blob: d915cbdd38ed1e3b15e013a503e6b39f11029efb [file] [log] [blame]
#include "sysdef.h"
#include "wbhal_f.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
// Original Phy.h
//*****************************************************************************
/*****************************************************************************
; For MAXIM2825/6/7 Ver. 331 or more
; Edited by Tiger, Sep-17-2003
; revised by Ben, Sep-18-2003
0x00 0x000a2
0x01 0x21cc0
;0x02 0x13802
0x02 0x1383a
;channe1 01 ; 0x03 0x30142 ; 0x04 0x0b333;
;channe1 02 ;0x03 0x32141 ;0x04 0x08444;
;channe1 03 ;0x03 0x32143 ;0x04 0x0aeee;
;channe1 04 ;0x03 0x32142 ;0x04 0x0b333;
;channe1 05 ;0x03 0x31141 ;0x04 0x08444;
;channe1 06 ;
0x03 0x31143;
0x04 0x0aeee;
;channe1 07 ;0x03 0x31142 ;0x04 0x0b333;
;channe1 08 ;0x03 0x33141 ;0x04 0x08444;
;channe1 09 ;0x03 0x33143 ;0x04 0x0aeee;
;channe1 10 ;0x03 0x33142 ;0x04 0x0b333;
;channe1 11 ;0x03 0x30941 ;0x04 0x08444;
;channe1 12 ;0x03 0x30943 ;0x04 0x0aeee;
;channe1 13 ;0x03 0x30942 ;0x04 0x0b333;
0x05 0x28986
0x06 0x18008
0x07 0x38400
0x08 0x05100; 100 Hz DC
;0x08 0x05900; 30 KHz DC
0x09 0x24f08
0x0a 0x17e00, 0x17ea0
0x0b 0x37d80
0x0c 0x0c900 // 0x0ca00 (lager power 9db than 0x0c000), 0x0c000
*****************************************************************************/
// MAX2825 (pure b/g)
u32 max2825_rf_data[] =
{
(0x00<<18)|0x000a2,
(0x01<<18)|0x21cc0,
(0x02<<18)|0x13806,
(0x03<<18)|0x30142,
(0x04<<18)|0x0b333,
(0x05<<18)|0x289A6,
(0x06<<18)|0x18008,
(0x07<<18)|0x38000,
(0x08<<18)|0x05100,
(0x09<<18)|0x24f08,
(0x0A<<18)|0x14000,
(0x0B<<18)|0x37d80,
(0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
};
u32 max2825_channel_data_24[][3] =
{
{(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
{(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
{(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
{(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
{(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
{(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
{(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
{(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
{(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
{(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
{(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
{(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
{(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
{(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
};
u32 max2825_power_data_24[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
/****************************************************************************/
// MAX2827 (a/b/g)
u32 max2827_rf_data[] =
{
(0x00<<18)|0x000a2,
(0x01<<18)|0x21cc0,
(0x02<<18)|0x13806,
(0x03<<18)|0x30142,
(0x04<<18)|0x0b333,
(0x05<<18)|0x289A6,
(0x06<<18)|0x18008,
(0x07<<18)|0x38000,
(0x08<<18)|0x05100,
(0x09<<18)|0x24f08,
(0x0A<<18)|0x14000,
(0x0B<<18)|0x37d80,
(0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
};
u32 max2827_channel_data_24[][3] =
{
{(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
{(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
{(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
{(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
{(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
{(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
{(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
{(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
{(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
{(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
{(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
{(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
{(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
{(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
};
u32 max2827_channel_data_50[][3] =
{
{(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 36
{(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 40
{(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6}, // channel 44
{(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x2A9A6}, // channel 48
{(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x2A9A6}, // channel 52
{(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 56
{(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 60
{(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6} // channel 64
};
u32 max2827_power_data_24[] = {(0x0C<<18)|0x0C000, (0x0C<<18)|0x0D600, (0x0C<<18)|0x0C100};
u32 max2827_power_data_50[] = {(0x0C<<18)|0x0C400, (0x0C<<18)|0x0D500, (0x0C<<18)|0x0C300};
/****************************************************************************/
// MAX2828 (a/b/g)
u32 max2828_rf_data[] =
{
(0x00<<18)|0x000a2,
(0x01<<18)|0x21cc0,
(0x02<<18)|0x13806,
(0x03<<18)|0x30142,
(0x04<<18)|0x0b333,
(0x05<<18)|0x289A6,
(0x06<<18)|0x18008,
(0x07<<18)|0x38000,
(0x08<<18)|0x05100,
(0x09<<18)|0x24f08,
(0x0A<<18)|0x14000,
(0x0B<<18)|0x37d80,
(0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
};
u32 max2828_channel_data_24[][3] =
{
{(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
{(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
{(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
{(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
{(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
{(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
{(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
{(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
{(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
{(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
{(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
{(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
{(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
{(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
};
u32 max2828_channel_data_50[][3] =
{
{(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 36
{(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 40
{(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channel 44
{(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x289A6}, // channel 48
{(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x289A6}, // channel 52
{(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 56
{(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 60
{(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6} // channel 64
};
u32 max2828_power_data_24[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
u32 max2828_power_data_50[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
/****************************************************************************/
// LA20040728 kevin
// MAX2829 (a/b/g)
u32 max2829_rf_data[] =
{
(0x00<<18)|0x000a2,
(0x01<<18)|0x23520,
(0x02<<18)|0x13802,
(0x03<<18)|0x30142,
(0x04<<18)|0x0b333,
(0x05<<18)|0x28906,
(0x06<<18)|0x18008,
(0x07<<18)|0x3B500,
(0x08<<18)|0x05100,
(0x09<<18)|0x24f08,
(0x0A<<18)|0x14000,
(0x0B<<18)|0x37d80,
(0x0C<<18)|0x0F300 //TXVGA=51, (MAX-6 dB)
};
u32 max2829_channel_data_24[][3] =
{
{(3<<18)|0x30142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 01 (2412MHz)
{(3<<18)|0x32141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 02 (2417MHz)
{(3<<18)|0x32143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 03 (2422MHz)
{(3<<18)|0x32142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 04 (2427MHz)
{(3<<18)|0x31141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 05 (2432MHz)
{(3<<18)|0x31143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 06 (2437MHz)
{(3<<18)|0x31142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 07 (2442MHz)
{(3<<18)|0x33141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 08 (2447MHz)
{(3<<18)|0x33143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 09 (2452MHz)
