. If it doesn't
* not resolve this issue, mpt3sas driver will consider this
* controller to non-operational state and remove the dead ioc
* function.
*/
if (ioc->non_operational_loop++ < 5) {
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
flags);
goto rearm_timer;
}
/*
* Call _scsih_flush_pending_cmds callback so that we flush all
* pending commands back to OS. This call is required to aovid
* deadlock at block layer. Dead IOC will fail to do diag reset,
* and this call is safe since dead ioc will never return any
* command back from HW.
*/
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
/*
* Set remove_host flag early since kernel thread will
* take some time to execute.
*/
ioc->remove_host = 1;
/*Remove the Dead Host */
p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
"%s_dead_ioc_%d", ioc->driver_name, ioc->id);
if (IS_ERR(p))
pr_err(MPT3SAS_FMT
"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
ioc->name, __func__);
else
pr_err(MPT3SAS_FMT
"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
ioc->name, __func__);
return; /* don't rearm timer */
}
ioc->non_operational_loop = 0;
if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
__func__, (rc == 0) ? "success" : "failed");
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
mpt3sas_base_fault_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_OPERATIONAL)
return; /* don't rearm timer */
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
rearm_timer:
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_start_watchdog - start the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
if (ioc->fault_reset_work_q)
return;
/* initialize fault polling */
INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
snprintf(ioc->fault_reset_work_q_name,
sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
ioc->driver_name, ioc->id);
ioc->fault_reset_work_q =
create_singlethread_workqueue(ioc->fault_reset_work_q_name);
if (!ioc->fault_reset_work_q) {
pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
ioc->name, __func__, __LINE__);
return;
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
struct workqueue_struct *wq;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
wq = ioc->fault_reset_work_q;
ioc->fault_reset_work_q = NULL;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if (wq) {
if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* mpt3sas_base_fault_info - verbose translation of firmware FAULT code
* @ioc: per adapter object
* @fault_code: fault code
*
* Return nothing.
*/
void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
{
pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
ioc->name, fault_code);
}
/**
* mpt3sas_halt_firmware - halt's mpt controller firmware
* @ioc: per adapter object
*
* For debugging timeout related issues. Writing 0xCOFFEE00
* to the doorbell register will halt controller firmware. With
* the purpose to stop both driver and firmware, the enduser can
* obtain a ring buffer from controller UART.
*/
void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
{
u32 doorbell;
if (!ioc->fwfault_debug)
return;
dump_stack();
doorbell = readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
mpt3sas_base_fault_info(ioc , doorbell);
else {
writel(0xC0FFEE00, &ioc->chip->Doorbell);
pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
ioc->name);
}
if (ioc->fwfault_debug == 2)
for (;;)
;
else
panic("panic in %s\n", __func__);
}
/**
* _base_sas_ioc_info - verbose translation of the ioc status
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
* @request_hdr: request mf
*
* Return nothing.
*/
static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
MPI2RequestHeader_t *request_hdr)
{
u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
MPI2_IOCSTATUS_MASK;
char *desc = NULL;
u16 frame_sz;
char *func_str = NULL;
/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
return;
if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
return;
switch (ioc_status) {
/****************************************************************************
* Common IOCStatus values for all replies
****************************************************************************/
case MPI2_IOCSTATUS_INVALID_FUNCTION:
desc = "invalid function";
break;
case MPI2_IOCSTATUS_BUSY:
desc = "busy";
break;
case MPI2_IOCSTATUS_INVALID_SGL:
desc = "invalid sgl";
break;
case MPI2_IOCSTATUS_INTERNAL_ERROR:
desc = "internal error";
break;
case MPI2_IOCSTATUS_INVALID_VPID:
desc = "invalid vpid";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
desc = "insufficient resources";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
desc = "insufficient power";
break;
case MPI2_IOCSTATUS_INVALID_FIELD:
desc = "invalid field";
break;
case MPI2_IOCSTATUS_INVALID_STATE:
desc = "invalid state";
break;
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
desc = "op state not supported";
break;
/****************************************************************************
* Config IOCStatus values
****************************************************************************/
case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
desc = "config invalid action";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
desc = "config invalid type";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
desc = "config invalid page";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
desc = "config invalid data";
break;
case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
desc = "config no defaults";
break;
case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
desc = "config cant commit";
break;
/****************************************************************************
* SCSI IO Reply
****************************************************************************/
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
break;
/****************************************************************************
* For use by SCSI Initiator and SCSI Target end-to-end data protection
****************************************************************************/
case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
desc = "eedp guard error";
break;
case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
desc = "eedp ref tag error";
break;
case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
desc = "eedp app tag error";
break;
/****************************************************************************
* SCSI Target values
****************************************************************************/
case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
desc = "target invalid io index";
break;
case MPI2_IOCSTATUS_TARGET_ABORTED:
desc = "target aborted";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
desc = "target no conn retryable";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
desc = "target no connection";
break;
case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
desc = "target xfer count mismatch";
break;
case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
desc = "target data offset error";
break;
case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
desc = "target too much write data";
break;
case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
desc = "target iu too short";
break;
case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
desc = "target ack nak timeout";
break;
case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
desc = "target nak received";
break;
/****************************************************************************
* Serial Attached SCSI values
****************************************************************************/
case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
desc = "smp request failed";
break;
case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
desc = "smp data overrun";
break;
/****************************************************************************
* Diagnostic Buffer Post / Diagnostic Release values
****************************************************************************/
case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
desc = "diagnostic released";
break;
default:
break;
}
if (!desc)
return;
switch (request_hdr->Function) {
case MPI2_FUNCTION_CONFIG:
frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
func_str = "config_page";
break;
case MPI2_FUNCTION_SCSI_TASK_MGMT:
frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
func_str = "task_mgmt";
break;
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
func_str = "sas_iounit_ctl";
break;
case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
frame_sz = sizeof(Mpi2SepRequest_t);
func_str = "enclosure";
break;
case MPI2_FUNCTION_IOC_INIT:
frame_sz = sizeof(Mpi2IOCInitRequest_t);
func_str = "ioc_init";
break;
case MPI2_FUNCTION_PORT_ENABLE:
frame_sz = sizeof(Mpi2PortEnableRequest_t);
func_str = "port_enable";
break;
case MPI2_FUNCTION_SMP_PASSTHROUGH:
frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
func_str = "smp_passthru";
break;
default:
frame_sz = 32;
func_str = "unknown";
break;
}
pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
ioc->name, desc, ioc_status, request_hdr, func_str);
_debug_dump_mf(request_hdr, frame_sz/4);
}
/**
* _base_display_event_data - verbose translation of firmware asyn events
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
*
* Return nothing.
