blob: c2ff60324ee80ba23d45b9f92490a5baf2a8ed6c [file] [log] [blame]
/*
* Copyright (C) 2011-12 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/irqdomain.h>
#include <linux/irqchip.h>
#include <asm/irq.h>
#include <asm/board/board_config.h>
#include <asm/board/platform.h>
#include <asm/board/mem_check.h>
//#include <asm/hardware.h>
#ifdef CONFIG_ARCH_QSR1000
#include <asm/io.h>
#endif
/*
* Early Hardware specific Interrupt setup
* -Platform independent, needed for each CPU (not foldable into init_IRQ)
* -Called very early (start_kernel -> setup_arch -> setup_processor)
*
* what it does ?
* -Optionally, setup the High priority Interrupts as Level 2 IRQs
*/
void arc_init_IRQ(void)
{
int level_mask = 0;
/* Is timer high priority Interrupt (Level2 in ARCompact jargon) */
level_mask |= IS_ENABLED(CONFIG_ARC_COMPACT_IRQ_LEVELS) << TIMER0_IRQ;
/*
* Write to register, even if no LV2 IRQs configured to reset it
* in case bootloader had mucked with it
*/
write_aux_reg(AUX_IRQ_LEV, level_mask);
if (level_mask)
pr_info("Level-2 interrupts bitset %x\n", level_mask);
}
/*
* ARC700 core includes a simple on-chip intc supporting
* -per IRQ enable/disable
* -2 levels of interrupts (high/low)
* -all interrupts being level triggered
*
* To reduce platform code, we assume all IRQs directly hooked-up into intc.
* Platforms with external intc, hence cascaded IRQs, are free to over-ride
* below, per IRQ.
*/
static void arc_irq_mask(struct irq_data *data)
{
unsigned int ienb;
ienb = read_aux_reg(AUX_IENABLE);
ienb &= ~(1 << data->irq);
write_aux_reg(AUX_IENABLE, ienb);
#ifdef CONFIG_ARCH_QSR1000
{
if (data->irq >= RUBY_IRQ_WATCHDOG) {
/* If higher than timer, this is external irq to cpu and needs additional reg set up. */
/* Copied from drivers/ruby/irq.c */
unsigned long status = readl(RUBY_SYS_CTL_LHOST_INT_EN);
status &= ~(1 << (data->irq - RUBY_IRQ_WATCHDOG));
writel(status, RUBY_SYS_CTL_LHOST_INT_EN);
}
if (data->irq == RUBY_IRQ_UART) {
unsigned long status = readl(RUBY_SYS_CTL_LHOST_ORINT_EN);
unsigned int irq = 48;
status &= ~(1 << (irq - RUBY_IRQ_VECTORS_NUM));
writel(status, RUBY_SYS_CTL_LHOST_ORINT_EN);
}
}
#endif
}
static void arc_irq_unmask(struct irq_data *data)
{
unsigned int ienb;
ienb = read_aux_reg(AUX_IENABLE);
ienb |= (1 << data->irq);
write_aux_reg(AUX_IENABLE, ienb);
#ifdef CONFIG_ARCH_QSR1000
{
if (data->irq >= RUBY_IRQ_WATCHDOG) {
/* If higher than timer, this is external irq to cpu and needs additional reg set up. */
/* Copied from drivers/ruby/irq.c */
unsigned long status = readl(RUBY_SYS_CTL_LHOST_INT_EN);
status |= (1 << (data->irq - RUBY_IRQ_WATCHDOG));
writel(status, RUBY_SYS_CTL_LHOST_INT_EN);
}
if (data->irq == 24) {
unsigned long status = readl(RUBY_SYS_CTL_LHOST_ORINT_EN);
unsigned int irq = 48;
status |= (1 << (irq - RUBY_IRQ_VECTORS_NUM));
writel(status, RUBY_SYS_CTL_LHOST_ORINT_EN);
}
if (data->irq == 28) {
unsigned long temp = readl(RUBY_SYS_CTL_PCIE_INT_MASK);
temp |= BIT(11); /* Legacy INTx */
writel(temp, RUBY_SYS_CTL_PCIE_INT_MASK);
}
}