{(3<<18)|0x33142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 10 (2457MHz)
{(3<<18)|0x30941, (4<<18)|0x08444, (5<<18)|0x289C6}, // 11 (2462MHz)
{(3<<18)|0x30943, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 12 (2467MHz)
{(3<<18)|0x30942, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 13 (2472MHz)
{(3<<18)|0x32941, (4<<18)|0x09999, (5<<18)|0x289C6}, // 14 (2484MHz) hh-modify
};
u32 max2829_channel_data_50[][4] =
{
{36, (3<<18)|0x33cc3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 36 (5.180GHz)
{40, (3<<18)|0x302c0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 40 (5.200GHz)
{44, (3<<18)|0x302c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 44 (5.220GHz)
{48, (3<<18)|0x322c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 48 (5.240GHz)
{52, (3<<18)|0x312c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 52 (5.260GHz)
{56, (3<<18)|0x332c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 56 (5.280GHz)
{60, (3<<18)|0x30ac0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 60 (5.300GHz)
{64, (3<<18)|0x30ac2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 64 (5.320GHz)
{100, (3<<18)|0x30ec0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 100 (5.500GHz)
{104, (3<<18)|0x30ec2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 104 (5.520GHz)
{108, (3<<18)|0x32ec1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 108 (5.540GHz)
{112, (3<<18)|0x31ec1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 112 (5.560GHz)
{116, (3<<18)|0x33ec3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 116 (5.580GHz)
{120, (3<<18)|0x301c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 120 (5.600GHz)
{124, (3<<18)|0x301c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 124 (5.620GHz)
{128, (3<<18)|0x321c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 128 (5.640GHz)
{132, (3<<18)|0x311c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 132 (5.660GHz)
{136, (3<<18)|0x331c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 136 (5.680GHz)
{140, (3<<18)|0x309c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 140 (5.700GHz)
{149, (3<<18)|0x329c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 149 (5.745GHz)
{153, (3<<18)|0x319c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 153 (5.765GHz)
{157, (3<<18)|0x339c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 157 (5.785GHz)
{161, (3<<18)|0x305c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 161 (5.805GHz)
// Japan
{ 184, (3<<18)|0x308c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 184 (4.920GHz)
{ 188, (3<<18)|0x328c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 188 (4.940GHz)
{ 192, (3<<18)|0x318c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 192 (4.960GHz)
{ 196, (3<<18)|0x338c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 196 (4.980GHz)
{ 8, (3<<18)|0x324c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 8 (5.040GHz)
{ 12, (3<<18)|0x314c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 12 (5.060GHz)
{ 16, (3<<18)|0x334c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 16 (5.080GHz)
{ 34, (3<<18)|0x31cc2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 34 (5.170GHz)
{ 38, (3<<18)|0x33cc1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 38 (5.190GHz)
{ 42, (3<<18)|0x302c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 42 (5.210GHz)
{ 46, (3<<18)|0x322c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 46 (5.230GHz)
};
/*****************************************************************************
; For MAXIM2825/6/7 Ver. 317 or less
; Edited by Tiger, Sep-17-2003 for 2.4Ghz channels
; Updated by Tiger, Sep-22-2003 for 5.0Ghz channels
; Corrected by Tiger, Sep-23-2003, for 0x03 and 0x04 of 5.0Ghz channels
0x00 0x00080
0x01 0x214c0
0x02 0x13802
;2.4GHz Channels
;channe1 01 (2.412GHz); 0x03 0x30143 ;0x04 0x0accc
;channe1 02 (2.417GHz); 0x03 0x32140 ;0x04 0x09111
;channe1 03 (2.422GHz); 0x03 0x32142 ;0x04 0x0bbbb
;channe1 04 (2.427GHz); 0x03 0x32143 ;0x04 0x0accc
;channe1 05 (2.432GHz); 0x03 0x31140 ;0x04 0x09111
;channe1 06 (2.437GHz); 0x03 0x31142 ;0x04 0x0bbbb
;channe1 07 (2.442GHz); 0x03 0x31143 ;0x04 0x0accc
;channe1 08 (2.447GHz); 0x03 0x33140 ;0x04 0x09111
;channe1 09 (2.452GHz); 0x03 0x33142 ;0x04 0x0bbbb
;channe1 10 (2.457GHz); 0x03 0x33143 ;0x04 0x0accc
;channe1 11 (2.462GHz); 0x03 0x30940 ;0x04 0x09111
;channe1 12 (2.467GHz); 0x03 0x30942 ;0x04 0x0bbbb
;channe1 13 (2.472GHz); 0x03 0x30943 ;0x04 0x0accc
;5.0Ghz Channels
;channel 36 (5.180GHz); 0x03 0x33cc0 ;0x04 0x0b333
;channel 40 (5.200GHz); 0x03 0x302c0 ;0x04 0x08000
;channel 44 (5.220GHz); 0x03 0x302c2 ;0x04 0x0b333
;channel 48 (5.240GHz); 0x03 0x322c1 ;0x04 0x09999
;channel 52 (5.260GHz); 0x03 0x312c1 ;0x04 0x0a666
;channel 56 (5.280GHz); 0x03 0x332c3 ;0x04 0x08ccc
;channel 60 (5.300GHz); 0x03 0x30ac0 ;0x04 0x08000
;channel 64 (5.320GHz); 0x03 0x30ac2 ;0x04 0x08333
;2.4GHz band ;0x05 0x28986;
;5.0GHz band
0x05 0x2a986
0x06 0x18008
0x07 0x38400
0x08 0x05108
0x09 0x27ff8
0x0a 0x14000
0x0b 0x37f99
0x0c 0x0c000
*****************************************************************************/
u32 maxim_317_rf_data[] =
{
(0x00<<18)|0x000a2,
(0x01<<18)|0x214c0,
(0x02<<18)|0x13802,
(0x03<<18)|0x30143,
(0x04<<18)|0x0accc,
(0x05<<18)|0x28986,
(0x06<<18)|0x18008,
(0x07<<18)|0x38400,
(0x08<<18)|0x05108,
(0x09<<18)|0x27ff8,
(0x0A<<18)|0x14000,
(0x0B<<18)|0x37f99,
(0x0C<<18)|0x0c000
};
u32 maxim_317_channel_data_24[][3] =
{
{(0x03<<18)|0x30143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 01
{(0x03<<18)|0x32140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 02
{(0x03<<18)|0x32142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 03
{(0x03<<18)|0x32143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 04
{(0x03<<18)|0x31140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 05
{(0x03<<18)|0x31142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 06
{(0x03<<18)|0x31143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 07
{(0x03<<18)|0x33140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 08
{(0x03<<18)|0x33142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 09
{(0x03<<18)|0x33143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 10
{(0x03<<18)|0x30940, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 11
{(0x03<<18)|0x30942, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 12
{(0x03<<18)|0x30943, (0x04<<18)|0x0accc, (0x05<<18)|0x28986} // channe1 13
};
u32 maxim_317_channel_data_50[][3] =
{
{(0x03<<18)|0x33cc0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a986}, // channel 36
{(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2a986}, // channel 40
{(0x03<<18)|0x302c3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a986}, // channel 44
{(0x03<<18)|0x322c1, (0x04<<18)|0x09666, (0x05<<18)|0x2a986}, // channel 48
{(0x03<<18)|0x312c2, (0x04<<18)|0x09999, (0x05<<18)|0x2a986}, // channel 52
{(0x03<<18)|0x332c0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a99e}, // channel 56
{(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2a99e}, // channel 60
{(0x03<<18)|0x30ac3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a99e} // channel 64
};
u32 maxim_317_power_data_24[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
u32 maxim_317_power_data_50[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
/*****************************************************************************
;;AL2230 MP (Mass Production Version)
;;RF Registers Setting for Airoha AL2230 silicon after June 1st, 2004
;;Updated by Tiger Huang (June 1st, 2004)
;;20-bit length and LSB first
;;Ch01 (2412MHz) ;0x00 0x09EFC ;0x01 0x8CCCC;
;;Ch02 (2417MHz) ;0x00 0x09EFC ;0x01 0x8CCCD;
;;Ch03 (2422MHz) ;0x00 0x09E7C ;0x01 0x8CCCC;
;;Ch04 (2427MHz) ;0x00 0x09E7C ;0x01 0x8CCCD;