*/
static void
_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
Mpi2EventNotificationReply_t *mpi_reply)
{
char *desc = NULL;
u16 event;
if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
return;
event = le16_to_cpu(mpi_reply->Event);
switch (event) {
case MPI2_EVENT_LOG_DATA:
desc = "Log Data";
break;
case MPI2_EVENT_STATE_CHANGE:
desc = "Status Change";
break;
case MPI2_EVENT_HARD_RESET_RECEIVED:
desc = "Hard Reset Received";
break;
case MPI2_EVENT_EVENT_CHANGE:
desc = "Event Change";
break;
case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
desc = "Device Status Change";
break;
case MPI2_EVENT_IR_OPERATION_STATUS:
if (!ioc->hide_ir_msg)
desc = "IR Operation Status";
break;
case MPI2_EVENT_SAS_DISCOVERY:
{
Mpi2EventDataSasDiscovery_t *event_data =
(Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
(event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
"start" : "stop");
if (event_data->DiscoveryStatus)
pr_info("discovery_status(0x%08x)",
le32_to_cpu(event_data->DiscoveryStatus));
pr_info("\n");
return;
}
case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
desc = "SAS Broadcast Primitive";
break;
case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
desc = "SAS Init Device Status Change";
break;
case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
desc = "SAS Init Table Overflow";
break;
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
desc = "SAS Topology Change List";
break;
case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
desc = "SAS Enclosure Device Status Change";
break;
case MPI2_EVENT_IR_VOLUME:
if (!ioc->hide_ir_msg)
desc = "IR Volume";
break;
case MPI2_EVENT_IR_PHYSICAL_DISK:
if (!ioc->hide_ir_msg)
desc = "IR Physical Disk";
break;
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
if (!ioc->hide_ir_msg)
desc = "IR Configuration Change List";
break;
case MPI2_EVENT_LOG_ENTRY_ADDED:
if (!ioc->hide_ir_msg)
desc = "Log Entry Added";
break;
case MPI2_EVENT_TEMP_THRESHOLD:
desc = "Temperature Threshold";
break;
case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
desc = "Active cable exception";
break;
}
if (!desc)
return;
pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
}
/**
* _base_sas_log_info - verbose translation of firmware log info
* @ioc: per adapter object
* @log_info: log info
*
* Return nothing.
*/
static void
_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
{
union loginfo_type {
u32 loginfo;
struct {
u32 subcode:16;
u32 code:8;
u32 originator:4;
u32 bus_type:4;
} dw;
};
union loginfo_type sas_loginfo;
char *originator_str = NULL;
sas_loginfo.loginfo = log_info;
if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
return;
/* each nexus loss loginfo */
if (log_info == 0x31170000)
return;
/* eat the loginfos associated with task aborts */
if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
0x31140000 || log_info == 0x31130000))
return;
switch (sas_loginfo.dw.originator) {
case 0:
originator_str = "IOP";
break;
case 1:
originator_str = "PL";
break;
case 2:
if (!ioc->hide_ir_msg)
originator_str = "IR";
else
originator_str = "WarpDrive";
break;
}
pr_warn(MPT3SAS_FMT
"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
ioc->name, log_info,
originator_str, sas_loginfo.dw.code,
sas_loginfo.dw.subcode);
}
/**
* _base_display_reply_info -
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return nothing.
*/
static void
_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
u32 loginfo = 0;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (unlikely(!mpi_reply)) {
pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return;
}
ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
(ioc->logging_level & MPT_DEBUG_REPLY)) {
_base_sas_ioc_info(ioc , mpi_reply,
mpt3sas_base_get_msg_frame(ioc, smid));
}
if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
_base_sas_log_info(ioc, loginfo);
}
if (ioc_status || loginfo) {
ioc_status &= MPI2_IOCSTATUS_MASK;
mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
}
}
/**
* mpt3sas_base_done - base internal command completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
return 1;
ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
if (mpi_reply) {
ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
}
ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
complete(&ioc->base_cmds.done);
return 1;
}
/**
* _base_async_event - main callback handler for firmware asyn events
* @ioc: per adapter object
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
static u8
_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
{
Mpi2EventNotificationReply_t *mpi_reply;
Mpi2EventAckRequest_t *ack_request;
u16 smid;
struct _event_ack_list *delayed_event_ack;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
return 1;
_base_display_event_data(ioc, mpi_reply);
if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
GFP_ATOMIC);
if (!delayed_event_ack)
goto out;
INIT_LIST_HEAD(&delayed_event_ack->list);
delayed_event_ack->Event = mpi_reply->Event;
delayed_event_ack->EventContext = mpi_reply->EventContext;
list_add_tail(&delayed_event_ack->list,
&ioc->delayed_event_ack_list);
dewtprintk(ioc, pr_info(MPT3SAS_FMT
"DELAYED: EVENT ACK: event (0x%04x)\n",
ioc->name, le16_to_cpu(mpi_reply->Event)));
goto out;
}
ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
ack_request->Event = mpi_reply->Event;
ack_request->EventContext = mpi_reply->EventContext;
ack_request->VF_ID = 0; /* TODO */
ack_request->VP_ID = 0;
mpt3sas_base_put_smid_default(ioc, smid);
out:
/* scsih callback handler */
mpt3sas_scsih_event_callback(ioc, msix_index, reply);
/* ctl callback handler */
mpt3sas_ctl_event_callback(ioc, msix_index, reply);
return 1;
}
/**
* _base_get_cb_idx - obtain the callback index
* @ioc: per adapter object
* @smid: system request message index
*
* Return callback index.
