blob: ed77fbfa477404c477407f60567d2b19197e0805 [file] [log] [blame]
/*
* linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
*
* Copyright (c) 2005, Advanced Micro Devices, Inc.
*
* Developed with help from the 2.4.30 MMC AU1XXX controller including
* the following copyright notices:
* Copyright (c) 2003-2004 Embedded Edge, LLC.
* Portions Copyright (C) 2002 Embedix, Inc
* Copyright 2002 Hewlett-Packard Company
* 2.6 version of this driver inspired by:
* (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
* All Rights Reserved.
* (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* Why don't we use the SD controllers' carddetect feature?
*
* From the AU1100 MMC application guide:
* If the Au1100-based design is intended to support both MultiMediaCards
* and 1- or 4-data bit SecureDigital cards, then the solution is to
* connect a weak (560KOhm) pull-up resistor to connector pin 1.
* In doing so, a MMC card never enters SPI-mode communications,
* but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
* (the low to high transition will not occur).
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/leds.h>
#include <linux/mmc/host.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1100_mmc.h>
#define DRIVER_NAME "au1xxx-mmc"
/* Set this to enable special debugging macros */
/* #define DEBUG */
#ifdef DEBUG
#define DBG(fmt, idx, args...) \
pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args)
#else
#define DBG(fmt, idx, args...) do {} while (0)
#endif
/* Hardware definitions */
#define AU1XMMC_DESCRIPTOR_COUNT 1
/* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
#define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff
#define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff
#define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
/* This gives us a hard value for the stop command that we can write directly
* to the command register.
*/
#define STOP_CMD \
(SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
/* This is the set of interrupts that we configure by default. */
#define AU1XMMC_INTERRUPTS \
(SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \
SD_CONFIG_CR | SD_CONFIG_I)
/* The poll event (looking for insert/remove events runs twice a second. */
#define AU1XMMC_DETECT_TIMEOUT (HZ/2)
struct au1xmmc_host {
struct mmc_host *mmc;
struct mmc_request *mrq;
u32 flags;
void __iomem *iobase;
u32 clock;
u32 bus_width;
u32 power_mode;
int status;
struct {
int len;
int dir;
} dma;
struct {
int index;
int offset;
int len;
} pio;
u32 tx_chan;
u32 rx_chan;
int irq;
struct tasklet_struct finish_task;
struct tasklet_struct data_task;
struct au1xmmc_platform_data *platdata;
struct platform_device *pdev;
struct resource *ioarea;
struct clk *clk;
};
/* Status flags used by the host structure */
#define HOST_F_XMIT 0x0001
#define HOST_F_RECV 0x0002
#define HOST_F_DMA 0x0010
#define HOST_F_DBDMA 0x0020
#define HOST_F_ACTIVE 0x0100
#define HOST_F_STOP 0x1000
#define HOST_S_IDLE 0x0001
#define HOST_S_CMD 0x0002
#define HOST_S_DATA 0x0003
#define HOST_S_STOP 0x0004
/* Easy access macros */
#define HOST_STATUS(h) ((h)->iobase + SD_STATUS)
#define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG)
#define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE)
#define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT)
#define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT)
#define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG)
#define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE)
#define HOST_CMD(h) ((h)->iobase + SD_CMD)
#define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2)
#define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT)
#define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG)
#define DMA_CHANNEL(h) \
(((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
static inline int has_dbdma(void)
{
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1200:
case ALCHEMY_CPU_AU1300:
return 1;
default:
return 0;
}
}
static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
{
u32 val = __raw_readl(HOST_CONFIG(host));