;;Ch05 (2432MHz) ;0x00 0x05EFC ;0x01 0x8CCCC;
;;Ch06 (2437MHz) ;0x00 0x05EFC ;0x01 0x8CCCD;
;;Ch07 (2442MHz) ;0x00 0x05E7C ;0x01 0x8CCCC;
;;Ch08 (2447MHz) ;0x00 0x05E7C ;0x01 0x8CCCD;
;;Ch09 (2452MHz) ;0x00 0x0DEFC ;0x01 0x8CCCC;
;;Ch10 (2457MHz) ;0x00 0x0DEFC ;0x01 0x8CCCD;
;;Ch11 (2462MHz) ;0x00 0x0DE7C ;0x01 0x8CCCC;
;;Ch12 (2467MHz) ;0x00 0x0DE7C ;0x01 0x8CCCD;
;;Ch13 (2472MHz) ;0x00 0x03EFC ;0x01 0x8CCCC;
;;Ch14 (2484Mhz) ;0x00 0x03E7C ;0x01 0x86666;
0x02 0x401D8; RXDCOC BW 100Hz for RXHP low
;;0x02 0x481DC; RXDCOC BW 30Khz for RXHP low
0x03 0xCFFF0
0x04 0x23800
0x05 0xA3B72
0x06 0x6DA01
0x07 0xE1688
0x08 0x11600
0x09 0x99E02
0x0A 0x5DDB0
0x0B 0xD9900
0x0C 0x3FFBD
0x0D 0xB0000
0x0F 0xF00A0
;RF Calibration for Airoha AL2230
;Edit by Ben Chang (01/30/04)
;Updated by Tiger Huang (03/03/04)
0x0f 0xf00a0 ; Initial Setting
0x0f 0xf00b0 ; Activate TX DCC
0x0f 0xf02a0 ; Activate Phase Calibration
0x0f 0xf00e0 ; Activate Filter RC Calibration
0x0f 0xf00a0 ; Restore Initial Setting
*****************************************************************************/
u32 al2230_rf_data[] =
{
(0x00<<20)|0x09EFC,
(0x01<<20)|0x8CCCC,
(0x02<<20)|0x40058,// 20060627 Anson 0x401D8,
(0x03<<20)|0xCFFF0,
(0x04<<20)|0x24100,// 20060627 Anson 0x23800,
(0x05<<20)|0xA3B2F,// 20060627 Anson 0xA3B72
(0x06<<20)|0x6DA01,
(0x07<<20)|0xE3628,// 20060627 Anson 0xE1688,
(0x08<<20)|0x11600,
(0x09<<20)|0x9DC02,// 20060627 Anosn 0x97602,//0x99E02, //0x9AE02
(0x0A<<20)|0x5ddb0, // 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth
(0x0B<<20)|0xD9900,
(0x0C<<20)|0x3FFBD,
(0x0D<<20)|0xB0000,
(0x0F<<20)|0xF01A0 // 20060627 Anson 0xF00A0
};
u32 al2230s_rf_data[] =
{
(0x00<<20)|0x09EFC,
(0x01<<20)|0x8CCCC,
(0x02<<20)|0x40058,// 20060419 0x401D8,
(0x03<<20)|0xCFFF0,
(0x04<<20)|0x24100,// 20060419 0x23800,
(0x05<<20)|0xA3B2F,// 20060419 0xA3B72,
(0x06<<20)|0x6DA01,
(0x07<<20)|0xE3628,// 20060419 0xE1688,
(0x08<<20)|0x11600,
(0x09<<20)|0x9DC02,// 20060419 0x97602,//0x99E02, //0x9AE02
(0x0A<<20)|0x5DDB0,// 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth
(0x0B<<20)|0xD9900,
(0x0C<<20)|0x3FFBD,
(0x0D<<20)|0xB0000,
(0x0F<<20)|0xF01A0 // 20060419 0xF00A0
};
u32 al2230_channel_data_24[][2] =
{
{(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCC}, // channe1 01
{(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCD}, // channe1 02
{(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCC}, // channe1 03
{(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCD}, // channe1 04
{(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCC}, // channe1 05
{(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCD}, // channe1 06
{(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCC}, // channe1 07
{(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCD}, // channe1 08
{(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCC}, // channe1 09
{(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCD}, // channe1 10
{(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCC}, // channe1 11
{(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCD}, // channe1 12
{(0x00<<20)|0x03EFC, (0x01<<20)|0x8CCCC}, // channe1 13
{(0x00<<20)|0x03E7C, (0x01<<20)|0x86666} // channe1 14
};
// Current setting. u32 airoha_power_data_24[] = {(0x09<<20)|0x90202, (0x09<<20)|0x96602, (0x09<<20)|0x97602};
#define AIROHA_TXVGA_LOW_INDEX 31 // Index for 0x90202
#define AIROHA_TXVGA_MIDDLE_INDEX 12 // Index for 0x96602
#define AIROHA_TXVGA_HIGH_INDEX 8 // Index for 0x97602 1.0.24.0 1.0.28.0
/*
u32 airoha_power_data_24[] =
{
0x9FE02, // Max - 0 dB
0x9BE02, // Max - 1 dB
0x9DE02, // Max - 2 dB
0x99E02, // Max - 3 dB
0x9EE02, // Max - 4 dB
0x9AE02, // Max - 5 dB
0x9CE02, // Max - 6 dB
0x98E02, // Max - 7 dB
0x97602, // Max - 8 dB
0x93602, // Max - 9 dB
0x95602, // Max - 10 dB
0x91602, // Max - 11 dB
0x96602, // Max - 12 dB
0x92602, // Max - 13 dB
0x94602, // Max - 14 dB
0x90602, // Max - 15 dB
0x97A02, // Max - 16 dB
0x93A02, // Max - 17 dB
0x95A02, // Max - 18 dB
0x91A02, // Max - 19 dB
0x96A02, // Max - 20 dB
0x92A02, // Max - 21 dB
0x94A02, // Max - 22 dB
0x90A02, // Max - 23 dB
0x97202, // Max - 24 dB
0x93202, // Max - 25 dB
0x95202, // Max - 26 dB
0x91202, // Max - 27 dB
0x96202, // Max - 28 dB
0x92202, // Max - 29 dB
0x94202, // Max - 30 dB
0x90202 // Max - 31 dB
};
*/
// 20040927 1.1.69.1000 ybjiang
// from John
u32 al2230_txvga_data[][2] =
{
//value , index
{0x090202, 0},
{0x094202, 2},
{0x092202, 4},
{0x096202, 6},
{0x091202, 8},
{0x095202, 10},
{0x093202, 12},
{0x097202, 14},
{0x090A02, 16},
{0x094A02, 18},
{0x092A02, 20},
{0x096A02, 22},
{0x091A02, 24},
{0x095A02, 26},
{0x093A02, 28},
{0x097A02, 30},
{0x090602, 32},
{0x094602, 34},
{0x092602, 36},
{0x096602, 38},
{0x091602, 40},
{0x095602, 42},
{0x093602, 44},
{0x097602, 46},
{0x090E02, 48},
{0x098E02, 49},
{0x094E02, 50},
{0x09CE02, 51},
{0x092E02, 52},
{0x09AE02, 53},
{0x096E02, 54},
{0x09EE02, 55},
{0x091E02, 56},
{0x099E02, 57},
{0x095E02, 58},
{0x09DE02, 59},
{0x093E02, 60},
{0x09BE02, 61},
{0x097E02, 62},
{0x09FE02, 63}
};
//--------------------------------
// For Airoha AL7230, 2.4Ghz band
// Edit by Tiger, (March, 9, 2005)
// 24bit, MSB first
//channel independent registers:
u32 al7230_rf_data_24[] =
{
(0x00<<24)|0x003790,
(0x01<<24)|0x133331,
(0x02<<24)|0x841FF2,
(0x03<<24)|0x3FDFA3,
(0x04<<24)|0x7FD784,
(0x05<<24)|0x802B55,
(0x06<<24)|0x56AF36,
(0x07<<24)|0xCE0207,
(0x08<<24)|0x6EBC08,
(0x09<<24)|0x221BB9,
(0x0A<<24)|0xE0000A,
(0x0B<<24)|0x08071B,
(0x0C<<24)|0x000A3C,
(0x0D<<24)|0xFFFFFD,
(0x0E<<24)|0x00000E,
(0x0F<<24)|0x1ABA8F
};
u32 al7230_channel_data_24[][2] =
{
{(0x00<<24)|0x003790, (0x01<<24)|0x133331}, // channe1 01
{(0x00<<24)|0x003790, (0x01<<24)|0x1B3331}, // channe1 02
{(0x00<<24)|0x003790, (0x01<<24)|0x033331}, // channe1 03
{(0x00<<24)|0x003790, (0x01<<24)|0x0B3331}, // channe1 04
{(0x00<<24)|0x0037A0, (0x01<<24)|0x133331}, // channe1 05
{(0x00<<24)|0x0037A0, (0x01<<24)|0x1B3331}, // channe1 06
{(0x00<<24)|0x0037A0, (0x01<<24)|0x033331}, // channe1 07
{(0x00<<24)|0x0037A0, (0x01<<24)|0x0B3331}, // channe1 08
{(0x00<<24)|0x0037B0, (0x01<<24)|0x133331}, // channe1 09
{(0x00<<24)|0x0037B0, (0x01<<24)|0x1B3331}, // channe1 10
{(0x00<<24)|0x0037B0, (0x01<<24)|0x033331}, // channe1 11
{(0x00<<24)|0x0037B0, (0x01<<24)|0x0B3331}, // channe1 12
{(0x00<<24)|0x0037C0, (0x01<<24)|0x133331}, // channe1 13
{(0x00<<24)|0x0037C0, (0x01<<24)|0x066661} // channel 14
};
//channel independent registers:
u32 al7230_rf_data_50[] =
{
(0x00<<24)|0x0FF520,
(0x01<<24)|0x000001,
(0x02<<24)|0x451FE2,
(0x03<<24)|0x5FDFA3,
(0x04<<24)|0x6FD784,
(0x05<<24)|0x853F55,
(0x06<<24)|0x56AF36,
(0x07<<24)|0xCE0207,
(0x08<<24)|0x6EBC08,
(0x09<<24)|0x221BB9,
(0x0A<<24)|0xE0600A,
(0x0B<<24)|0x08044B,
(0x0C<<24)|0x00143C,
(0x0D<<24)|0xFFFFFD,
(0x0E<<24)|0x00000E,
(0x0F<<24)|0x12BACF //5Ghz default state
};
u32 al7230_channel_data_5[][4] =
{
//channel dependent registers: 0x00, 0x01 and 0x04
//11J ===========
{184, (0x00<<24)|0x0FF520, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 184
{188, (0x00<<24)|0x0FF520, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 188
{192, (0x00<<24)|0x0FF530, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 192
{196, (0x00<<24)|0x0FF530, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 196
{8, (0x00<<24)|0x0FF540, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 008
{12, (0x00<<24)|0x0FF540, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 012
{16, (0x00<<24)|0x0FF550, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 016
{34, (0x00<<24)|0x0FF560, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 034
{38, (0x00<<24)|0x0FF570, (0x01<<24)|0x100001, (0x04<<24)|0x77F784}, // channel 038
{42, (0x00<<24)|0x0FF570, (0x01<<24)|0x1AAAA1, (0x04<<24)|0x77F784}, // channel 042