*/
static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
int i;
u8 cb_idx;
if (smid < ioc->hi_priority_smid) {
i = smid - 1;
cb_idx = ioc->scsi_lookup[i].cb_idx;
} else if (smid < ioc->internal_smid) {
i = smid - ioc->hi_priority_smid;
cb_idx = ioc->hpr_lookup[i].cb_idx;
} else if (smid <= ioc->hba_queue_depth) {
i = smid - ioc->internal_smid;
cb_idx = ioc->internal_lookup[i].cb_idx;
} else
cb_idx = 0xFF;
return cb_idx;
}
/**
* _base_mask_interrupts - disable interrupts
* @ioc: per adapter object
*
* Disabling ResetIRQ, Reply and Doorbell Interrupts
*
* Return nothing.
*/
static void
_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
ioc->mask_interrupts = 1;
him_register = readl(&ioc->chip->HostInterruptMask);
him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
writel(him_register, &ioc->chip->HostInterruptMask);
readl(&ioc->chip->HostInterruptMask);
}
/**
* _base_unmask_interrupts - enable interrupts
* @ioc: per adapter object
*
* Enabling only Reply Interrupts
*
* Return nothing.
*/
static void
_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
him_register = readl(&ioc->chip->HostInterruptMask);
him_register &= ~MPI2_HIM_RIM;
writel(him_register, &ioc->chip->HostInterruptMask);
ioc->mask_interrupts = 0;
}
union reply_descriptor {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
/**
* _base_interrupt - MPT adapter (IOC) specific interrupt handler.
* @irq: irq number (not used)
* @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
* @r: pt_regs pointer (not used)
*
* Return IRQ_HANDLE if processed, else IRQ_NONE.
*/
static irqreturn_t
_base_interrupt(int irq, void *bus_id)
{
struct adapter_reply_queue *reply_q = bus_id;
union reply_descriptor rd;
u32 completed_cmds;
u8 request_desript_type;
u16 smid;
u8 cb_idx;
u32 reply;
u8 msix_index = reply_q->msix_index;
struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
Mpi2ReplyDescriptorsUnion_t *rpf;
u8 rc;
if (ioc->mask_interrupts)
return IRQ_NONE;
if (!atomic_add_unless(&reply_q->busy, 1, 1))
return IRQ_NONE;
rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
request_desript_type = rpf->Default.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
atomic_dec(&reply_q->busy);
return IRQ_NONE;
}
completed_cmds = 0;
cb_idx = 0xFF;
do {
rd.word = le64_to_cpu(rpf->Words);
if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
goto out;
reply = 0;
smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
if (request_desript_type ==
MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
request_desript_type ==
MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, 0);
if (rc)
mpt3sas_base_free_smid(ioc, smid);
}
} else if (request_desript_type ==
MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
reply = le32_to_cpu(
rpf->AddressReply.ReplyFrameAddress);
if (reply > ioc->reply_dma_max_address ||
reply < ioc->reply_dma_min_address)
reply = 0;
if (smid) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, reply);
if (reply)
_base_display_reply_info(ioc,
smid, msix_index, reply);
if (rc)
mpt3sas_base_free_smid(ioc,
smid);
}
} else {
_base_async_event(ioc, msix_index, reply);
}
/* reply free queue handling */
if (reply) {
ioc->reply_free_host_index =
(ioc->reply_free_host_index ==
(ioc->reply_free_queue_depth - 1)) ?
0 : ioc->reply_free_host_index + 1;
ioc->reply_free[ioc->reply_free_host_index] =
cpu_to_le32(reply);
wmb();
writel(ioc->reply_free_host_index,
&ioc->chip->ReplyFreeHostIndex);
}
}
rpf->Words = cpu_to_le64(ULLONG_MAX);
reply_q->reply_post_host_index =
(reply_q->reply_post_host_index ==
(ioc->reply_post_queue_depth - 1)) ? 0 :
reply_q->reply_post_host_index + 1;
request_desript_type =
reply_q->reply_post_free[reply_q->reply_post_host_index].
Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
completed_cmds++;
if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
goto out;
if (!reply_q->reply_post_host_index)
rpf = reply_q->reply_post_free;
else
rpf++;
} while (1);
out:
if (!completed_cmds) {
atomic_dec(&reply_q->busy);
return IRQ_NONE;
}
wmb();
if (ioc->is_warpdrive) {
writel(reply_q->reply_post_host_index,
ioc->reply_post_host_index[msix_index]);
atomic_dec(&reply_q->busy);
return IRQ_HANDLED;
}
/* Update Reply Post Host Index.
* For those HBA's which support combined reply queue feature
* 1. Get the correct Supplemental Reply Post Host Index Register.
* i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
* Index Register address bank i.e replyPostRegisterIndex[],
* 2. Then update this register with new reply host index value
* in ReplyPostIndex field and the MSIxIndex field with
* msix_index value reduced to a value between 0 and 7,
* using a modulo 8 operation. Since each Supplemental Reply Post
* Host Index Register supports 8 MSI-X vectors.
*
* For other HBA's just update the Reply Post Host Index register with
* new reply host index value in ReplyPostIndex Field and msix_index
* value in MSIxIndex field.