val |= mask;
__raw_writel(val, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static inline void FLUSH_FIFO(struct au1xmmc_host *host)
{
u32 val = __raw_readl(HOST_CONFIG2(host));
__raw_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
mdelay(1);
/* SEND_STOP will turn off clock control - this re-enables it */
val &= ~SD_CONFIG2_DF;
__raw_writel(val, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
}
static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
{
u32 val = __raw_readl(HOST_CONFIG(host));
val &= ~mask;
__raw_writel(val, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static inline void SEND_STOP(struct au1xmmc_host *host)
{
u32 config2;
WARN_ON(host->status != HOST_S_DATA);
host->status = HOST_S_STOP;
config2 = __raw_readl(HOST_CONFIG2(host));
__raw_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
/* Send the stop command */
__raw_writel(STOP_CMD, HOST_CMD(host));
wmb(); /* drain writebuffer */
}
static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
{
if (host->platdata && host->platdata->set_power)
host->platdata->set_power(host->mmc, state);
}
static int au1xmmc_card_inserted(struct mmc_host *mmc)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (host->platdata && host->platdata->card_inserted)
return !!host->platdata->card_inserted(host->mmc);
return -ENOSYS;
}
static int au1xmmc_card_readonly(struct mmc_host *mmc)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (host->platdata && host->platdata->card_readonly)
return !!host->platdata->card_readonly(mmc);
return -ENOSYS;
}
static void au1xmmc_finish_request(struct au1xmmc_host *host)
{
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
host->dma.len = 0;
host->dma.dir = 0;
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = 0;
host->status = HOST_S_IDLE;
mmc_request_done(host->mmc, mrq);
}
static void au1xmmc_tasklet_finish(unsigned long param)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) param;
au1xmmc_finish_request(host);
}
static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
struct mmc_command *cmd, struct mmc_data *data)
{
u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
break;
case MMC_RSP_R1:
mmccmd |= SD_CMD_RT_1;
break;
case MMC_RSP_R1B:
mmccmd |= SD_CMD_RT_1B;
break;
case MMC_RSP_R2:
mmccmd |= SD_CMD_RT_2;
break;
case MMC_RSP_R3:
mmccmd |= SD_CMD_RT_3;
break;
default:
pr_info("au1xmmc: unhandled response type %02x\n",
mmc_resp_type(cmd));
return -EINVAL;
}
if (data) {
if (data->flags & MMC_DATA_READ) {
if (data->blocks > 1)
mmccmd |= SD_CMD_CT_4;
else
mmccmd |= SD_CMD_CT_2;
} else if (data->flags & MMC_DATA_WRITE) {
if (data->blocks > 1)
mmccmd |= SD_CMD_CT_3;
else
mmccmd |= SD_CMD_CT_1;
}
}
__raw_writel(cmd->arg, HOST_CMDARG(host));
wmb(); /* drain writebuffer */
if (wait)
IRQ_OFF(host, SD_CONFIG_CR);
__raw_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
wmb(); /* drain writebuffer */
/* Wait for the command to go on the line */
while (__raw_readl(HOST_CMD(host)) & SD_CMD_GO)
/* nop */;
/* Wait for the command to come back */
if (wait) {
u32 status = __raw_readl(HOST_STATUS(host));
while (!(status & SD_STATUS_CR))
status = __raw_readl(HOST_STATUS(host));
/* Clear the CR status */
__raw_writel(SD_STATUS_CR, HOST_STATUS(host));
IRQ_ON(host, SD_CONFIG_CR);
}
return 0;
}
static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data;
u32 crc;
WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
if (host->mrq == NULL)
return;
data = mrq->cmd->data;
if (status == 0)
status = __raw_readl(HOST_STATUS(host));
/* The transaction is really over when the SD_STATUS_DB bit is clear */
while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
status = __raw_readl(HOST_STATUS(host));
data->error = 0;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
/* Process any errors */
crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
if (host->flags & HOST_F_XMIT)
crc |= ((status & 0x07) == 0x02) ? 0 : 1;
if (crc)
data->error = -EILSEQ;
/* Clear the CRC bits */
__raw_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
data->bytes_xfered = 0;