{46, (0x00<<24)|0x0FF570, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 046
//11 A/H =========
{36, (0x00<<24)|0x0FF560, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 036
{40, (0x00<<24)|0x0FF570, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 040
{44, (0x00<<24)|0x0FF570, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 044
{48, (0x00<<24)|0x0FF570, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 048
{52, (0x00<<24)|0x0FF580, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 052
{56, (0x00<<24)|0x0FF580, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 056
{60, (0x00<<24)|0x0FF580, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 060
{64, (0x00<<24)|0x0FF590, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 064
{100, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 100
{104, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 104
{108, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 108
{112, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 112
{116, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 116
{120, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 120
{124, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 124
{128, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 128
{132, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 132
{136, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 136
{140, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 140
{149, (0x00<<24)|0x0FF600, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 149
{153, (0x00<<24)|0x0FF600, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784}, // channel 153
{157, (0x00<<24)|0x0FF600, (0x01<<24)|0x0D5551, (0x04<<24)|0x77F784}, // channel 157
{161, (0x00<<24)|0x0FF610, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 161
{165, (0x00<<24)|0x0FF610, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784} // channel 165
};
//; RF Calibration <=== Register 0x0F
//0x0F 0x1ABA8F; start from 2.4Ghz default state
//0x0F 0x9ABA8F; TXDC compensation
//0x0F 0x3ABA8F; RXFIL adjustment
//0x0F 0x1ABA8F; restore 2.4Ghz default state
//;TXVGA Mapping Table <=== Register 0x0B
u32 al7230_txvga_data[][2] =
{
{0x08040B, 0}, //TXVGA=0;
{0x08041B, 1}, //TXVGA=1;
{0x08042B, 2}, //TXVGA=2;
{0x08043B, 3}, //TXVGA=3;
{0x08044B, 4}, //TXVGA=4;
{0x08045B, 5}, //TXVGA=5;
{0x08046B, 6}, //TXVGA=6;
{0x08047B, 7}, //TXVGA=7;
{0x08048B, 8}, //TXVGA=8;
{0x08049B, 9}, //TXVGA=9;
{0x0804AB, 10}, //TXVGA=10;
{0x0804BB, 11}, //TXVGA=11;
{0x0804CB, 12}, //TXVGA=12;
{0x0804DB, 13}, //TXVGA=13;
{0x0804EB, 14}, //TXVGA=14;
{0x0804FB, 15}, //TXVGA=15;
{0x08050B, 16}, //TXVGA=16;
{0x08051B, 17}, //TXVGA=17;
{0x08052B, 18}, //TXVGA=18;
{0x08053B, 19}, //TXVGA=19;
{0x08054B, 20}, //TXVGA=20;
{0x08055B, 21}, //TXVGA=21;
{0x08056B, 22}, //TXVGA=22;
{0x08057B, 23}, //TXVGA=23;
{0x08058B, 24}, //TXVGA=24;
{0x08059B, 25}, //TXVGA=25;
{0x0805AB, 26}, //TXVGA=26;
{0x0805BB, 27}, //TXVGA=27;
{0x0805CB, 28}, //TXVGA=28;
{0x0805DB, 29}, //TXVGA=29;
{0x0805EB, 30}, //TXVGA=30;
{0x0805FB, 31}, //TXVGA=31;
{0x08060B, 32}, //TXVGA=32;
{0x08061B, 33}, //TXVGA=33;
{0x08062B, 34}, //TXVGA=34;
{0x08063B, 35}, //TXVGA=35;
{0x08064B, 36}, //TXVGA=36;
{0x08065B, 37}, //TXVGA=37;
{0x08066B, 38}, //TXVGA=38;
{0x08067B, 39}, //TXVGA=39;
{0x08068B, 40}, //TXVGA=40;
{0x08069B, 41}, //TXVGA=41;
{0x0806AB, 42}, //TXVGA=42;
{0x0806BB, 43}, //TXVGA=43;
{0x0806CB, 44}, //TXVGA=44;
{0x0806DB, 45}, //TXVGA=45;
{0x0806EB, 46}, //TXVGA=46;
{0x0806FB, 47}, //TXVGA=47;
{0x08070B, 48}, //TXVGA=48;
{0x08071B, 49}, //TXVGA=49;
{0x08072B, 50}, //TXVGA=50;
{0x08073B, 51}, //TXVGA=51;
{0x08074B, 52}, //TXVGA=52;
{0x08075B, 53}, //TXVGA=53;
{0x08076B, 54}, //TXVGA=54;
{0x08077B, 55}, //TXVGA=55;
{0x08078B, 56}, //TXVGA=56;
{0x08079B, 57}, //TXVGA=57;
{0x0807AB, 58}, //TXVGA=58;
{0x0807BB, 59}, //TXVGA=59;
{0x0807CB, 60}, //TXVGA=60;
{0x0807DB, 61}, //TXVGA=61;
{0x0807EB, 62}, //TXVGA=62;
{0x0807FB, 63}, //TXVGA=63;
};
//--------------------------------
//; W89RF242 RFIC SPI programming initial data
//; Winbond WLAN 11g RFIC BB-SPI register -- version FA5976A rev 1.3b
//; Update Date: Ocotber 3, 2005 by PP10 Hsiang-Te Ho
//;
//; Version 1.3b revision items: (Oct. 1, 2005 by HTHo) for FA5976A
u32 w89rf242_rf_data[] =
{
(0x00<<24)|0xF86100, // 20060721 0xF86100, //; 3E184; MODA (0x00) -- Normal mode ; calibration off
(0x01<<24)|0xEFFFC2, //; 3BFFF; MODB (0x01) -- turn off RSSI, and other circuits are turned on
(0x02<<24)|0x102504, //; 04094; FSET (0x02) -- default 20MHz crystal ; Icmp=1.5mA
(0x03<<24)|0x026286, //; 0098A; FCHN (0x03) -- default CH7, 2442MHz
(0x04<<24)|0x000208, // 20060612.1.a 0x0002C8, // 20050818 // 20050816 0x000388
//; 02008; FCAL (0x04) -- XTAL Freq Trim=001000 (socket board#1); FA5976AYG_v1.3C
(0x05<<24)|0x24C60A, // 20060612.1.a 0x24C58A, // 941003 0x24C48A, // 20050818.2 0x24848A, // 20050818 // 20050816 0x24C48A
//; 09316; GANA (0x05) -- TX VGA default (TXVGA=0x18(12)) & TXGPK=110 ; FA5976A_1.3D
(0x06<<24)|0x3432CC, // 941003 0x26C34C, // 20050818 0x06B40C
//; 0D0CB; GANB (0x06) -- RXDC(DC offset) on; LNA=11; RXVGA=001011(11) ; RXFLSW=11(010001); RXGPK=00; RXGCF=00; -50dBm input
(0x07<<24)|0x0C68CE, // 20050818.2 0x0C66CE, // 20050818 // 20050816 0x0C68CE
//; 031A3; FILT (0x07) -- TX/RX filter with auto-tuning; TFLBW=011; RFLBW=100
(0x08<<24)|0x100010, //; 04000; TCAL (0x08) -- //for LO
(0x09<<24)|0x004012, // 20060612.1.a 0x6E4012, // 0x004012,
//; 1B900; RCALA (0x09) -- FASTS=11; HPDE=01 (100nsec); SEHP=1 (select B0 pin=RXHP); RXHP=1 (Turn on RXHP function)(FA5976A_1.3C)
(0x0A<<24)|0x704014, //; 1C100; RCALB (0x0A)
(0x0B<<24)|0x18BDD6, // 941003 0x1805D6, // 20050818.2 0x1801D6, // 20050818 // 20050816 0x1805D6
//; 062F7; IQCAL (0x0B) -- Turn on LO phase tuner=0111 & RX-LO phase = 0111; FA5976A_1.3B (2005/09/29)
(0x0C<<24)|0x575558, // 20050818.2 0x555558, // 20050818 // 20050816 0x575558
//; 15D55 ; IBSA (0x0C) -- IFPre =11 ; TC5376A_v1.3A for corner
(0x0D<<24)|0x55545A, // 20060612.1.a 0x55555A,
//; 15555 ; IBSB (0x0D)
(0x0E<<24)|0x5557DC, // 20060612.1.a 0x55555C, // 941003 0x5557DC,
//; 1555F ; IBSC (0x0E) -- IRLNA & IRLNB (PTAT & Const current)=01/01; FA5976B_1.3F (2005/11/25)
(0x10<<24)|0x000C20, // 941003 0x000020, // 20050818
//; 00030 ; TMODA (0x10) -- LNA_gain_step=0011 ; LNA=15/16dB
(0x11<<24)|0x0C0022, // 941003 0x030022 // 20050818.2 0x030022 // 20050818 // 20050816 0x0C0022
//; 03000 ; TMODB (0x11) -- Turn ON RX-Q path Test Switch; To improve IQ path group delay (FA5976A_1.3C)
(0x12<<24)|0x000024 // 20060612.1.a 0x001824 // 941003 add
//; TMODC (0x12) -- Turn OFF Tempearure sensor
};
u32 w89rf242_channel_data_24[][2] =
{
{(0x03<<24)|0x025B06, (0x04<<24)|0x080408}, // channe1 01
{(0x03<<24)|0x025C46, (0x04<<24)|0x080408}, // channe1 02
{(0x03<<24)|0x025D86, (0x04<<24)|0x080408}, // channe1 03
{(0x03<<24)|0x025EC6, (0x04<<24)|0x080408}, // channe1 04
{(0x03<<24)|0x026006, (0x04<<24)|0x080408}, // channe1 05
{(0x03<<24)|0x026146, (0x04<<24)|0x080408}, // channe1 06
{(0x03<<24)|0x026286, (0x04<<24)|0x080408}, // channe1 07
{(0x03<<24)|0x0263C6, (0x04<<24)|0x080408}, // channe1 08
{(0x03<<24)|0x026506, (0x04<<24)|0x080408}, // channe1 09
{(0x03<<24)|0x026646, (0x04<<24)|0x080408}, // channe1 10
{(0x03<<24)|0x026786, (0x04<<24)|0x080408}, // channe1 11
{(0x03<<24)|0x0268C6, (0x04<<24)|0x080408}, // channe1 12
{(0x03<<24)|0x026A06, (0x04<<24)|0x080408}, // channe1 13
{(0x03<<24)|0x026D06, (0x04<<24)|0x080408} // channe1 14
};
u32 w89rf242_power_data_24[] = {(0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A};
// 20060315.6 Enlarge for new scale
// 20060316.6 20060619.2.a add mapping array
u32 w89rf242_txvga_old_mapping[][2] =
{
{0, 0} , // New <-> Old
{1, 1} ,
{2, 2} ,
{3, 3} ,
{4, 4} ,