*/
if (ioc->msix96_vector)
writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
ioc->replyPostRegisterIndex[msix_index/8]);
else
writel(reply_q->reply_post_host_index | (msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
&ioc->chip->ReplyPostHostIndex);
atomic_dec(&reply_q->busy);
return IRQ_HANDLED;
}
/**
* _base_is_controller_msix_enabled - is controller support muli-reply queues
* @ioc: per adapter object
*
*/
static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
{
return (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
}
/**
* mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
* @ioc: per adapter object
* Context: non ISR conext
*
* Called when a Task Management request has completed.
*
* Return nothing.
*/
void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q;
/* If MSIX capability is turned off
* then multi-queues are not enabled
*/
if (!_base_is_controller_msix_enabled(ioc))
return;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->shost_recovery || ioc->remove_host ||
ioc->pci_error_recovery)
return;
/* TMs are on msix_index == 0 */
if (reply_q->msix_index == 0)
continue;
synchronize_irq(reply_q->vector);
}
}
/**
* mpt3sas_base_release_callback_handler - clear interrupt callback handler
* @cb_idx: callback index
*
* Return nothing.
*/
void
mpt3sas_base_release_callback_handler(u8 cb_idx)
{
mpt_callbacks[cb_idx] = NULL;
}
/**
* mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
* @cb_func: callback function
*
* Returns cb_func.
*/
u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
{
u8 cb_idx;
for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
if (mpt_callbacks[cb_idx] == NULL)
break;
mpt_callbacks[cb_idx] = cb_func;
return cb_idx;
}
/**
* mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
*
* Return nothing.
*/
void
mpt3sas_base_initialize_callback_handler(void)
{
u8 cb_idx;
for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
mpt3sas_base_release_callback_handler(cb_idx);
}
/**
* _base_build_zero_len_sge - build zero length sg entry
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT);
ioc->base_add_sg_single(paddr, flags_length, -1);
}
/**
* _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple32_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le32(dma_addr);
}
/**
* _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple64_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_get_chain_buffer_tracker - obtain chain tracker
* @ioc: per adapter object
* @smid: smid associated to an IO request
*
* Returns chain tracker(from ioc->free_chain_list)
*/
static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
struct chain_tracker *chain_req;
unsigned long flags;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->free_chain_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
dfailprintk(ioc, pr_warn(MPT3SAS_FMT
"chain buffers not available\n", ioc->name));
return NULL;
}
chain_req = list_entry(ioc->free_chain_list.next,
struct chain_tracker, tracker_list);
list_del_init(&chain_req->tracker_list);
list_add_tail(&chain_req->tracker_list,
&ioc->scsi_lookup[smid - 1].chain_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return chain_req;
}
/**
* _base_build_sg - build generic sg
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u32 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
/* incr sgel */
psge += ioc->sge_size;
/* READ sgel last */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
}
}
/* IEEE format sgls */
/**
* _base_add_sg_single_ieee - add sg element for IEEE format
* @paddr: virtual address for SGE
* @flags: SGE flags
* @chain_offset: number of 128 byte elements from start of segment
* @length: data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
dma_addr_t dma_addr)
{
Mpi25IeeeSgeChain64_t *sgel = paddr;
sgel->Flags = flags;
sgel->NextChainOffset = chain_offset;
sgel->Length = cpu_to_le32(length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
}
/**
* _base_build_sg_scmd - main sg creation routine
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Returns 0 success, anything else error
*/
static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid)
{
Mpi2SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
u32 chain_flags;
int sges_left;
u32 sges_in_segment;
u32 sgl_flags;
u32 sgl_flags_last_element;
u32 sgl_flags_end_buffer;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
if (scmd->sc_data_direction == DMA_TO_DEVICE)
sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"pci_map_sg failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return -ENOMEM;
}
sg_local = &mpi_request->SGL;
sges_in_segment = ioc->max_sges_in_main_message;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
(sges_in_segment * ioc->sge_size))/4;
/* fill in main message segment when there is a chain following */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element | sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
/* initializing the chain flags and pointers */
chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
chain_req = _base_get_chain_buffer_tracker(ioc, smid);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : (sges_in_segment * ioc->sge_size)/4;
chain_length = sges_in_segment * ioc->sge_size;
if (chain_offset) {
chain_offset = chain_offset <<
MPI2_SGE_CHAIN_OFFSET_SHIFT;
chain_length += ioc->sge_size;
}
ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, smid);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left) {
if (sges_left == 1)
ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
}
return 0;
}
/**
* _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Returns 0 success, anything else error
*/
static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid)
{
Mpi2SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
int sges_left;
u32 sges_in_segment;
u8 simple_sgl_flags;
u8 simple_sgl_flags_last;
u8 chain_sgl_flags;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
simple_sgl_flags_last = simple_sgl_flags |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"pci_map_sg failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return -ENOMEM;
}
sg_local = &mpi_request->SGL;
sges_in_segment = (ioc->request_sz -
offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
(offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
/* fill in main message segment when there is a chain following */
while (sges_in_segment > 1) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
/* initializing the pointers */
chain_req = _base_get_chain_buffer_tracker(ioc, smid);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : sges_in_segment;
chain_length = sges_in_segment * ioc->sge_size_ieee;
if (chain_offset)
chain_length += ioc->sge_size_ieee;
_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
chain_offset, chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, smid);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left > 0) {
if (sges_left == 1)
_base_add_sg_single_ieee(sg_local,
simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
}
return 0;
}
/**
* _base_build_sg_ieee - build generic sg for IEEE format
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u8 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge_ieee(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
/* incr sgel */
psge += ioc->sge_size_ieee;
/* READ sgel last */
sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
}
}
#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
/**
* _base_config_dma_addressing - set dma addressing
* @ioc: per adapter object
* @pdev: PCI device struct
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
{
struct sysinfo s;
u64 consistent_dma_mask;
if (ioc->dma_mask)
consistent_dma_mask = DMA_BIT_MASK(64);
else
consistent_dma_mask = DMA_BIT_MASK(32);
if (sizeof(dma_addr_t) > 4) {
const uint64_t required_mask =
dma_get_required_mask(&pdev->dev);
if ((required_mask > DMA_BIT_MASK(32)) &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
!pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
ioc->base_add_sg_single = &_base_add_sg_single_64;
ioc->sge_size = sizeof(Mpi2SGESimple64_t);
ioc->dma_mask = 64;
goto out;
}
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
&& !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
ioc->base_add_sg_single = &_base_add_sg_single_32;
ioc->sge_size = sizeof(Mpi2SGESimple32_t);
ioc->dma_mask = 32;
} else
return -ENODEV;
out:
si_meminfo(&s);
pr_info(MPT3SAS_FMT
"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
return 0;
}
static int
_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
struct pci_dev *pdev)
{
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
return -ENODEV;
}
return 0;
}
/**
* _base_check_enable_msix - checks MSIX capabable.