if (!data->error) {
if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
u32 chan = DMA_CHANNEL(host);
chan_tab_t *c = *((chan_tab_t **)chan);
au1x_dma_chan_t *cp = c->chan_ptr;
data->bytes_xfered = cp->ddma_bytecnt;
} else
data->bytes_xfered =
(data->blocks * data->blksz) - host->pio.len;
}
au1xmmc_finish_request(host);
}
static void au1xmmc_tasklet_data(unsigned long param)
{
struct au1xmmc_host *host = (struct au1xmmc_host *)param;
u32 status = __raw_readl(HOST_STATUS(host));
au1xmmc_data_complete(host, status);
}
#define AU1XMMC_MAX_TRANSFER 8
static void au1xmmc_send_pio(struct au1xmmc_host *host)
{
struct mmc_data *data;
int sg_len, max, count;
unsigned char *sg_ptr, val;
u32 status;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_XMIT))
return;
/* This is the pointer to the data buffer */
sg = &data->sg[host->pio.index];
sg_ptr = sg_virt(sg) + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = data->sg[host->pio.index].length - host->pio.offset;
/* Check if we need less than the size of the sg_buffer */
max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
if (max > AU1XMMC_MAX_TRANSFER)
max = AU1XMMC_MAX_TRANSFER;
for (count = 0; count < max; count++) {
status = __raw_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_TH))
break;
val = *sg_ptr++;
__raw_writel((unsigned long)val, HOST_TXPORT(host));
wmb(); /* drain writebuffer */
}
host->pio.len -= count;
host->pio.offset += count;
if (count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
IRQ_OFF(host, SD_CONFIG_TH);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
static void au1xmmc_receive_pio(struct au1xmmc_host *host)
{
struct mmc_data *data;
int max, count, sg_len = 0;
unsigned char *sg_ptr = NULL;
u32 status, val;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_RECV))
return;
max = host->pio.len;
if (host->pio.index < host->dma.len) {
sg = &data->sg[host->pio.index];
sg_ptr = sg_virt(sg) + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
/* Check if we need less than the size of the sg_buffer */
if (sg_len < max)
max = sg_len;
}
if (max > AU1XMMC_MAX_TRANSFER)
max = AU1XMMC_MAX_TRANSFER;
for (count = 0; count < max; count++) {
status = __raw_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_NE))
break;
if (status & SD_STATUS_RC) {
DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
host->pio.len, count);
break;
}
if (status & SD_STATUS_RO) {
DBG("RX Overrun [%d + %d]\n", host->pdev->id,
host->pio.len, count);
break;
}
else if (status & SD_STATUS_RU) {
DBG("RX Underrun [%d + %d]\n", host->pdev->id,
host->pio.len, count);
break;
}
val = __raw_readl(HOST_RXPORT(host));
if (sg_ptr)
*sg_ptr++ = (unsigned char)(val & 0xFF);
}
host->pio.len -= count;
host->pio.offset += count;
if (sg_len && count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
/* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
IRQ_OFF(host, SD_CONFIG_NE);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
/* This is called when a command has been completed - grab the response
* and check for errors. Then start the data transfer if it is indicated.
*/
static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd;
u32 r[4];
int i, trans;
if (!host->mrq)
return;
cmd = mrq->cmd;
cmd->error = 0;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
r[0] = __raw_readl(host->iobase + SD_RESP3);
r[1] = __raw_readl(host->iobase + SD_RESP2);
r[2] = __raw_readl(host->iobase + SD_RESP1);
r[3] = __raw_readl(host->iobase + SD_RESP0);
/* The CRC is omitted from the response, so really
* we only got 120 bytes, but the engine expects
* 128 bits, so we have to shift things up.
*/
for (i = 0; i < 4; i++) {
cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
if (i != 3)
cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
}
} else {
/* Techincally, we should be getting all 48 bits of
* the response (SD_RESP1 + SD_RESP2), but because
* our response omits the CRC, our data ends up
* being shifted 8 bits to the right. In this case,
* that means that the OSR data starts at bit 31,
* so we can just read RESP0 and return that.
