blob: 9fea49f6e667c9b4093bfaa6c59f725375b9760d [file] [log] [blame]
/*
* machine_kexec.c - handle transition of Linux booting another kernel
* Copyright (C) 2002-2003 Eric Biederman <ebiederm@xmission.com>
*
* GameCube/ppc32 port Copyright (C) 2004 Albert Herranz
* LANDISK/sh4 supported by kogiidena
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/numa.h>
#include <linux/ftrace.h>
#include <linux/suspend.h>
#include <linux/memblock.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#include <asm/io.h>
#include <asm/cacheflush.h>
#include <asm/sh_bios.h>
#include <asm/reboot.h>
typedef void (*relocate_new_kernel_t)(unsigned long indirection_page,
unsigned long reboot_code_buffer,
unsigned long start_address);
extern const unsigned char relocate_new_kernel[];
extern const unsigned int relocate_new_kernel_size;
extern void *vbr_base;
void native_machine_crash_shutdown(struct pt_regs *regs)
{
/* Nothing to do for UP, but definitely broken for SMP.. */
}
/*
* Do what every setup is needed on image and the
* reboot code buffer to allow us to avoid allocations
* later.
*/
int machine_kexec_prepare(struct kimage *image)
{
return 0;
}
void machine_kexec_cleanup(struct kimage *image)
{
}
static void kexec_info(struct kimage *image)
{
int i;
printk("kexec information\n");
for (i = 0; i < image->nr_segments; i++) {
printk(" segment[%d]: 0x%08x - 0x%08x (0x%08x)\n",
i,
(unsigned int)image->segment[i].mem,
(unsigned int)image->segment[i].mem +
image->segment[i].memsz,
(unsigned int)image->segment[i].memsz);
}
printk(" start : 0x%08x\n\n", (unsigned int)image->start);
}
/*
* Do not allocate memory (or fail in any way) in machine_kexec().
* We are past the point of no return, committed to rebooting now.
*/
void machine_kexec(struct kimage *image)
{
unsigned long page_list;
unsigned long reboot_code_buffer;
relocate_new_kernel_t rnk;
unsigned long entry;
unsigned long *ptr;
int save_ftrace_enabled;
/*
* Nicked from the mips version of machine_kexec():
* The generic kexec code builds a page list with physical
* addresses. Use phys_to_virt() to convert them to virtual.
*/
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
ptr = (entry & IND_INDIRECTION) ?
phys_to_virt(entry & PAGE_MASK) : ptr + 1) {
if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION ||
*ptr & IND_DESTINATION)
*ptr = (unsigned long) phys_to_virt(*ptr);
}
#ifdef CONFIG_KEXEC_JUMP
if (image->preserve_context)
save_processor_state();
#endif
save_ftrace_enabled = __ftrace_enabled_save();
/* Interrupts aren't acceptable while we reboot */
local_irq_disable();
page_list = image->head;
/* we need both effective and real address here */
reboot_code_buffer =
(unsigned long)page_address(image->control_code_page);
/* copy our kernel relocation code to the control code page */
memcpy((void *)reboot_code_buffer, relocate_new_kernel,
relocate_new_kernel_size);
kexec_info(image);
flush_cache_all();
sh_bios_vbr_reload();
/* now call it */
rnk = (relocate_new_kernel_t) reboot_code_buffer;
(*rnk)(page_list, reboot_code_buffer,
(unsigned long)phys_to_virt(image->start));
#ifdef CONFIG_KEXEC_JUMP
asm volatile("ldc %0, vbr" : : "r" (&vbr_base) : "memory");
if (image->preserve_context)
restore_processor_state();
/* Convert page list back to physical addresses, what a mess. */
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
ptr = (*ptr & IND_INDIRECTION) ?
phys_to_virt(*ptr & PAGE_MASK) : ptr + 1) {
if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION ||
*ptr & IND_DESTINATION)
*ptr = virt_to_phys(*ptr);
}
#endif
__ftrace_enabled_restore(save_ftrace_enabled);
}
void arch_crash_save_vmcoreinfo(void)
{
#ifdef CONFIG_NUMA
VMCOREINFO_SYMBOL(node_data);
VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
#endif
#ifdef CONFIG_X2TLB
VMCOREINFO_CONFIG(X2TLB);
#endif
}
void __init reserve_crashkernel(void)
{
unsigned long long crash_size, crash_base;
int ret;
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
&crash_size, &crash_base);
if (ret == 0 && crash_size > 0) {
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
}
if (crashk_res.end == crashk_res.start)
goto disable;
crash_size = PAGE_ALIGN(resource_size(&crashk_res));
if (!crashk_res.start) {
unsigned long max = memblock_end_of_DRAM() - memory_limit;
crashk_res.start = __memblock_alloc_base(crash_size, PAGE_SIZE, max);
if (!crashk_res.start) {
pr_err("crashkernel allocation failed\n");
goto disable;
}
} else {
ret = memblock_reserve(crashk_res.start, crash_size);
if (unlikely(ret < 0)) {
pr_err("crashkernel reservation failed - "
"memory is in use\n");
goto disable;
}
}
crashk_res.end = crashk_res.start + crash_size - 1;
/*
* Crash kernel trumps memory limit
*/
if ((memblock_end_of_DRAM() - memory_limit) <= crashk_res.end) {
memory_limit = 0;
pr_info("Disabled memory limit for crashkernel\n");
}
pr_info("Reserving %ldMB of memory at 0x%08lx "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crashk_res.start),
(unsigned long)(memblock_phys_mem_size() >> 20));
return;
disable:
crashk_res.start = crashk_res.end = 0;
}