* @ioc: per adapter object
*
* Check to see if card is capable of MSIX, and set number
* of available msix vectors
*/
static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
int base;
u16 message_control;
/* Check whether controller SAS2008 B0 controller,
* if it is SAS2008 B0 controller use IO-APIC instead of MSIX
*/
if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
return -EINVAL;
}
base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
if (!base) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
ioc->name));
return -EINVAL;
}
/* get msix vector count */
/* NUMA_IO not supported for older controllers */
if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
ioc->msix_vector_count = 1;
else {
pci_read_config_word(ioc->pdev, base + 2, &message_control);
ioc->msix_vector_count = (message_control & 0x3FF) + 1;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"msix is supported, vector_count(%d)\n",
ioc->name, ioc->msix_vector_count));
return 0;
}
/**
* _base_free_irq - free irq
* @ioc: per adapter object
*
* Freeing respective reply_queue from the list.
*/
static void
_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q, *next;
if (list_empty(&ioc->reply_queue_list))
return;
list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
list_del(&reply_q->list);
if (smp_affinity_enable) {
irq_set_affinity_hint(reply_q->vector, NULL);
free_cpumask_var(reply_q->affinity_hint);
}
free_irq(reply_q->vector, reply_q);
kfree(reply_q);
}
}
/**
* _base_request_irq - request irq
* @ioc: per adapter object
* @index: msix index into vector table
* @vector: irq vector
*
* Inserting respective reply_queue into the list.
*/
static int
_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
{
struct adapter_reply_queue *reply_q;
int r;
reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
if (!reply_q) {
pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
ioc->name, (int)sizeof(struct adapter_reply_queue));
return -ENOMEM;
}
reply_q->ioc = ioc;
reply_q->msix_index = index;
reply_q->vector = vector;
if (smp_affinity_enable) {
if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
kfree(reply_q);
return -ENOMEM;
}
}
atomic_set(&reply_q->busy, 0);
if (ioc->msix_enable)
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
ioc->driver_name, ioc->id, index);
else
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
ioc->driver_name, ioc->id);
r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
reply_q);
if (r) {
pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
reply_q->name, vector);
free_cpumask_var(reply_q->affinity_hint);
kfree(reply_q);
return -EBUSY;
}
INIT_LIST_HEAD(&reply_q->list);
list_add_tail(&reply_q->list, &ioc->reply_queue_list);
return 0;
}
/**
* _base_assign_reply_queues - assigning msix index for each cpu
* @ioc: per adapter object
*
* The enduser would need to set the affinity via /proc/irq/#/smp_affinity
*
* It would nice if we could call irq_set_affinity, however it is not
* an exported symbol
*/
static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
{
unsigned int cpu, nr_cpus, nr_msix, index = 0;
struct adapter_reply_queue *reply_q;
if (!_base_is_controller_msix_enabled(ioc))
return;
memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
nr_cpus = num_online_cpus();
nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
ioc->facts.MaxMSIxVectors);
if (!nr_msix)
return;
cpu = cpumask_first(cpu_online_mask);
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
unsigned int i, group = nr_cpus / nr_msix;
if (cpu >= nr_cpus)
break;
if (index < nr_cpus % nr_msix)
group++;
for (i = 0 ; i < group ; i++) {
ioc->cpu_msix_table[cpu] = index;
if (smp_affinity_enable)
cpumask_or(reply_q->affinity_hint,
reply_q->affinity_hint, get_cpu_mask(cpu));
cpu = cpumask_next(cpu, cpu_online_mask);
}
if (smp_affinity_enable)
if (irq_set_affinity_hint(reply_q->vector,
reply_q->affinity_hint))
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"Err setting affinity hint to irq vector %d\n",
ioc->name, reply_q->vector));
index++;
}
}
/**
* _base_disable_msix - disables msix
* @ioc: per adapter object
*
*/
static void
_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
{
if (!ioc->msix_enable)
return;
pci_disable_msix(ioc->pdev);
ioc->msix_enable = 0;
}
/**
* _base_enable_msix - enables msix, failback to io_apic
* @ioc: per adapter object
*
*/
static int
_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
struct msix_entry *entries, *a;
int r;
int i;
u8 try_msix = 0;
if (msix_disable == -1 || msix_disable == 0)
try_msix = 1;
if (!try_msix)
goto try_ioapic;
if (_base_check_enable_msix(ioc) != 0)
goto try_ioapic;
ioc->reply_queue_count = min_t(int, ioc->cpu_count,
ioc->msix_vector_count);
printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
ioc->cpu_count, max_msix_vectors);
if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
max_msix_vectors = 8;
if (max_msix_vectors > 0) {
ioc->reply_queue_count = min_t(int, max_msix_vectors,
ioc->reply_queue_count);
ioc->msix_vector_count = ioc->reply_queue_count;
} else if (max_msix_vectors == 0)
goto try_ioapic;
if (ioc->msix_vector_count < ioc->cpu_count)
smp_affinity_enable = 0;
entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
GFP_KERNEL);
if (!entries) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"kcalloc failed @ at %s:%d/%s() !!!\n",
ioc->name, __FILE__, __LINE__, __func__));
goto try_ioapic;
}
for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
a->entry = i;
r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
if (r) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"pci_enable_msix_exact failed (r=%d) !!!\n",
ioc->name, r));
kfree(entries);
goto try_ioapic;
}
ioc->msix_enable = 1;
for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
r = _base_request_irq(ioc, i, a->vector);
if (r) {
_base_free_irq(ioc);
_base_disable_msix(ioc);
kfree(entries);
goto try_ioapic;
}
}
kfree(entries);
return 0;
/* failback to io_apic interrupt routing */
try_ioapic:
ioc->reply_queue_count = 1;
r = _base_request_irq(ioc, 0, ioc->pdev->irq);
return r;
}
/**
* mpt3sas_base_unmap_resources - free controller resources
* @ioc: per adapter object
*/
void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
ioc->name, __func__));
_base_free_irq(ioc);
_base_disable_msix(ioc);
