blob: f5608ad9ed00e0871148fb6b365b22e307cce6f0 [file] [log] [blame]
#include "sysdef.h"
#include "wb35reg_f.h"
#include <linux/usb.h>
extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);
// true : read command process successfully
// false : register not support
// RegisterNo : start base
// pRegisterData : data point
// NumberOfData : number of register data
// Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
// NO_INCREMENT - Function will write data into the same register
unsigned char
Wb35Reg_BurstWrite(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag)
{
struct wb35_reg *reg = &pHwData->reg;
struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize;
struct usb_ctrlrequest *dr;
u16 i, DataSize = NumberOfData*4;
// Module shutdown
if (pHwData->SurpriseRemove)
return false;
// Trying to use burst write function if use new hardware
UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC);
if( urb && reg_queue ) {
reg_queue->DIRECT = 2;// burst write register
reg_queue->INDEX = RegisterNo;
reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
memcpy( reg_queue->pBuffer, pRegisterData, DataSize );
//the function for reversing register data from little endian to big endian
for( i=0; i<NumberOfData ; i++ )
reg_queue->pBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] );
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode
dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment
dr->wIndex = cpu_to_le16( RegisterNo );
dr->wLength = cpu_to_le16( DataSize );
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq( &reg->EP0VM_spin_lock );
if (reg->reg_first == NULL)
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq( &reg->EP0VM_spin_lock );
// Start EP0VM
Wb35Reg_EP0VM_start(pHwData);
return true;
} else {
if (urb)
usb_free_urb(urb);
if (reg_queue)
kfree(reg_queue);
return false;
}
return false;
}
void
Wb35Reg_Update(struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue)
{
struct wb35_reg *reg = &pHwData->reg;
switch (RegisterNo) {
case 0x3b0: reg->U1B0 = RegisterValue; break;
case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
case 0x400: reg->D00_DmaControl = RegisterValue; break;
case 0x800: reg->M00_MacControl = RegisterValue; break;
case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
case 0x824: reg->M24_MacControl = RegisterValue; break;
case 0x828: reg->M28_MacControl = RegisterValue; break;
case 0x82c: reg->M2C_MacControl = RegisterValue; break;
case 0x838: reg->M38_MacControl = RegisterValue; break;
case 0x840: reg->M40_MacControl = RegisterValue; break;
case 0x844: reg->M44_MacControl = RegisterValue; break;
case 0x848: reg->M48_MacControl = RegisterValue; break;
case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
case 0x860: reg->M60_MacControl = RegisterValue; break;
case 0x868: reg->M68_MacControl = RegisterValue; break;
case 0x870: reg->M70_MacControl = RegisterValue; break;
case 0x874: reg->M74_MacControl = RegisterValue; break;
case 0x878: reg->M78_ERPInformation = RegisterValue; break;
case 0x87C: reg->M7C_MacControl = RegisterValue; break;
case 0x880: reg->M80_MacControl = RegisterValue; break;
case 0x884: reg->M84_MacControl = RegisterValue; break;
case 0x888: reg->M88_MacControl = RegisterValue; break;
case 0x898: reg->M98_MacControl = RegisterValue; break;
case 0x100c: reg->BB0C = RegisterValue; break;
case 0x102c: reg->BB2C = RegisterValue; break;
case 0x1030: reg->BB30 = RegisterValue; break;
case 0x103c: reg->BB3C = RegisterValue; break;
case 0x1048: reg->BB48 = RegisterValue; break;
case 0x104c: reg->BB4C = RegisterValue; break;
case 0x1050: reg->BB50 = RegisterValue; break;
case 0x1054: reg->BB54 = RegisterValue; break;
case 0x1058: reg->BB58 = RegisterValue; break;
case 0x105c: reg->BB5C = RegisterValue; break;
case 0x1060: reg->BB60 = RegisterValue; break;
}
}
// true : read command process successfully
// false : register not support
unsigned char
Wb35Reg_WriteSync( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue )
{
struct wb35_reg *reg = &pHwData->reg;
int ret = -1;
// Module shutdown
if (pHwData->SurpriseRemove)
return false;
RegisterValue = cpu_to_le32(RegisterValue);
// update the register by send usb message------------------------------------
reg->SyncIoPause = 1;
// 20060717.5 Wait until EP0VM stop
while (reg->EP0vm_state != VM_STOP)
msleep(10);
// Sync IoCallDriver
reg->EP0vm_state = VM_RUNNING;
ret = usb_control_msg( pHwData->WbUsb.udev,
usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ),
0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
0x0,RegisterNo, &RegisterValue, 4, HZ*100 );
reg->EP0vm_state = VM_STOP;
reg->SyncIoPause = 0;
Wb35Reg_EP0VM_start(pHwData);
if (ret < 0) {
#ifdef _PE_REG_DUMP_
printk("EP0 Write register usb message sending error\n");
#endif
pHwData->SurpriseRemove = 1; // 20060704.2
return false;
}
return true;
}
// true : read command process successfully
// false : register not support
unsigned char
Wb35Reg_Write( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue )
{
struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest *dr;
struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize;
// Module shutdown
if (pHwData->SurpriseRemove)
return false;
// update the register by send urb request------------------------------------
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb && reg_queue) {
reg_queue->DIRECT = 1;// burst write register
reg_queue->INDEX = RegisterNo;
reg_queue->VALUE = cpu_to_le32(RegisterValue);
reg_queue->RESERVED_VALID = false;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(4);
// Enter the sending queue
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq(&reg->EP0VM_spin_lock );
if (reg->reg_first == NULL)
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq( &reg->EP0VM_spin_lock );
// Start EP0VM
Wb35Reg_EP0VM_start(pHwData);
return true;
} else {
if (urb)
usb_free_urb(urb);
kfree(reg_queue);
return false;
}
}
//This command will be executed with a user defined value. When it completes,
//this value is useful. For example, hal_set_current_channel will use it.