*/
cmd->resp[0] = __raw_readl(host->iobase + SD_RESP0);
}
}
/* Figure out errors */
if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
cmd->error = -EILSEQ;
trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
if (!trans || cmd->error) {
IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF);
tasklet_schedule(&host->finish_task);
return;
}
host->status = HOST_S_DATA;
if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) {
u32 channel = DMA_CHANNEL(host);
/* Start the DBDMA as soon as the buffer gets something in it */
if (host->flags & HOST_F_RECV) {
u32 mask = SD_STATUS_DB | SD_STATUS_NE;
while((status & mask) != mask)
status = __raw_readl(HOST_STATUS(host));
}
au1xxx_dbdma_start(channel);
}
}
static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
{
unsigned int pbus = clk_get_rate(host->clk);
unsigned int divisor = ((pbus / rate) / 2) - 1;
u32 config;
config = __raw_readl(HOST_CONFIG(host));
config &= ~(SD_CONFIG_DIV);
config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
__raw_writel(config, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static int au1xmmc_prepare_data(struct au1xmmc_host *host,
struct mmc_data *data)
{
int datalen = data->blocks * data->blksz;
if (data->flags & MMC_DATA_READ)
host->flags |= HOST_F_RECV;
else
host->flags |= HOST_F_XMIT;
if (host->mrq->stop)
host->flags |= HOST_F_STOP;
host->dma.dir = DMA_BIDIRECTIONAL;
host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma.dir);
if (host->dma.len == 0)
return -ETIMEDOUT;
__raw_writel(data->blksz - 1, HOST_BLKSIZE(host));
if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
int i;
u32 channel = DMA_CHANNEL(host);
au1xxx_dbdma_stop(channel);
for (i = 0; i < host->dma.len; i++) {
u32 ret = 0, flags = DDMA_FLAGS_NOIE;
struct scatterlist *sg = &data->sg[i];
int sg_len = sg->length;
int len = (datalen > sg_len) ? sg_len : datalen;
if (i == host->dma.len - 1)
flags = DDMA_FLAGS_IE;
if (host->flags & HOST_F_XMIT) {
ret = au1xxx_dbdma_put_source(channel,
sg_phys(sg), len, flags);
} else {
ret = au1xxx_dbdma_put_dest(channel,
sg_phys(sg), len, flags);
}
if (!ret)
goto dataerr;
datalen -= len;
}
} else {
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = datalen;
if (host->flags & HOST_F_XMIT)
IRQ_ON(host, SD_CONFIG_TH);
else
IRQ_ON(host, SD_CONFIG_NE);
/* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
}
return 0;
dataerr:
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
host->dma.dir);
return -ETIMEDOUT;
}
/* This actually starts a command or data transaction */
static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
{
struct au1xmmc_host *host = mmc_priv(mmc);
int ret = 0;
WARN_ON(irqs_disabled());
WARN_ON(host->status != HOST_S_IDLE);
host->mrq = mrq;
host->status = HOST_S_CMD;
/* fail request immediately if no card is present */
if (0 == au1xmmc_card_inserted(mmc)) {
mrq->cmd->error = -ENOMEDIUM;
au1xmmc_finish_request(host);
return;
}
if (mrq->data) {
FLUSH_FIFO(host);
ret = au1xmmc_prepare_data(host, mrq->data);
}
if (!ret)
ret = au1xmmc_send_command(host, 0, mrq->cmd, mrq->data);
if (ret) {
mrq->cmd->error = ret;
au1xmmc_finish_request(host);
}
}
static void au1xmmc_reset_controller(struct au1xmmc_host *host)
{
/* Apply the clock */
__raw_writel(SD_ENABLE_CE, HOST_ENABLE(host));
wmb(); /* drain writebuffer */
mdelay(1);
__raw_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
wmb(); /* drain writebuffer */
mdelay(5);
__raw_writel(~0, HOST_STATUS(host));
wmb(); /* drain writebuffer */
__raw_writel(0, HOST_BLKSIZE(host));
__raw_writel(0x001fffff, HOST_TIMEOUT(host));
wmb(); /* drain writebuffer */
__raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
__raw_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
mdelay(1);
__raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
/* Configure interrupts */
__raw_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct au1xmmc_host *host = mmc_priv(mmc);
u32 config2;
if (ios->power_mode == MMC_POWER_OFF)
au1xmmc_set_power(host, 0);
else if (ios->power_mode == MMC_POWER_ON) {
au1xmmc_set_power(host, 1);
}
if (ios->clock && ios->clock != host->clock) {
au1xmmc_set_clock(host, ios->clock);
host->clock = ios->clock;
}
config2 = __raw_readl(HOST_CONFIG2(host));
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
config2 |= SD_CONFIG2_BB;
break;
case MMC_BUS_WIDTH_4:
config2 &= ~SD_CONFIG2_BB;
config2 |= SD_CONFIG2_WB;
break;
case MMC_BUS_WIDTH_1:
config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB);
break;
}
__raw_writel(config2, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
}
#define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
#define STATUS_DATA_IN (SD_STATUS_NE)
#define STATUS_DATA_OUT (SD_STATUS_TH)
static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
{
struct au1xmmc_host *host = dev_id;
u32 status;
status = __raw_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_I))
return IRQ_NONE; /* not ours */
if (status & SD_STATUS_SI) /* SDIO */
mmc_signal_sdio_irq(host->mmc);
if (host->mrq && (status & STATUS_TIMEOUT)) {
if (status & SD_STATUS_RAT)
host->mrq->cmd->error = -ETIMEDOUT;
else if (status & SD_STATUS_DT)
host->mrq->data->error = -ETIMEDOUT;
/* In PIO mode, interrupts might still be enabled */
IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
/* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
tasklet_schedule(&host->finish_task);
}
#if 0
else if (status & SD_STATUS_DD) {
/* Sometimes we get a DD before a NE in PIO mode */
if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
au1xmmc_receive_pio(host);
else {
au1xmmc_data_complete(host, status);
/* tasklet_schedule(&host->data_task); */
}
}
#endif
else if (status & SD_STATUS_CR) {
if (host->status == HOST_S_CMD)
au1xmmc_cmd_complete(host, status);
} else if (!(host->flags & HOST_F_DMA)) {
if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
au1xmmc_send_pio(host);
else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
au1xmmc_receive_pio(host);
} else if (status & 0x203F3C70) {
DBG("Unhandled status %8.8x\n", host->pdev->id,
status);
}
__raw_writel(status, HOST_STATUS(host));
wmb(); /* drain writebuffer */
return IRQ_HANDLED;
}
/* 8bit memory DMA device */
static dbdev_tab_t au1xmmc_mem_dbdev = {
.dev_id = DSCR_CMD0_ALWAYS,
.dev_flags = DEV_FLAGS_ANYUSE,
.dev_tsize = 0,
.dev_devwidth = 8,
.dev_physaddr = 0x00000000,
.dev_intlevel = 0,
.dev_intpolarity = 0,
};
static int memid;
static void au1xmmc_dbdma_callback(int irq, void *dev_id)
{
struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
/* Avoid spurious interrupts */
if (!host->mrq)
return;
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
{
struct resource *res;
int txid, rxid;
res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
if (!res)
return -ENODEV;
txid = res->start;
res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
if (!res)
return -ENODEV;
rxid = res->start;
if (!memid)
return -ENODEV;
host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
au1xmmc_dbdma_callback, (void *)host);
if (!host->tx_chan) {
dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
return -ENODEV;
}
host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
au1xmmc_dbdma_callback, (void *)host);
if (!host->rx_chan) {
dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
au1xxx_dbdma_chan_free(host->tx_chan);