if (ioc->msix96_vector) {
kfree(ioc->replyPostRegisterIndex);
ioc->replyPostRegisterIndex = NULL;
}
if (ioc->chip_phys) {
iounmap(ioc->chip);
ioc->chip_phys = 0;
}
if (pci_is_enabled(pdev)) {
pci_release_selected_regions(ioc->pdev, ioc->bars);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
}
/**
* mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
u32 memap_sz;
u32 pio_sz;
int i, r = 0;
u64 pio_chip = 0;
u64 chip_phys = 0;
struct adapter_reply_queue *reply_q;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
ioc->name, __func__));
ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (pci_enable_device_mem(pdev)) {
pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
ioc->name);
ioc->bars = 0;
return -ENODEV;
}
if (pci_request_selected_regions(pdev, ioc->bars,
ioc->driver_name)) {
pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
ioc->name);
ioc->bars = 0;
r = -ENODEV;
goto out_fail;
}
/* AER (Advanced Error Reporting) hooks */
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
if (_base_config_dma_addressing(ioc, pdev) != 0) {
pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
ioc->name, pci_name(pdev));
r = -ENODEV;
goto out_fail;
}
for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
(!memap_sz || !pio_sz); i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
if (pio_sz)
continue;
pio_chip = (u64)pci_resource_start(pdev, i);
pio_sz = pci_resource_len(pdev, i);
} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
if (memap_sz)
continue;
ioc->chip_phys = pci_resource_start(pdev, i);
chip_phys = (u64)ioc->chip_phys;
memap_sz = pci_resource_len(pdev, i);
ioc->chip = ioremap(ioc->chip_phys, memap_sz);
}
}
if (ioc->chip == NULL) {
pr_err(MPT3SAS_FMT "unable to map adapter memory! "
" or resource not found\n", ioc->name);
r = -EINVAL;
goto out_fail;
}
_base_mask_interrupts(ioc);
r = _base_get_ioc_facts(ioc, CAN_SLEEP);
if (r)
goto out_fail;
if (!ioc->rdpq_array_enable_assigned) {
ioc->rdpq_array_enable = ioc->rdpq_array_capable;
ioc->rdpq_array_enable_assigned = 1;
}
r = _base_enable_msix(ioc);
if (r)
goto out_fail;
/* Use the Combined reply queue feature only for SAS3 C0 & higher
* revision HBAs and also only when reply queue count is greater than 8
*/
if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
/* Determine the Supplemental Reply Post Host Index Registers
* Addresse. Supplemental Reply Post Host Index Registers
* starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
* each register is at offset bytes of
* MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
*/
ioc->replyPostRegisterIndex = kcalloc(
MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
sizeof(resource_size_t *), GFP_KERNEL);
if (!ioc->replyPostRegisterIndex) {
dfailprintk(ioc, printk(MPT3SAS_FMT
"allocation for reply Post Register Index failed!!!\n",
ioc->name));
r = -ENOMEM;
goto out_fail;
}
for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
ioc->replyPostRegisterIndex[i] = (resource_size_t *)
((u8 *)&ioc->chip->Doorbell +
MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
(i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
}
} else
ioc->msix96_vector = 0;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
"IO-APIC enabled"), reply_q->vector);
pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
ioc->name, (unsigned long long)pio_chip, pio_sz);
/* Save PCI configuration state for recovery from PCI AER/EEH errors */
pci_save_state(pdev);
return 0;
out_fail:
mpt3sas_base_unmap_resources(ioc);
return r;
}
/**
* mpt3sas_base_get_msg_frame - obtain request mf pointer
* @ioc: per adapter object
* @smid: system request message index(smid zero is invalid)
*
* Returns virt pointer to message frame.
*/
void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->request + (smid * ioc->request_sz));
}
/**
* mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns virt pointer to sense buffer.
*/
void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns phys pointer to the low 32bit address of the sense buffer.
*/
__le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
* @ioc: per adapter object
* @phys_addr: lower 32 physical addr of the reply
*
* Converts 32bit lower physical addr into a virt address.
*/
void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
{
if (!phys_addr)
return NULL;
return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
}
static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
{
return ioc->cpu_msix_table[raw_smp_processor_id()];
}
/**
* mpt3sas_base_get_smid - obtain a free smid from internal queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->internal_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
pr_err(MPT3SAS_FMT "%s: smid not available\n",
ioc->name, __func__);
return 0;
}
request = list_entry(ioc->internal_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
* @ioc: per adapter object
* @cb_idx: callback index
* @scmd: pointer to scsi command object
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
struct scsi_cmnd *scmd)
{
unsigned long flags;
struct scsiio_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
pr_err(MPT3SAS_FMT "%s: smid not available\n",
ioc->name, __func__);
return 0;
}
request = list_entry(ioc->free_list.next,
struct scsiio_tracker, tracker_list);
request->scmd = scmd;
request->cb_idx = cb_idx;
smid = request->smid;
request->msix_io = _base_get_msix_index(ioc);
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return 0;
}
request = list_entry(ioc->hpr_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_free_smid - put smid back on free_list
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
unsigned long flags;
int i;
struct chain_tracker *chain_req, *next;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (smid < ioc->hi_priority_smid) {
/* scsiio queue */
i = smid - 1;
if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
list_for_each_entry_safe(chain_req, next,
&ioc->scsi_lookup[i].chain_list, tracker_list) {
list_del_init(&chain_req->tracker_list);
list_add(&chain_req->tracker_list,
&ioc->free_chain_list);
}
}
ioc->scsi_lookup[i].cb_idx = 0xFF;
ioc->scsi_lookup[i].scmd = NULL;
ioc->scsi_lookup[i].direct_io = 0;
list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
/*
* See _wait_for_commands_to_complete() call with regards
* to this code.
