blob: 9d79c4c3e256d21fbecb579bd73ef86cf3f332d8 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef _INTEL_GUC_H_
#define _INTEL_GUC_H_
#include "intel_guc_fwif.h"
#include "i915_guc_reg.h"
struct drm_i915_gem_request;
/*
* This structure primarily describes the GEM object shared with the GuC.
* The GEM object is held for the entire lifetime of our interaction with
* the GuC, being allocated before the GuC is loaded with its firmware.
* Because there's no way to update the address used by the GuC after
* initialisation, the shared object must stay pinned into the GGTT as
* long as the GuC is in use. We also keep the first page (only) mapped
* into kernel address space, as it includes shared data that must be
* updated on every request submission.
*
* The single GEM object described here is actually made up of several
* separate areas, as far as the GuC is concerned. The first page (kept
* kmap'd) includes the "process decriptor" which holds sequence data for
* the doorbell, and one cacheline which actually *is* the doorbell; a
* write to this will "ring the doorbell" (i.e. send an interrupt to the
* GuC). The subsequent pages of the client object constitute the work
* queue (a circular array of work items), again described in the process
* descriptor. Work queue pages are mapped momentarily as required.
*
* Finally, we also keep a few statistics here, including the number of
* submissions to each engine, and a record of the last submission failure
* (if any).
*/
struct i915_guc_client {
struct drm_i915_gem_object *client_obj;
void *client_base; /* first page (only) of above */
struct intel_context *owner;
struct intel_guc *guc;
uint32_t priority;
uint32_t ctx_index;
uint32_t proc_desc_offset;
uint32_t doorbell_offset;
uint32_t cookie;
uint16_t doorbell_id;
uint16_t padding; /* Maintain alignment */
uint32_t wq_offset;
uint32_t wq_size;
uint32_t wq_tail;
uint32_t unused; /* Was 'wq_head' */
/* GuC submission statistics & status */
uint64_t submissions[GUC_MAX_ENGINES_NUM];
uint32_t q_fail;
uint32_t b_fail;
int retcode;
int spare; /* pad to 32 DWords */
};
enum intel_guc_fw_status {
GUC_FIRMWARE_FAIL = -1,
GUC_FIRMWARE_NONE = 0,
GUC_FIRMWARE_PENDING,
GUC_FIRMWARE_SUCCESS
};
/*
* This structure encapsulates all the data needed during the process
* of fetching, caching, and loading the firmware image into the GuC.
*/
struct intel_guc_fw {
struct drm_device * guc_dev;
const char * guc_fw_path;
size_t guc_fw_size;
struct drm_i915_gem_object * guc_fw_obj;
enum intel_guc_fw_status guc_fw_fetch_status;
enum intel_guc_fw_status guc_fw_load_status;
uint16_t guc_fw_major_wanted;
uint16_t guc_fw_minor_wanted;
uint16_t guc_fw_major_found;
uint16_t guc_fw_minor_found;
uint32_t header_size;
uint32_t header_offset;
uint32_t rsa_size;
uint32_t rsa_offset;
uint32_t ucode_size;
uint32_t ucode_offset;
};
struct intel_guc {
struct intel_guc_fw guc_fw;
uint32_t log_flags;
struct drm_i915_gem_object *log_obj;
struct drm_i915_gem_object *ads_obj;
struct drm_i915_gem_object *ctx_pool_obj;
struct ida ctx_ids;
struct i915_guc_client *execbuf_client;
DECLARE_BITMAP(doorbell_bitmap, GUC_MAX_DOORBELLS);
uint32_t db_cacheline; /* Cyclic counter mod pagesize */
/* Action status & statistics */
uint64_t action_count; /* Total commands issued */
uint32_t action_cmd; /* Last command word */
uint32_t action_status; /* Last return status */
uint32_t action_fail; /* Total number of failures */
int32_t action_err; /* Last error code */
uint64_t submissions[GUC_MAX_ENGINES_NUM];
uint32_t last_seqno[GUC_MAX_ENGINES_NUM];
};
/* intel_guc_loader.c */
extern void intel_guc_ucode_init(struct drm_device *dev);
extern int intel_guc_ucode_load(struct drm_device *dev);
extern void intel_guc_ucode_fini(struct drm_device *dev);
extern const char *intel_guc_fw_status_repr(enum intel_guc_fw_status status);
extern int intel_guc_suspend(struct drm_device *dev);
extern int intel_guc_resume(struct drm_device *dev);
/* i915_guc_submission.c */
int i915_guc_submission_init(struct drm_device *dev);
int i915_guc_submission_enable(struct drm_device *dev);
int i915_guc_submit(struct i915_guc_client *client,
struct drm_i915_gem_request *rq);
void i915_guc_submission_disable(struct drm_device *dev);
void i915_guc_submission_fini(struct drm_device *dev);
int i915_guc_wq_check_space(struct i915_guc_client *client);
#endif