{6, 5} ,
{8, 6 },
{10, 7 },
{12, 8 },
{14, 9 },
{16, 10},
{18, 11},
{20, 12},
{22, 13},
{24, 14},
{26, 15},
{28, 16},
{30, 17},
{32, 18},
{34, 19},
};
// 20060619.3 modify from Bruce's mail
u32 w89rf242_txvga_data[][5] =
{
//low gain mode
{ (0x05<<24)|0x24C00A, 0, 0x00292315, 0x0800FEFF, 0x52523131 },// ; min gain
{ (0x05<<24)|0x24C80A, 1, 0x00292315, 0x0800FEFF, 0x52523131 },
{ (0x05<<24)|0x24C04A, 2, 0x00292315, 0x0800FEFF, 0x52523131 },// (default) +14dBm (ANT)
{ (0x05<<24)|0x24C84A, 3, 0x00292315, 0x0800FEFF, 0x52523131 },
//TXVGA=0x10
{ (0x05<<24)|0x24C40A, 4, 0x00292315, 0x0800FEFF, 0x60603838 },
{ (0x05<<24)|0x24C40A, 5, 0x00262114, 0x0700FEFF, 0x65653B3B },
//TXVGA=0x11
{ (0x05<<24)|0x24C44A, 6, 0x00241F13, 0x0700FFFF, 0x58583333 },
{ (0x05<<24)|0x24C44A, 7, 0x00292315, 0x0800FEFF, 0x5E5E3737 },
//TXVGA=0x12
{ (0x05<<24)|0x24C48A, 8, 0x00262114, 0x0700FEFF, 0x53533030 },
{ (0x05<<24)|0x24C48A, 9, 0x00241F13, 0x0700FFFF, 0x59593434 },
//TXVGA=0x13
{ (0x05<<24)|0x24C4CA, 10, 0x00292315, 0x0800FEFF, 0x52523030 },
{ (0x05<<24)|0x24C4CA, 11, 0x00262114, 0x0700FEFF, 0x56563232 },
//TXVGA=0x14
{ (0x05<<24)|0x24C50A, 12, 0x00292315, 0x0800FEFF, 0x54543131 },
{ (0x05<<24)|0x24C50A, 13, 0x00262114, 0x0700FEFF, 0x58583434 },
//TXVGA=0x15
{ (0x05<<24)|0x24C54A, 14, 0x00292315, 0x0800FEFF, 0x54543131 },
{ (0x05<<24)|0x24C54A, 15, 0x00262114, 0x0700FEFF, 0x59593434 },
//TXVGA=0x16
{ (0x05<<24)|0x24C58A, 16, 0x00292315, 0x0800FEFF, 0x55553131 },
{ (0x05<<24)|0x24C58A, 17, 0x00292315, 0x0800FEFF, 0x5B5B3535 },
//TXVGA=0x17
{ (0x05<<24)|0x24C5CA, 18, 0x00262114, 0x0700FEFF, 0x51512F2F },
{ (0x05<<24)|0x24C5CA, 19, 0x00241F13, 0x0700FFFF, 0x55553131 },
//TXVGA=0x18
{ (0x05<<24)|0x24C60A, 20, 0x00292315, 0x0800FEFF, 0x4F4F2E2E },
{ (0x05<<24)|0x24C60A, 21, 0x00262114, 0x0700FEFF, 0x53533030 },
//TXVGA=0x19
{ (0x05<<24)|0x24C64A, 22, 0x00292315, 0x0800FEFF, 0x4E4E2D2D },
{ (0x05<<24)|0x24C64A, 23, 0x00262114, 0x0700FEFF, 0x53533030 },
//TXVGA=0x1A
{ (0x05<<24)|0x24C68A, 24, 0x00292315, 0x0800FEFF, 0x50502E2E },
{ (0x05<<24)|0x24C68A, 25, 0x00262114, 0x0700FEFF, 0x55553131 },
//TXVGA=0x1B
{ (0x05<<24)|0x24C6CA, 26, 0x00262114, 0x0700FEFF, 0x53533030 },
{ (0x05<<24)|0x24C6CA, 27, 0x00292315, 0x0800FEFF, 0x5A5A3434 },
//TXVGA=0x1C
{ (0x05<<24)|0x24C70A, 28, 0x00292315, 0x0800FEFF, 0x55553131 },
{ (0x05<<24)|0x24C70A, 29, 0x00292315, 0x0800FEFF, 0x5D5D3636 },
//TXVGA=0x1D
{ (0x05<<24)|0x24C74A, 30, 0x00292315, 0x0800FEFF, 0x5F5F3737 },
{ (0x05<<24)|0x24C74A, 31, 0x00262114, 0x0700FEFF, 0x65653B3B },
//TXVGA=0x1E
{ (0x05<<24)|0x24C78A, 32, 0x00292315, 0x0800FEFF, 0x66663B3B },
{ (0x05<<24)|0x24C78A, 33, 0x00262114, 0x0700FEFF, 0x70704141 },
//TXVGA=0x1F
{ (0x05<<24)|0x24C7CA, 34, 0x00292315, 0x0800FEFF, 0x72724242 }
};
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
//=============================================================================================================
// Uxx_ReadEthernetAddress --
//
// Routine Description:
// Reads in the Ethernet address from the IC.
//
// Arguments:
// pHwData - The pHwData structure
//
// Return Value:
//
// The address is stored in EthernetIDAddr.
//=============================================================================================================
void
Uxx_ReadEthernetAddress( struct hw_data * pHwData )
{
u32 ltmp;
// Reading Ethernet address from EEPROM and set into hardware due to MAC address maybe change.
// Only unplug and plug again can make hardware read EEPROM again. 20060727
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08000000 ); // Start EEPROM access + Read + address(0x0d)
Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
*(u16 *)pHwData->PermanentMacAddress = cpu_to_le16((u16)ltmp); //20060926 anson's endian
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08010000 ); // Start EEPROM access + Read + address(0x0d)
Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
*(u16 *)(pHwData->PermanentMacAddress + 2) = cpu_to_le16((u16)ltmp); //20060926 anson's endian
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08020000 ); // Start EEPROM access + Read + address(0x0d)
Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
*(u16 *)(pHwData->PermanentMacAddress + 4) = cpu_to_le16((u16)ltmp); //20060926 anson's endian
*(u16 *)(pHwData->PermanentMacAddress + 6) = 0;
Wb35Reg_WriteSync( pHwData, 0x03e8, cpu_to_le32(*(u32 *)pHwData->PermanentMacAddress) ); //20060926 anson's endian
Wb35Reg_WriteSync( pHwData, 0x03ec, cpu_to_le32(*(u32 *)(pHwData->PermanentMacAddress+4)) ); //20060926 anson's endian
}
//===============================================================================================================
// CardGetMulticastBit --
// Description:
// For a given multicast address, returns the byte and bit in the card multicast registers that it hashes to.
// Calls CardComputeCrc() to determine the CRC value.
// Arguments:
// Address - the address
// Byte - the byte that it hashes to
// Value - will have a 1 in the relevant bit
// Return Value:
// None.
//==============================================================================================================
void CardGetMulticastBit( u8 Address[ETH_ALEN], u8 *Byte, u8 *Value )
{
u32 Crc;
u32 BitNumber;
// First compute the CRC.
Crc = CardComputeCrc(Address, ETH_ALEN);
// The computed CRC is bit0~31 from left to right
//At first we should do right shift 25bits, and read 7bits by using '&', 2^7=128
BitNumber = (u32) ((Crc >> 26) & 0x3f);
*Byte = (u8) (BitNumber >> 3);// 900514 original (BitNumber / 8)
*Value = (u8) ((u8)1 << (BitNumber % 8));
}
void Uxx_power_on_procedure( struct hw_data * pHwData )
{
u32 ltmp, loop;
if( pHwData->phy_type <= RF_MAXIM_V1 )
Wb35Reg_WriteSync( pHwData, 0x03d4, 0xffffff38 );
else
{
Wb35Reg_WriteSync( pHwData, 0x03f4, 0xFF5807FF );// 20060721 For NEW IC 0xFF5807FF
// 20060511.1 Fix the following 4 steps for Rx of RF 2230 initial fail
Wb35Reg_WriteSync( pHwData, 0x03d4, 0x80 );// regulator on only
msleep(10); // Modify 20051221.1.b
Wb35Reg_WriteSync( pHwData, 0x03d4, 0xb8 );// REG_ON RF_RSTN on, and
msleep(10); // Modify 20051221.1.b
ltmp = 0x4968;
if( (pHwData->phy_type == RF_WB_242) ||
(RF_WB_242_1 == pHwData->phy_type) ) // 20060619.5 Add
ltmp = 0x4468;
Wb35Reg_WriteSync( pHwData, 0x03d0, ltmp );
Wb35Reg_WriteSync( pHwData, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0
msleep(20); // Modify 20051221.1.b
Wb35Reg_ReadSync( pHwData, 0x03d0, &ltmp );
loop = 500; // Wait for 5 second 20061101
while( !(ltmp & 0x20) && loop-- )
{
msleep(10); // Modify 20051221.1.b
if( !Wb35Reg_ReadSync( pHwData, 0x03d0, &ltmp ) )
break;
}
Wb35Reg_WriteSync( pHwData, 0x03d4, 0xe0 );// MLK_EN
}
Wb35Reg_WriteSync( pHwData, 0x03b0, 1 );// Reset hardware first
msleep(10); // Add this 20051221.1.b
// Set burst write delay
Wb35Reg_WriteSync( pHwData, 0x03f8, 0x7ff );
}
void Set_ChanIndep_RfData_al7230_24( struct hw_data * pHwData, u32 *pltmp ,char number)
{
u8 i;
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = al7230_rf_data_24[i];
pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_24[i]&0xffffff);
}
}
void Set_ChanIndep_RfData_al7230_50( struct hw_data * pHwData, u32 *pltmp, char number)
{
u8 i;
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = al7230_rf_data_50[i];
pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_50[i]&0xffffff);
}
}
//=============================================================================================================
// RFSynthesizer_initial --
//=============================================================================================================
void
RFSynthesizer_initial(struct hw_data * pHwData)
{
u32 altmp[32];
u32 * pltmp = altmp;
u32 ltmp;
u8 number=0x00; // The number of register vale
u8 i;
//
// bit[31] SPI Enable.