*/
if (ioc->shost_recovery && ioc->pending_io_count) {
if (ioc->pending_io_count == 1)
wake_up(&ioc->reset_wq);
ioc->pending_io_count--;
}
return;
} else if (smid < ioc->internal_smid) {
/* hi-priority */
i = smid - ioc->hi_priority_smid;
ioc->hpr_lookup[i].cb_idx = 0xFF;
list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
} else if (smid <= ioc->hba_queue_depth) {
/* internal queue */
i = smid - ioc->internal_smid;
ioc->internal_lookup[i].cb_idx = 0xFF;
list_add(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
}
/**
* _base_writeq - 64 bit write to MMIO
* @ioc: per adapter object
* @b: data payload
* @addr: address in MMIO space
* @writeq_lock: spin lock
*
* Glue for handling an atomic 64 bit word to MMIO. This special handling takes
* care of 32 bit environment where its not quarenteed to send the entire word
* in one transfer.
*/
#if defined(writeq) && defined(CONFIG_64BIT)
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
writeq(cpu_to_le64(b), addr);
}
#else
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
unsigned long flags;
__u64 data_out = cpu_to_le64(b);
spin_lock_irqsave(writeq_lock, flags);
writel((u32)(data_out), addr);
writel((u32)(data_out >> 32), (addr + 4));
spin_unlock_irqrestore(writeq_lock, flags);
}
#endif
/**
* mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
void
mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* mpt3sas_base_put_smid_fast_path - send fast path request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
void
mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags =
MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
* Return nothing.
*/
void
mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 msix_task)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.HighPriority.MSIxIndex = msix_task;
descriptor.HighPriority.SMID = cpu_to_le16(smid);
descriptor.HighPriority.LMID = 0;
descriptor.HighPriority.Reserved1 = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* mpt3sas_base_put_smid_default - Default, primarily used for config pages
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
void
mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_display_OEMs_branding - Display branding string
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
return;
switch (ioc->pdev->subsystem_vendor) {
case PCI_VENDOR_ID_INTEL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RMS2LL080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS2LL080_BRANDING);
break;
case MPT2SAS_INTEL_RMS2LL040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS2LL040_BRANDING);
break;
case MPT2SAS_INTEL_SSD910_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_SSD910_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RS25GB008_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RS25GB008_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25JB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25JB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25KB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25KB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25LB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25LB080_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_INTEL_RMS3JC080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RMS3JC080_BRANDING);
break;
case MPT3SAS_INTEL_RS3GC008_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3GC008_BRANDING);
break;
case MPT3SAS_INTEL_RS3FC044_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3FC044_BRANDING);
break;
case MPT3SAS_INTEL_RS3UC080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3UC080_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case PCI_VENDOR_ID_DELL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_BRANDING);
break;
case MPT2SAS_DELL_6GBPS_SAS_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_6GBPS_SAS_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_DELL_12G_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_DELL_12G_HBA_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
default:
pr_info(MPT3SAS_FMT
"Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->subsystem_device);
break;
}
break;
case PCI_VENDOR_ID_CISCO:
switch (ioc->pdev->device) {
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3108_1:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
);
break;
default:
pr_info(MPT3SAS_FMT
"Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
default:
pr_info(MPT3SAS_FMT
"Cisco SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case MPT2SAS_HP_3PAR_SSVID:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2004:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_2_4_INTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_2_4_INTERNAL_BRANDING);
break;
case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
default:
pr_info(MPT3SAS_FMT
"HP SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
default:
break;
}
}
/**
* _base_display_ioc_capabilities - Disply IOC's capabilities.
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
char desc[16];
u32 iounit_pg1_flags;
u32 bios_version;
bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
strncpy(desc, ioc->manu_pg0.ChipName, 16);
pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
"ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
ioc->name, desc,
(ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
(ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
(ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
ioc->facts.FWVersion.Word & 0x000000FF,
ioc->pdev->revision,
(bios_version & 0xFF000000) >> 24,
(bios_version & 0x00FF0000) >> 16,
(bios_version & 0x0000FF00) >> 8,
bios_version & 0x000000FF);
_base_display_OEMs_branding(ioc);
pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
pr_info("Initiator");
i++;
}
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
pr_info("%sTarget", i ? "," : "");
i++;
}
i = 0;
pr_info("), ");
pr_info("Capabilities=(");
if (!ioc->hide_ir_msg) {
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
pr_info("Raid");
i++;
}
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
pr_info("%sTLR", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
pr_info("%sMulticast", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
pr_info("%sBIDI Target", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
pr_info("%sEEDP", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
pr_info("%sSnapshot Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
pr_info("%sDiag Trace Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
pr_info("%sDiag Extended Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
pr_info("%sTask Set Full", i ? "," : "");
i++;
}
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
pr_info("%sNCQ", i ? "," : "");
i++;
}
pr_info(")\n");
}
/**
* mpt3sas_base_update_missing_delay - change the missing delay timers
* @ioc: per adapter object
* @device_missing_delay: amount of time till device is reported missing
* @io_missing_delay: interval IO is returned when there is a missing device
*
* Return nothing.