// true : read command process successfully
// false : register not support
unsigned char
Wb35Reg_WriteWithCallbackValue( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue,
s8 *pValue, s8 Len)
{
struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest *dr;
struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize;
// Module shutdown
if (pHwData->SurpriseRemove)
return false;
// update the register by send urb request------------------------------------
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb && reg_queue) {
reg_queue->DIRECT = 1;// burst write register
reg_queue->INDEX = RegisterNo;
reg_queue->VALUE = cpu_to_le32(RegisterValue);
//NOTE : Users must guarantee the size of value will not exceed the buffer size.
memcpy(reg_queue->RESERVED, pValue, Len);
reg_queue->RESERVED_VALID = true;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE;
dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode
dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(4);
// Enter the sending queue
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq (&reg->EP0VM_spin_lock );
if( reg->reg_first == NULL )
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq ( &reg->EP0VM_spin_lock );
// Start EP0VM
Wb35Reg_EP0VM_start(pHwData);
return true;
} else {
if (urb)
usb_free_urb(urb);
kfree(reg_queue);
return false;
}
}
// true : read command process successfully
// false : register not support
// pRegisterValue : It must be a resident buffer due to asynchronous read register.
unsigned char
Wb35Reg_ReadSync( struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue )
{
struct wb35_reg *reg = &pHwData->reg;
u32 * pltmp = pRegisterValue;
int ret = -1;
// Module shutdown
if (pHwData->SurpriseRemove)
return false;
// Read the register by send usb message------------------------------------
reg->SyncIoPause = 1;
// 20060717.5 Wait until EP0VM stop
while (reg->EP0vm_state != VM_STOP)
msleep(10);
reg->EP0vm_state = VM_RUNNING;
ret = usb_control_msg( pHwData->WbUsb.udev,
usb_rcvctrlpipe(pHwData->WbUsb.udev, 0),
0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN,
0x0, RegisterNo, pltmp, 4, HZ*100 );
*pRegisterValue = cpu_to_le32(*pltmp);
reg->EP0vm_state = VM_STOP;
Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue );
reg->SyncIoPause = 0;
Wb35Reg_EP0VM_start( pHwData );
if (ret < 0) {
#ifdef _PE_REG_DUMP_
printk("EP0 Read register usb message sending error\n");
#endif
pHwData->SurpriseRemove = 1; // 20060704.2
return false;
}
return true;
}
// true : read command process successfully
// false : register not support
// pRegisterValue : It must be a resident buffer due to asynchronous read register.