// 1=perform synthesizer program operation. This bit will
// cleared automatically after the operation is completed.
// bit[30] SPI R/W Control
// 0=write, 1=read
// bit[29:24] SPI Data Format Length
// bit[17:4 ] RF Data bits.
// bit[3 :0 ] RF address.
switch( pHwData->phy_type )
{
case RF_MAXIM_2825:
case RF_MAXIM_V1: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331)
number = sizeof(max2825_rf_data)/sizeof(max2825_rf_data[0]);
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = max2825_rf_data[i];// Backup Rf parameter
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_rf_data[i], 18);
}
break;
case RF_MAXIM_2827:
number = sizeof(max2827_rf_data)/sizeof(max2827_rf_data[0]);
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = max2827_rf_data[i];
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_rf_data[i], 18);
}
break;
case RF_MAXIM_2828:
number = sizeof(max2828_rf_data)/sizeof(max2828_rf_data[0]);
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = max2828_rf_data[i];
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_rf_data[i], 18);
}
break;
case RF_MAXIM_2829:
number = sizeof(max2829_rf_data)/sizeof(max2829_rf_data[0]);
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = max2829_rf_data[i];
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_rf_data[i], 18);
}
break;
case RF_AIROHA_2230:
number = sizeof(al2230_rf_data)/sizeof(al2230_rf_data[0]);
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = al2230_rf_data[i];
pltmp[i] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data[i], 20);
}
break;
case RF_AIROHA_2230S:
number = sizeof(al2230s_rf_data)/sizeof(al2230s_rf_data[0]);
for( i=0; i<number; i++ )
{
pHwData->phy_para[i] = al2230s_rf_data[i];
pltmp[i] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230s_rf_data[i], 20);
}
break;
case RF_AIROHA_7230:
//Start to fill RF parameters, PLL_ON should be pulled low.
Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000000 );
#ifdef _PE_STATE_DUMP_
printk("* PLL_ON low\n");
#endif
number = sizeof(al7230_rf_data_24)/sizeof(al7230_rf_data_24[0]);
Set_ChanIndep_RfData_al7230_24(pHwData, pltmp, number);
break;
case RF_WB_242:
case RF_WB_242_1: // 20060619.5 Add
number = sizeof(w89rf242_rf_data)/sizeof(w89rf242_rf_data[0]);
for( i=0; i<number; i++ )
{
ltmp = w89rf242_rf_data[i];
if( i == 4 ) // Update the VCO trim from EEPROM
{
ltmp &= ~0xff0; // Mask bit4 ~bit11
ltmp |= pHwData->VCO_trim<<4;
}
pHwData->phy_para[i] = ltmp;
pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( ltmp, 24);
}
break;
}
pHwData->phy_number = number;
// The 16 is the maximum capability of hardware. Here use 12
if( number > 12 ) {
//Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 12, NO_INCREMENT );
for( i=0; i<12; i++ ) // For Al2230
Wb35Reg_WriteSync( pHwData, 0x0864, pltmp[i] );
pltmp += 12;
number -= 12;
}
// Write to register. number must less and equal than 16
for( i=0; i<number; i++ )
Wb35Reg_WriteSync( pHwData, 0x864, pltmp[i] );
// 20060630.1 Calibration only 1 time
if( pHwData->CalOneTime )
return;
pHwData->CalOneTime = 1;
switch( pHwData->phy_type )
{
case RF_AIROHA_2230:
// 20060511.1 --- Modifying the follow step for Rx issue-----------------
ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x07<<20)|0xE168E, 20);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(10);
ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data[7], 20);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(10);
case RF_AIROHA_2230S: // 20060420 Add this
// 20060511.1 --- Modifying the follow step for Rx issue-----------------
Wb35Reg_WriteSync( pHwData, 0x03d4, 0x80 );// regulator on only
msleep(10); // Modify 20051221.1.b
Wb35Reg_WriteSync( pHwData, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0
msleep(10); // Modify 20051221.1.b
Wb35Reg_WriteSync( pHwData, 0x03d4, 0xe0 );// MLK_EN
Wb35Reg_WriteSync( pHwData, 0x03b0, 1 );// Reset hardware first
msleep(10); // Add this 20051221.1.b
//------------------------------------------------------------------------
// The follow code doesn't use the burst-write mode
//phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Raise Initial Setting
ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
ltmp = pHwData->reg.BB5C & 0xfffff000;
Wb35Reg_WriteSync( pHwData, 0x105c, ltmp );
pHwData->reg.BB50 |= 0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060315.1 modify
Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50);
msleep(5);
//phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01B0); //Activate Filter Cal.
ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01B0, 20);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
//phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01e0); //Activate TX DCC
ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01E0, 20);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
//phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Resotre Initial Setting
ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
// //Force TXI(Q)P(N) to normal control
Wb35Reg_WriteSync( pHwData, 0x105c, pHwData->reg.BB5C );
pHwData->reg.BB50 &= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START);
Wb35Reg_WriteSync( pHwData, 0x1050, pHwData->reg.BB50);
break;
case RF_AIROHA_7230:
//RF parameters have filled completely, PLL_ON should be
//pulled high
Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000080 );
#ifdef _PE_STATE_DUMP_
printk("* PLL_ON high\n");
#endif
//2.4GHz
//ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F;
//Wb35Reg_WriteSync pHwData, 0x0864, ltmp );
//msleep(1); // Sleep 1 ms
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x9ABA8F;
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x3ABA8F;
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F;
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
//5GHz
Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000000 );
#ifdef _PE_STATE_DUMP_
printk("* PLL_ON low\n");
#endif
number = sizeof(al7230_rf_data_50)/sizeof(al7230_rf_data_50[0]);
Set_ChanIndep_RfData_al7230_50(pHwData, pltmp, number);
// Write to register. number must less and equal than 16
for( i=0; i<number; i++ )
Wb35Reg_WriteSync( pHwData, 0x0864, pltmp[i] );
msleep(5);
Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000080 );
#ifdef _PE_STATE_DUMP_
printk("* PLL_ON high\n");
#endif
//ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x12BACF;
//Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x9ABA8F;
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x3ABA8F;
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x12BACF;
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5);
//Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000080 );
//printk("* PLL_ON high\n");
break;
case RF_WB_242:
case RF_WB_242_1: // 20060619.5 Add
//
// ; Version 1.3B revision items: for FA5976A , October 3, 2005 by HTHo
//
ltmp = pHwData->reg.BB5C & 0xfffff000;
Wb35Reg_WriteSync( pHwData, 0x105c, ltmp );
Wb35Reg_WriteSync( pHwData, 0x1058, 0 );
pHwData->reg.BB50 |= 0x3;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060630
Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50);
//----- Calibration (1). VCO frequency calibration
//Calibration (1a.0). Synthesizer reset (HTHo corrected 2005/05/10)
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00101E, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5); // Sleep 5ms
//Calibration (1a). VCO frequency calibration mode ; waiting 2msec VCO calibration time
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFE69c0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(2); // Sleep 2ms
//----- Calibration (2). TX baseband Gm-C filter auto-tuning
//Calibration (2a). turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (2b.0). TX filter auto-tuning BW: TFLBW=101 (TC5376A default)
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (2b). send TX reset signal (HTHo corrected May 10, 2005)
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00201E, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (2c). turn-on TX Gm-C filter auto-tuning
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFCEBC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
udelay(150); // Sleep 150 us
//turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//----- Calibration (3). RX baseband Gm-C filter auto-tuning
//Calibration (3a). turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (3b.0). RX filter auto-tuning BW: RFLBW=100 (TC5376A+corner default; July 26, 2005)
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (3b). send RX reset signal (HTHo corrected May 10, 2005)
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00401E, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (3c). turn-on RX Gm-C filter auto-tuning
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFEEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
udelay(150); // Sleep 150 us
//Calibration (3e). turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//----- Calibration (4). TX LO leakage calibration
//Calibration (4a). TX LO leakage calibration
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFD6BC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