return -ENODEV;
}
au1xxx_dbdma_set_devwidth(host->tx_chan, 8);
au1xxx_dbdma_set_devwidth(host->rx_chan, 8);
au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT);
au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT);
/* DBDMA is good to go */
host->flags |= HOST_F_DMA | HOST_F_DBDMA;
return 0;
}
static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
{
if (host->flags & HOST_F_DMA) {
host->flags &= ~HOST_F_DMA;
au1xxx_dbdma_chan_free(host->tx_chan);
au1xxx_dbdma_chan_free(host->rx_chan);
}
}
static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (en)
IRQ_ON(host, SD_CONFIG_SI);
else
IRQ_OFF(host, SD_CONFIG_SI);
}
static const struct mmc_host_ops au1xmmc_ops = {
.request = au1xmmc_request,
.set_ios = au1xmmc_set_ios,
.get_ro = au1xmmc_card_readonly,
.get_cd = au1xmmc_card_inserted,
.enable_sdio_irq = au1xmmc_enable_sdio_irq,
};
static int au1xmmc_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct au1xmmc_host *host;
struct resource *r;
int ret, iflag;
mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "no memory for mmc_host\n");
ret = -ENOMEM;
goto out0;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->platdata = pdev->dev.platform_data;
host->pdev = pdev;
ret = -ENODEV;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "no mmio defined\n");
goto out1;
}
host->ioarea = request_mem_region(r->start, resource_size(r),
pdev->name);
if (!host->ioarea) {
dev_err(&pdev->dev, "mmio already in use\n");
goto out1;
}
host->iobase = ioremap(r->start, 0x3c);
if (!host->iobase) {
dev_err(&pdev->dev, "cannot remap mmio\n");
goto out2;
}
r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!r) {
dev_err(&pdev->dev, "no IRQ defined\n");
goto out3;
}
host->irq = r->start;
mmc->ops = &au1xmmc_ops;
mmc->f_min = 450000;
mmc->f_max = 24000000;
mmc->max_blk_size = 2048;
mmc->max_blk_count = 512;
mmc->ocr_avail = AU1XMMC_OCR;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT;
iflag = IRQF_SHARED; /* Au1100/Au1200: one int for both ctrls */
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1100:
mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE;
break;
case ALCHEMY_CPU_AU1200:
mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
break;
case ALCHEMY_CPU_AU1300:
iflag = 0; /* nothing is shared */
mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
mmc->f_max = 52000000;
if (host->ioarea->start == AU1100_SD0_PHYS_ADDR)
mmc->caps |= MMC_CAP_8_BIT_DATA;
break;
}
ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host);
if (ret) {
dev_err(&pdev->dev, "cannot grab IRQ\n");
goto out3;
}
host->clk = clk_get(&pdev->dev, ALCHEMY_PERIPH_CLK);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "cannot find clock\n");
ret = PTR_ERR(host->clk);
goto out_irq;
}
ret = clk_prepare_enable(host->clk);
if (ret) {
dev_err(&pdev->dev, "cannot enable clock\n");
goto out_clk;
}
host->status = HOST_S_IDLE;
/* board-specific carddetect setup, if any */
if (host->platdata && host->platdata->cd_setup) {
ret = host->platdata->cd_setup(mmc, 1);
if (ret) {
dev_warn(&pdev->dev, "board CD setup failed\n");
mmc->caps |= MMC_CAP_NEEDS_POLL;
}
} else
mmc->caps |= MMC_CAP_NEEDS_POLL;
/* platform may not be able to use all advertised caps */
if (host->platdata)
mmc->caps &= ~(host->platdata->mask_host_caps);
tasklet_init(&host->data_task, au1xmmc_tasklet_data,
(unsigned long)host);
tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
(unsigned long)host);
if (has_dbdma()) {
ret = au1xmmc_dbdma_init(host);
if (ret)
pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n");
}
#ifdef CONFIG_LEDS_CLASS
if (host->platdata && host->platdata->led) {
struct led_classdev *led = host->platdata->led;