unsigned char
Wb35Reg_Read(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue )
{
struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest * dr;
struct urb *urb;
struct wb35_reg_queue *reg_queue;
u16 UrbSize;
// Module shutdown
if (pHwData->SurpriseRemove)
return false;
// update the variable by send Urb to read register ------------------------------------
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
urb = usb_alloc_urb(0, GFP_ATOMIC);
if( urb && reg_queue )
{
reg_queue->DIRECT = 0;// read register
reg_queue->INDEX = RegisterNo;
reg_queue->pBuffer = pRegisterValue;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN;
dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode
dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16 (RegisterNo);
dr->wLength = cpu_to_le16 (4);
// Enter the sending queue
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq ( &reg->EP0VM_spin_lock );
if( reg->reg_first == NULL )
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq( &reg->EP0VM_spin_lock );
// Start EP0VM
Wb35Reg_EP0VM_start( pHwData );
return true;
} else {
if (urb)
usb_free_urb( urb );
kfree(reg_queue);
return false;
}
}
void
Wb35Reg_EP0VM_start( struct hw_data * pHwData )
{
struct wb35_reg *reg = &pHwData->reg;
if (atomic_inc_return(&reg->RegFireCount) == 1) {
reg->EP0vm_state = VM_RUNNING;
Wb35Reg_EP0VM(pHwData);
} else
atomic_dec(&reg->RegFireCount);
}
void
Wb35Reg_EP0VM(struct hw_data * pHwData )
{
struct wb35_reg *reg = &pHwData->reg;
struct urb *urb;
struct usb_ctrlrequest *dr;
u32 * pBuffer;
int ret = -1;
struct wb35_reg_queue *reg_queue;
if (reg->SyncIoPause)
goto cleanup;
if (pHwData->SurpriseRemove)
goto cleanup;
// Get the register data and send to USB through Irp
spin_lock_irq( &reg->EP0VM_spin_lock );
reg_queue = reg->reg_first;
spin_unlock_irq( &reg->EP0VM_spin_lock );
if (!reg_queue)
goto cleanup;
// Get an Urb, send it
urb = (struct urb *)reg_queue->urb;
dr = reg_queue->pUsbReq;
urb = reg_queue->urb;
pBuffer = reg_queue->pBuffer;
if (reg_queue->DIRECT == 1) // output
pBuffer = &reg_queue->VALUE;
usb_fill_control_urb( urb, pHwData->WbUsb.udev,
REG_DIRECTION(pHwData->WbUsb.udev,reg_queue),
(u8 *)dr,pBuffer,cpu_to_le16(dr->wLength),
Wb35Reg_EP0VM_complete, (void*)pHwData);
reg->EP0vm_state = VM_RUNNING;
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret < 0) {
#ifdef _PE_REG_DUMP_
printk("EP0 Irp sending error\n");
#endif
goto cleanup;
}
return;
cleanup:
reg->EP0vm_state = VM_STOP;
atomic_dec(&reg->RegFireCount);
}
void
Wb35Reg_EP0VM_complete(struct urb *urb)
{
struct hw_data * pHwData = (struct hw_data *)urb->context;
struct wb35_reg *reg = &pHwData->reg;
struct wb35_reg_queue *reg_queue;
// Variable setting
reg->EP0vm_state = VM_COMPLETED;
reg->EP0VM_status = urb->status;
if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove
reg->EP0vm_state = VM_STOP;
atomic_dec(&reg->RegFireCount);
} else {
// Complete to send, remove the URB from the first
spin_lock_irq( &reg->EP0VM_spin_lock );
reg_queue = reg->reg_first;
if (reg_queue == reg->reg_last)
reg->reg_last = NULL;
reg->reg_first = reg->reg_first->Next;
spin_unlock_irq( &reg->EP0VM_spin_lock );
if (reg->EP0VM_status) {
#ifdef _PE_REG_DUMP_
printk("EP0 IoCompleteRoutine return error\n");
#endif
reg->EP0vm_state = VM_STOP;
pHwData->SurpriseRemove = 1;
} else {
// Success. Update the result
// Start the next send
Wb35Reg_EP0VM(pHwData);
}
kfree(reg_queue);
}
usb_free_urb(urb);
}
void
Wb35Reg_destroy(struct hw_data * pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
struct urb *urb;
struct wb35_reg_queue *reg_queue;
Uxx_power_off_procedure(pHwData);
// Wait for Reg operation completed
do {
msleep(10); // Delay for waiting function enter 940623.1.a
} while (reg->EP0vm_state != VM_STOP);
msleep(10); // Delay for waiting function enter 940623.1.b
// Release all the data in RegQueue
spin_lock_irq( &reg->EP0VM_spin_lock );
reg_queue = reg->reg_first;
while (reg_queue) {
if (reg_queue == reg->reg_last)
reg->reg_last = NULL;
reg->reg_first = reg->reg_first->Next;
urb = reg_queue->urb;
spin_unlock_irq( &reg->EP0VM_spin_lock );
if (urb) {
usb_free_urb(urb);
kfree(reg_queue);
} else {
#ifdef _PE_REG_DUMP_
printk("EP0 queue release error\n");
#endif
}
spin_lock_irq( &reg->EP0VM_spin_lock );
reg_queue = reg->reg_first;
}
spin_unlock_irq( &reg->EP0VM_spin_lock );
}
//====================================================================================
// The function can be run in passive-level only.