*
* Passed on the command line, this function will modify the device missing
* delay, as well as the io missing delay. This should be called at driver
* load time.
*/
void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
u16 device_missing_delay, u8 io_missing_delay)
{
u16 dmd, dmd_new, dmd_orignal;
u8 io_missing_delay_original;
u16 sz;
Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
Mpi2ConfigReply_t mpi_reply;
u8 num_phys = 0;
u16 ioc_status;
mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
if (!num_phys)
return;
sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
sizeof(Mpi2SasIOUnit1PhyData_t));
sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
if (!sas_iounit_pg1) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
sas_iounit_pg1, sz))) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
/* device missing delay */
dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
dmd_orignal = dmd;
if (device_missing_delay > 0x7F) {
dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
device_missing_delay;
dmd = dmd / 16;
dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
} else
dmd = device_missing_delay;
sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
/* io missing delay */
io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
sz)) {
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd_new = (dmd &
MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd_new =
dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
ioc->name, dmd_orignal, dmd_new);
pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
ioc->name, io_missing_delay_original,
io_missing_delay);
ioc->device_missing_delay = dmd_new;
ioc->io_missing_delay = io_missing_delay;
}
out:
kfree(sas_iounit_pg1);
}
/**
* _base_static_config_pages - static start of day config pages
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2ConfigReply_t mpi_reply;
u32 iounit_pg1_flags;
mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
if (ioc->ir_firmware)
mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
&ioc->manu_pg10);
/*
* Ensure correct T10 PI operation if vendor left EEDPTagMode
* flag unset in NVDATA.
*/
mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
if (ioc->manu_pg11.EEDPTagMode == 0) {
pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
ioc->name);
ioc->manu_pg11.EEDPTagMode &= ~0x3;
ioc->manu_pg11.EEDPTagMode |= 0x1;
mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
&ioc->manu_pg11);
}
mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
_base_display_ioc_capabilities(ioc);
/*
* Enable task_set_full handling in iounit_pg1 when the
* facts capabilities indicate that its supported.
*/
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if ((ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
iounit_pg1_flags &=
~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
else
iounit_pg1_flags |=
MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
if (ioc->iounit_pg8.NumSensors)
ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
}
/**
* _base_release_memory_pools - release memory
* @ioc: per adapter object
*
* Free memory allocated from _base_allocate_memory_pools.
*
* Return nothing.
*/
static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
struct reply_post_struct *rps;
dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->request) {
pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
ioc->request, ioc->request_dma);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"request_pool(0x%p): free\n",
ioc->name, ioc->request));
ioc->request = NULL;
}
if (ioc->sense) {
pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
if (ioc->sense_dma_pool)
pci_pool_destroy(ioc->sense_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"sense_pool(0x%p): free\n",
ioc->name, ioc->sense));
ioc->sense = NULL;
}
if (ioc->reply) {
pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
if (ioc->reply_dma_pool)
pci_pool_destroy(ioc->reply_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_pool(0x%p): free\n",
ioc->name, ioc->reply));
ioc->reply = NULL;
}
if (ioc->reply_free) {
pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
ioc->reply_free_dma);
if (ioc->reply_free_dma_pool)
pci_pool_destroy(ioc->reply_free_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_free_pool(0x%p): free\n",
ioc->name, ioc->reply_free));
ioc->reply_free = NULL;
}
if (ioc->reply_post) {
do {
rps = &ioc->reply_post[i];
if (rps->reply_post_free) {
pci_pool_free(
ioc->reply_post_free_dma_pool,
rps->reply_post_free,
rps->reply_post_free_dma);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_post_free_pool(0x%p): free\n",
ioc->name, rps->reply_post_free));
rps->reply_post_free = NULL;
}
} while (ioc->rdpq_array_enable &&
(++i < ioc->reply_queue_count));
if (ioc->reply_post_free_dma_pool)
pci_pool_destroy(ioc->reply_post_free_dma_pool);
kfree(ioc->reply_post);
}
if (ioc->config_page) {
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"config_page(0x%p): free\n", ioc->name,
ioc->config_page));
pci_free_consistent(ioc->pdev, ioc->config_page_sz,
ioc->config_page, ioc->config_page_dma);
}
if (ioc->scsi_lookup) {
free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
ioc->scsi_lookup = NULL;
}
kfree(ioc->hpr_lookup);
kfree(ioc->internal_lookup);
if (ioc->chain_lookup) {
for (i = 0; i < ioc->chain_depth; i++) {
if (ioc->chain_lookup[i].chain_buffer)
pci_pool_free(ioc->chain_dma_pool,
ioc->chain_lookup[i].chain_buffer,
ioc->chain_lookup[i].chain_buffer_dma);
}
if (ioc->chain_dma_pool)
pci_pool_destroy(ioc->chain_dma_pool);
free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
ioc->chain_lookup = NULL;
}
}
/**
* _base_allocate_memory_pools - allocate start of day memory pools
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 success, anything else error
*/
static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
struct mpt3sas_facts *facts;
u16 max_sge_elements;
u16 chains_needed_per_io;
u32 sz, total_sz, reply_post_free_sz;
u32 retry_sz;
u16 max_request_credit;
unsigned short sg_tablesize;
u16 sge_size;
int i;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
retry_sz = 0;
facts = &ioc->facts;
/* command line tunables for max sgl entries */
if (max_sgl_entries != -1)
sg_tablesize = max_sgl_entries;
else {
if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
sg_tablesize = MPT2SAS_SG_DEPTH;
else
sg_tablesize = MPT3SAS_SG_DEPTH;
}
if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
sg_tablesize = min_t(unsigned short, sg_tablesize,
SG_MAX_SEGMENTS);
pr_warn(MPT3SAS_FMT
"sg_tablesize(%u) is bigger than kernel"
" defined SG_CHUNK_SIZE(%u)\n", ioc->name,
sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
}
ioc->shost->sg_tablesize = sg_tablesize;
ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
(facts->RequestCredit