led->name = mmc_hostname(mmc);
led->brightness = LED_OFF;
led->default_trigger = mmc_hostname(mmc);
ret = led_classdev_register(mmc_dev(mmc), led);
if (ret)
goto out5;
}
#endif
au1xmmc_reset_controller(host);
ret = mmc_add_host(mmc);
if (ret) {
dev_err(&pdev->dev, "cannot add mmc host\n");
goto out6;
}
platform_set_drvdata(pdev, host);
pr_info(DRIVER_NAME ": MMC Controller %d set up at %p"
" (mode=%s)\n", pdev->id, host->iobase,
host->flags & HOST_F_DMA ? "dma" : "pio");
return 0; /* all ok */
out6:
#ifdef CONFIG_LEDS_CLASS
if (host->platdata && host->platdata->led)
led_classdev_unregister(host->platdata->led);
out5:
#endif
__raw_writel(0, HOST_ENABLE(host));
__raw_writel(0, HOST_CONFIG(host));
__raw_writel(0, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
if (host->flags & HOST_F_DBDMA)
au1xmmc_dbdma_shutdown(host);
tasklet_kill(&host->data_task);
tasklet_kill(&host->finish_task);
if (host->platdata && host->platdata->cd_setup &&
!(mmc->caps & MMC_CAP_NEEDS_POLL))
host->platdata->cd_setup(mmc, 0);
out_clk:
clk_disable_unprepare(host->clk);
clk_put(host->clk);
out_irq:
free_irq(host->irq, host);
out3:
iounmap((void *)host->iobase);
out2:
release_resource(host->ioarea);
kfree(host->ioarea);
out1:
mmc_free_host(mmc);
out0:
return ret;
}
static int au1xmmc_remove(struct platform_device *pdev)
{
struct au1xmmc_host *host = platform_get_drvdata(pdev);
if (host) {
mmc_remove_host(host->mmc);
#ifdef CONFIG_LEDS_CLASS
if (host->platdata && host->platdata->led)
led_classdev_unregister(host->platdata->led);
#endif
if (host->platdata && host->platdata->cd_setup &&
!(host->mmc->caps & MMC_CAP_NEEDS_POLL))
host->platdata->cd_setup(host->mmc, 0);
__raw_writel(0, HOST_ENABLE(host));
__raw_writel(0, HOST_CONFIG(host));
__raw_writel(0, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
tasklet_kill(&host->data_task);
tasklet_kill(&host->finish_task);
if (host->flags & HOST_F_DBDMA)
au1xmmc_dbdma_shutdown(host);
au1xmmc_set_power(host, 0);
clk_disable_unprepare(host->clk);
clk_put(host->clk);
free_irq(host->irq, host);
iounmap((void *)host->iobase);
release_resource(host->ioarea);
kfree(host->ioarea);
mmc_free_host(host->mmc);
}
return 0;
}
#ifdef CONFIG_PM
static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
{
struct au1xmmc_host *host = platform_get_drvdata(pdev);
__raw_writel(0, HOST_CONFIG2(host));
__raw_writel(0, HOST_CONFIG(host));
__raw_writel(0xffffffff, HOST_STATUS(host));
__raw_writel(0, HOST_ENABLE(host));
wmb(); /* drain writebuffer */
return 0;
}
static int au1xmmc_resume(struct platform_device *pdev)
{
struct au1xmmc_host *host = platform_get_drvdata(pdev);
au1xmmc_reset_controller(host);
return 0;
}
#else
#define au1xmmc_suspend NULL
#define au1xmmc_resume NULL
#endif
static struct platform_driver au1xmmc_driver = {
.probe = au1xmmc_probe,
.remove = au1xmmc_remove,
.suspend = au1xmmc_suspend,
.resume = au1xmmc_resume,
.driver = {
.name = DRIVER_NAME,
},
};
static int __init au1xmmc_init(void)
{
if (has_dbdma()) {
/* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
* of 8 bits. And since devices are shared, we need to create
* our own to avoid freaking out other devices.
*/
memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
if (!memid)
pr_err("au1xmmc: cannot add memory dbdma\n");
}
return platform_driver_register(&au1xmmc_driver);
}
static void __exit au1xmmc_exit(void)
{
if (has_dbdma() && memid)
au1xxx_ddma_del_device(memid);
platform_driver_unregister(&au1xmmc_driver);
}
module_init(au1xmmc_init);
module_exit(au1xmmc_exit);
MODULE_AUTHOR("Advanced Micro Devices, Inc");
MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:au1xxx-mmc");