//====================================================================================
unsigned char Wb35Reg_initial(struct hw_data * pHwData)
{
struct wb35_reg *reg=&pHwData->reg;
u32 ltmp;
u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
// Spin lock is acquired for read and write IRP command
spin_lock_init( &reg->EP0VM_spin_lock );
// Getting RF module type from EEPROM ------------------------------------
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d)
Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
//Update RF module type and determine the PHY type by inf or EEPROM
reg->EEPROMPhyType = (u8)( ltmp & 0xff );
// 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
// 16V AL2230, 17 - AL7230, 18 - AL2230S
// 32 Reserved
// 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
if( (reg->EEPROMPhyType == RF_MAXIM_2825) ||
(reg->EEPROMPhyType == RF_MAXIM_2827) ||
(reg->EEPROMPhyType == RF_MAXIM_2828) ||
(reg->EEPROMPhyType == RF_MAXIM_2829) ||
(reg->EEPROMPhyType == RF_MAXIM_V1) ||
(reg->EEPROMPhyType == RF_AIROHA_2230) ||
(reg->EEPROMPhyType == RF_AIROHA_2230S) ||
(reg->EEPROMPhyType == RF_AIROHA_7230) ||
(reg->EEPROMPhyType == RF_WB_242) ||
(reg->EEPROMPhyType == RF_WB_242_1))
pHwData->phy_type = reg->EEPROMPhyType;
}
// Power On procedure running. The relative parameter will be set according to phy_type
Uxx_power_on_procedure( pHwData );
// Reading MAC address
Uxx_ReadEthernetAddress( pHwData );
// Read VCO trim for RF parameter
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 );
Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim );
// Read Antenna On/Off of software flag
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 );
Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet );
// Read TXVGA
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 );
Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga );
// Get Scan interval setting from EEPROM offset 0x1c
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 );
Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval );
// Update Ethernet address
memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN );
// Update software variable
pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
TxVga &= 0x000000ff;
pHwData->PowerIndexFromEEPROM = (u8)TxVga;
pHwData->VCO_trim = (u8)VCO_trim & 0xff;
if (pHwData->VCO_trim == 0xff)
pHwData->VCO_trim = 0x28;
reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720
if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 )
reg->EEPROMRegion = REGION_AUTO;
//For Get Tx VGA from EEPROM 20060315.5 move here
GetTxVgaFromEEPROM( pHwData );
// Set Scan Interval
pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10
pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
// Initial register
RFSynthesizer_initial(pHwData);
BBProcessor_initial(pHwData); // Async write, must wait until complete
Wb35Reg_phy_calibration(pHwData);
Mxx_initial(pHwData);
Dxx_initial(pHwData);
if (pHwData->SurpriseRemove)
return false;
else
return true; // Initial fail
}
//===================================================================================
// CardComputeCrc --
//
// Description:
// Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
//
// Arguments:
// Buffer - the input buffer
// Length - the length of Buffer
//
// Return Value:
// The 32-bit CRC value.
//
// Note:
// This is adapted from the comments in the assembly language
// version in _GENREQ.ASM of the DWB NE1000/2000 driver.
//==================================================================================
u32
CardComputeCrc(u8 * Buffer, u32 Length)
{
u32 Crc, Carry;
u32 i, j;
u8 CurByte;
Crc = 0xffffffff;
for (i = 0; i < Length; i++) {
CurByte = Buffer[i];
for (j = 0; j < 8; j++) {
Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
Crc <<= 1;
CurByte >>= 1;
if (Carry) {
Crc =(Crc ^ 0x04c11db6) | Carry;
}
}
}
return Crc;
}
//==================================================================
// BitReverse --
// Reverse the bits in the input argument, dwData, which is
// regarded as a string of bits with the length, DataLength.
//
// Arguments:
// dwData :
// DataLength :
//
// Return:
// The converted value.
//==================================================================
u32 BitReverse( u32 dwData, u32 DataLength)
{
u32 HalfLength, i, j;
u32 BitA, BitB;
if ( DataLength <= 0) return 0; // No conversion is done.
dwData = dwData & (0xffffffff >> (32 - DataLength));
HalfLength = DataLength / 2;
for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--)
{
BitA = GetBit( dwData, i);
BitB = GetBit( dwData, j);
if (BitA && !BitB) {
dwData = ClearBit( dwData, i);
dwData = SetBit( dwData, j);
} else if (!BitA && BitB) {
dwData = SetBit( dwData, i);
dwData = ClearBit( dwData, j);
} else
{
// Do nothing since these two bits are of the save values.
}
}
return dwData;
}
void Wb35Reg_phy_calibration( struct hw_data * pHwData )
{
u32 BB3c, BB54;
if ((pHwData->phy_type == RF_WB_242) ||
(pHwData->phy_type == RF_WB_242_1)) {
phy_calibration_winbond ( pHwData, 2412 ); // Sync operation
Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c );
Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 );
pHwData->BB3c_cal = BB3c;
pHwData->BB54_cal = BB54;
RFSynthesizer_initial(pHwData);
BBProcessor_initial(pHwData); // Async operation
Wb35Reg_WriteSync( pHwData, 0x103c, BB3c );
Wb35Reg_WriteSync( pHwData, 0x1054, BB54 );
}
}