#endif
}
static struct irq_chip onchip_intc = {
.name = "ARC In-core Intc",
.irq_mask = arc_irq_mask,
.irq_unmask = arc_irq_unmask,
};
static int arc_intc_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hw)
{
switch (hw) {
case TIMER0_IRQ:
irq_set_percpu_devid(irq);
irq_set_chip_and_handler(irq, &onchip_intc, handle_percpu_irq);
break;
default:
irq_set_chip_and_handler(irq, &onchip_intc, handle_level_irq);
}
return 0;
}
static const struct irq_domain_ops arc_intc_domain_ops = {
.xlate = irq_domain_xlate_onecell,
.map = arc_intc_domain_map,
};
static int __init ruby_intc_init(void)
{
int irq;
unsigned long status;
/*
* the irq from RUBY_IRQ_WATCHDOG to RUBY_IRQ_VECTORS_NUM are enabled
* by setting both RUBY_SYS_CTL_LHOST_INT_EN and AUX_IENABLE register
* Enable RUBY_SYS_CTL_LHOST_INT_EN here
*/
status = readl(IO_ADDRESS(RUBY_SYS_CTL_LHOST_INT_EN));
for (irq = RUBY_IRQ_WATCHDOG; irq < RUBY_IRQ_VECTORS_NUM; irq++)
status |= (1 << (irq - RUBY_IRQ_WATCHDOG));
writel(status, IO_ADDRESS(RUBY_SYS_CTL_LHOST_INT_EN));
return 0;
}
int __init
init_onchip_IRQ(struct device_node *intc, struct device_node *parent)
{
struct irq_domain *root_domain;
if (parent)
panic("DeviceTree incore intc not a root irq controller\n");
ruby_intc_init();
root_domain = irq_domain_add_legacy(intc, NR_IRQS, 0, 0,
&arc_intc_domain_ops, NULL);
if (!root_domain)
panic("root irq domain not avail\n");
/*
* Needed for primary domain lookup to succeed
* This is a primary irqchip, and can never have a parent
*/
irq_set_default_host(root_domain);
return 0;
}
IRQCHIP_DECLARE(arc_intc, "snps,arc700-intc", init_onchip_IRQ);
/*
* arch_local_irq_enable - Enable interrupts.
*
* 1. Explicitly called to re-enable interrupts
* 2. Implicitly called from spin_unlock_irq, write_unlock_irq etc
* which maybe in hard ISR itself
*
* Semantics of this function change depending on where it is called from:
*
* -If called from hard-ISR, it must not invert interrupt priorities
* e.g. suppose TIMER is high priority (Level 2) IRQ
* Time hard-ISR, timer_interrupt( ) calls spin_unlock_irq several times.
* Here local_irq_enable( ) shd not re-enable lower priority interrupts
* -If called from soft-ISR, it must re-enable all interrupts
* soft ISR are low prioity jobs which can be very slow, thus all IRQs
* must be enabled while they run.
* Now hardware context wise we may still be in L2 ISR (not done rtie)
* still we must re-enable both L1 and L2 IRQs
* Another twist is prev scenario with flow being
* L1 ISR ==> interrupted by L2 ISR ==> L2 soft ISR
* here we must not re-enable Ll as prev Ll Interrupt's h/w context will get
* over-written (this is deficiency in ARC700 Interrupt mechanism)
*/
#ifdef CONFIG_ARC_COMPACT_IRQ_LEVELS /* Complex version for 2 IRQ levels */
void arch_local_irq_enable(void)
{
unsigned long flags = arch_local_save_flags();
if (flags & STATUS_A2_MASK)
flags |= STATUS_E2_MASK;
else if (flags & STATUS_A1_MASK)
flags |= STATUS_E1_MASK;
arch_local_irq_restore(flags);
}
EXPORT_SYMBOL(arch_local_irq_enable);
#endif