udelay(150); // Sleep 150 us
//----- Calibration (5). RX DC offset calibration
//Calibration (5a). turn off ENCAL signal and set to RX SW DC caliration mode
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (5b). turn off AGC servo-loop & RSSI
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEBFFC2, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//; for LNA=11 --------
//Calibration (5c-h). RX DC offset current bias ON; & LNA=11; RXVGA=111111
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x343FCC, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(2); // Sleep 2ms
//Calibration (5f). turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//; for LNA=10 --------
//Calibration (5c-m). RX DC offset current bias ON; & LNA=10; RXVGA=111111
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x342FCC, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(2); // Sleep 2ms
//Calibration (5f). turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//; for LNA=01 --------
//Calibration (5c-m). RX DC offset current bias ON; & LNA=01; RXVGA=111111
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x341FCC, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(2); // Sleep 2ms
//Calibration (5f). turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//; for LNA=00 --------
//Calibration (5c-l). RX DC offset current bias ON; & LNA=00; RXVGA=111111
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x340FCC, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(2); // Sleep 2ms
//Calibration (5f). turn off ENCAL signal
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//Calibration (5g). turn on AGC servo-loop
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEFFFC2, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
//; ----- Calibration (7). Switch RF chip to normal mode
//0x00 0xF86100 ; 3E184 ; Switch RF chip to normal mode
// msleep(10); // @@ 20060721
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF86100, 24);
Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
msleep(5); // Sleep 5 ms
// //write back
// Wb35Reg_WriteSync(pHwData, 0x105c, pHwData->reg.BB5C);
// pHwData->reg.BB50 &= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START); // 20060315.1 fix
// Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50);
// msleep(1); // Sleep 1 ms
break;
}
}
void BBProcessor_AL7230_2400( struct hw_data * pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
u32 pltmp[12];
pltmp[0] = 0x16A8337A; // 0x16a5215f; // 0x1000 AGC_Ctrl1
pltmp[1] = 0x9AFF9AA6; // 0x9aff9ca6; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55D00A04; // 0x55d00a04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xFFF72031; // 0xFfFf2138; // 0x100c AGC_Ctrl4
reg->BB0C = 0xFFF72031;
pltmp[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7
pltmp[5] = 0x00CAA333; // 0x00eaa333; // 0x1014 AGC_Ctrl6
pltmp[6] = 0xF2211111; // 0x11111111; // 0x1018 AGC_Ctrl7
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x06443440; // 0x1020 AGC_Ctrl9
pltmp[9] = 0xA8002A79; // 0xa9002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0x40000528; // 20050927 0x40000228
pltmp[11] = 0x232D7F30; // 0x23457f30;// 0x102c A_ACQ_Ctrl
reg->BB2C = 0x232D7F30;
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002c54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002c54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3C = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = 0x00332C1B; // 0x00453B24; // 0x1048 11b TX RC filter
pltmp[7] = 0x0A00FEFF; // 0x0E00FEFF; // 0x104c 11b TX RC filter
pltmp[8] = 0x2B106208; // 0x1050 MODE_Ctrl
reg->BB50 = 0x2B106208;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x52524242; // 0x64645252; // 0x1058 IQ_Alpha
reg->BB58 = 0x52524242;
pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
}
void BBProcessor_AL7230_5000( struct hw_data * pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
u32 pltmp[12];
pltmp[0] = 0x16AA6678; // 0x1000 AGC_Ctrl1
pltmp[1] = 0x9AFFA0B2; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xEFFF233E; // 0x100c AGC_Ctrl4
reg->BB0C = 0xEFFF233E;
pltmp[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7
pltmp[5] = 0x00CAA333; // 0x1014 AGC_Ctrl6
pltmp[6] = 0xF2432111; // 0x1018 AGC_Ctrl7
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x05C43440; // 0x1020 AGC_Ctrl9
pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0x40000528; // 20050927 0x40000228
pltmp[11] = 0x232FDF30;// 0x102c A_ACQ_Ctrl
reg->BB2C = 0x232FDF30;
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x80002C7C; // 0x1030 B_ACQ_Ctrl
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3C = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = 0x00332C1B; // 0x1048 11b TX RC filter
pltmp[7] = 0x0A00FEFF; // 0x104c 11b TX RC filter
pltmp[8] = 0x2B107208; // 0x1050 MODE_Ctrl
reg->BB50 = 0x2B107208;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x52524242; // 0x1058 IQ_Alpha
reg->BB58 = 0x52524242;
pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
}
//=============================================================================================================
// BBProcessorPowerupInit --
//
// Description:
// Initialize the Baseband processor.
//
// Arguments:
// pHwData - Handle of the USB Device.
//
// Return values:
// None.
//=============================================================================================================
void
BBProcessor_initial( struct hw_data * pHwData )
{
struct wb35_reg *reg = &pHwData->reg;
u32 i, pltmp[12];
switch( pHwData->phy_type )
{
case RF_MAXIM_V1: // Initializng the Winbond 2nd BB(with Phy board (v1) + Maxim 331)
pltmp[0] = 0x16F47E77; // 0x1000 AGC_Ctrl1
pltmp[1] = 0x9AFFAEA4; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xEFFF1A34; // 0x100c AGC_Ctrl4
reg->BB0C = 0xEFFF1A34;
pltmp[4] = 0x0FABE0B7; // 0x1010 AGC_Ctrl5
pltmp[5] = 0x00CAA332; // 0x1014 AGC_Ctrl6
pltmp[6] = 0xF6632111; // 0x1018 AGC_Ctrl7
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = (pHwData->phy_type==3) ? 0x40000a28 : 0x40000228; // 0x1028 MAXIM_331(b31=0) + WBRF_V1(b11=1) : MAXIM_331(b31=0) + WBRF_V2(b11=0)
pltmp[11] = 0x232FDF30; // 0x102c A_ACQ_Ctrl
reg->BB2C = 0x232FDF30; //Modify for 33's 1.0.95.xxx version, antenna 1
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002C54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3C = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter
pltmp[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter
pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl
reg->BB50 = 0x27106208;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x64646464; // 0x1058 IQ_Alpha
reg->BB58 = 0x64646464;
pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
Wb35Reg_Write( pHwData, 0x1070, 0x00000045 );
break;
//------------------------------------------------------------------
//[20040722 WK]
//Only for baseband version 2
// case RF_MAXIM_317:
case RF_MAXIM_2825:
case RF_MAXIM_2827:
case RF_MAXIM_2828:
pltmp[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1
pltmp[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xefff1a34; // 0x100c AGC_Ctrl4
reg->BB0C = 0xefff1a34;
pltmp[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5
pltmp[5] = 0x00caa332; // 0x1014 AGC_Ctrl6
pltmp[6] = 0xf6632111; // 0x1018 AGC_Ctrl7
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0x40000528; // 0x40000128; Modify for 33's 1.0.95
pltmp[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl
reg->BB2C = 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002C54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3C = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter
pltmp[7] = 0x0D00FDFF; // 0x104c 11b TX RC filter
pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl
reg->BB50 = 0x27106208;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x64646464; // 0x1058 IQ_Alpha
reg->BB58 = 0x64646464;
pltmp[11] = 0xAA28C000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
Wb35Reg_Write( pHwData, 0x1070, 0x00000045 );
break;
case RF_MAXIM_2829:
pltmp[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1
pltmp[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xf4ff1632; // 0xefff1a34; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95
reg->BB0C = 0xf4ff1632; // 0xefff1a34; Modify for 33's 1.0.95
pltmp[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5
pltmp[5] = 0x00caa332; // 0x1014 AGC_Ctrl6
pltmp[6] = 0xf8632112; // 0xf6632111; // 0x1018 AGC_Ctrl7 Modify for 33's 1.0.95
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0x40000528; // 0x40000128; modify for 33's 1.0.95
pltmp[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl
reg->BB2C = 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002C54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5b2c8769; // 0x5B6C8769; // 0x1038 B_TXRX_Ctrl Modify for 33's 1.0.95
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3C = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = 0x002c2617; // 0x00453B24; // 0x1048 11b TX RC filter Modify for 33's 1.0.95
pltmp[7] = 0x0800feff; // 0x0D00FDFF; // 0x104c 11b TX RC filter Modify for 33's 1.0.95
pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl
reg->BB50 = 0x27106208;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x64644a4a; // 0x64646464; // 0x1058 IQ_Alpha Modify for 33's 1.0.95
reg->BB58 = 0x64646464;
pltmp[11] = 0xAA28C000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
Wb35Reg_Write( pHwData, 0x1070, 0x00000045 );
break;
case RF_AIROHA_2230:
pltmp[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77
pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version
reg->BB0C = 0xFFFd203c;
pltmp[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version
pltmp[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version
pltmp[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0X40000528; //0x40000228
pltmp[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730
reg->BB2C = 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002C54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3C = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = BB48_DEFAULT_AL2230_11G; // 0x1048 11b TX RC filter 20060613.2
reg->BB48 = BB48_DEFAULT_AL2230_11G; // 20051221 ch14 20060613.2
pltmp[7] = BB4C_DEFAULT_AL2230_11G; // 0x104c 11b TX RC filter 20060613.2
reg->BB4C = BB4C_DEFAULT_AL2230_11G; // 20060613.1 20060613.2
pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl
reg->BB50 = 0x27106200;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x52524242; // 0x1058 IQ_Alpha
reg->BB58 = 0x52524242;
pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
Wb35Reg_Write( pHwData, 0x1070, 0x00000045 );
break;
case RF_AIROHA_2230S: // 20060420 Add this
pltmp[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77
pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version
reg->BB0C = 0xFFFd203c;
pltmp[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version
pltmp[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version
pltmp[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0X40000528; //0x40000228
pltmp[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730
reg->BB2C = 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002C54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3C = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = BB48_DEFAULT_AL2230_11G; // 0x1048 11b TX RC filter 20060613.2
reg->BB48 = BB48_DEFAULT_AL2230_11G; // 20051221 ch14 20060613.2
pltmp[7] = BB4C_DEFAULT_AL2230_11G; // 0x104c 11b TX RC filter 20060613.2
reg->BB4C = BB4C_DEFAULT_AL2230_11G; // 20060613.1
pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl
reg->BB50 = 0x27106200;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x52523232; // 20060419 0x52524242; // 0x1058 IQ_Alpha
reg->BB58 = 0x52523232; // 20060419 0x52524242;
pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
Wb35Reg_Write( pHwData, 0x1070, 0x00000045 );
break;
case RF_AIROHA_7230:
/*
pltmp[0] = 0x16a84a77; // 0x1000 AGC_Ctrl1
pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xFFFb203a; // 0x100c AGC_Ctrl4
reg->BB0c = 0xFFFb203a;
pltmp[4] = 0x0FBFDCB7; // 0x1010 AGC_Ctrl5
pltmp[5] = 0x00caa333; // 0x1014 AGC_Ctrl6
pltmp[6] = 0xf6632112; // 0x1018 AGC_Ctrl7
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0x40000228;
pltmp[11] = 0x232A9F30;// 0x102c A_ACQ_Ctrl
reg->BB2c = 0x232A9F30;
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002C54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
reg->BB3c = 0x00000000;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter
pltmp[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter
pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl
reg->BB50 = 0x27106200;
pltmp[9] = 0; // 0x1054
reg->BB54 = 0x00000000;
pltmp[10] = 0x64645252; // 0x1058 IQ_Alpha
reg->BB58 = 0x64645252;
pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
*/
BBProcessor_AL7230_2400( pHwData );
Wb35Reg_Write( pHwData, 0x1070, 0x00000045 );
break;
case RF_WB_242:
case RF_WB_242_1: // 20060619.5 Add
pltmp[0] = 0x16A8525D; // 0x1000 AGC_Ctrl1
pltmp[1] = 0x9AFF9ABA; // 0x1004 AGC_Ctrl2
pltmp[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
pltmp[3] = 0xEEE91C32; // 0x100c AGC_Ctrl4
reg->BB0C = 0xEEE91C32;
pltmp[4] = 0x0FACDCC5; // 0x1010 AGC_Ctrl5
pltmp[5] = 0x000AA344; // 0x1014 AGC_Ctrl6
pltmp[6] = 0x22222221; // 0x1018 AGC_Ctrl7
pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
pltmp[8] = 0x04CC3440; // 20051018 0x03CB3440; // 0x1020 AGC_Ctrl9 20051014 0x03C33440
pltmp[9] = 0xA9002A79; // 0x1024 AGC_Ctrl10
pltmp[10] = 0x40000528; // 0x1028
pltmp[11] = 0x23457F30; // 0x102c A_ACQ_Ctrl
reg->BB2C = 0x23457F30;
Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
reg->BB30 = 0x00002C54;
pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
pltmp[3] = pHwData->BB3c_cal; // 0x103c 11a TX LS filter
reg->BB3C = pHwData->BB3c_cal;
pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
pltmp[6] = BB48_DEFAULT_WB242_11G; // 0x1048 11b TX RC filter 20060613.2
reg->BB48 = BB48_DEFAULT_WB242_11G; // 20060613.1 20060613.2
pltmp[7] = BB4C_DEFAULT_WB242_11G; // 0x104c 11b TX RC filter 20060613.2
reg->BB4C = BB4C_DEFAULT_WB242_11G; // 20060613.1 20060613.2
pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl
reg->BB50 = 0x27106208;
pltmp[9] = pHwData->BB54_cal; // 0x1054
reg->BB54 = pHwData->BB54_cal;
pltmp[10] = 0x52523131; // 0x1058 IQ_Alpha
reg->BB58 = 0x52523131;
pltmp[11] = 0xAA0AC000; // 20060825 0xAA2AC000; // 0x105c DC_Cancel
Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
Wb35Reg_Write( pHwData, 0x1070, 0x00000045 );
break;
}
// Fill the LNA table
reg->LNAValue[0] = (u8)(reg->BB0C & 0xff);
reg->LNAValue[1] = 0;
reg->LNAValue[2] = (u8)((reg->BB0C & 0xff00)>>8);
reg->LNAValue[3] = 0;
// Fill SQ3 table
for( i=0; i<MAX_SQ3_FILTER_SIZE; i++ )
reg->SQ3_filter[i] = 0x2f; // half of Bit 0 ~ 6
}
void set_tx_power_per_channel_max2829( struct hw_data * pHwData, ChanInfo Channel)
{
RFSynthesizer_SetPowerIndex( pHwData, 100 ); // 20060620.1 Modify
}
void set_tx_power_per_channel_al2230( struct hw_data * pHwData, ChanInfo Channel )
{
u8 index = 100;
if (pHwData->TxVgaFor24[Channel.ChanNo - 1] != 0xff) // 20060620.1 Add
index = pHwData->TxVgaFor24[Channel.ChanNo - 1];
RFSynthesizer_SetPowerIndex( pHwData, index );
}
void set_tx_power_per_channel_al7230( struct hw_data * pHwData, ChanInfo Channel)
{
u8 i, index = 100;
switch ( Channel.band )
{
case BAND_TYPE_DSSS:
case BAND_TYPE_OFDM_24:
{
if (pHwData->TxVgaFor24[Channel.ChanNo - 1] != 0xff)
index = pHwData->TxVgaFor24[Channel.ChanNo - 1];
}
break;
case BAND_TYPE_OFDM_5:
{
for (i =0; i<35; i++)
{
if (Channel.ChanNo == pHwData->TxVgaFor50[i].ChanNo)
{
if (pHwData->TxVgaFor50[i].TxVgaValue != 0xff)
index = pHwData->TxVgaFor50[i].TxVgaValue;
break;
}
}
}
break;
}
RFSynthesizer_SetPowerIndex( pHwData, index );
}
void set_tx_power_per_channel_wb242( struct hw_data * pHwData, ChanInfo Channel)
{
u8 index = 100;
switch ( Channel.band )
{
case BAND_TYPE_DSSS:
case BAND_TYPE_OFDM_24:
{
if (pHwData->TxVgaFor24[Channel.ChanNo - 1] != 0xff)
index = pHwData->TxVgaFor24[Channel.ChanNo - 1];
}
break;
case BAND_TYPE_OFDM_5:
break;
}
RFSynthesizer_SetPowerIndex( pHwData, index );
}
//=============================================================================================================
// RFSynthesizer_SwitchingChannel --
//
// Description:
// Swithch the RF channel.
//
// Arguments:
// pHwData - Handle of the USB Device.
// Channel - The channel no.
//
// Return values:
// None.
//=============================================================================================================
void
RFSynthesizer_SwitchingChannel( struct hw_data * pHwData, ChanInfo Channel )
{
struct wb35_reg *reg = &pHwData->reg;
u32 pltmp[16]; // The 16 is the maximum capability of hardware
u32 count, ltmp;
u8 i, j, number;
u8 ChnlTmp;
switch( pHwData->phy_type )
{
case RF_MAXIM_2825:
case RF_MAXIM_V1: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331)
if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 13
{
for( i=0; i<3; i++ )
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_channel_data_24[Channel.ChanNo-1][i], 18);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
}
RFSynthesizer_SetPowerIndex( pHwData, 100 );
break;
case RF_MAXIM_2827:
if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 13
{
for( i=0; i<3; i++ )
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_24[Channel.ChanNo-1][i], 18);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
}
else if( Channel.band == BAND_TYPE_OFDM_5 ) // channel 36 ~ 64
{
ChnlTmp = (Channel.ChanNo - 36) / 4;
for( i=0; i<3; i++ )
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_50[ChnlTmp][i], 18);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
}
RFSynthesizer_SetPowerIndex( pHwData, 100 );
break;
case RF_MAXIM_2828:
if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 13
{
for( i=0; i<3; i++ )
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_24[Channel.ChanNo-1][i], 18);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
}
else if( Channel.band == BAND_TYPE_OFDM_5 ) // channel 36 ~ 64
{
ChnlTmp = (Channel.ChanNo - 36) / 4;
for ( i = 0; i < 3; i++)
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_50[ChnlTmp][i], 18);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
}
RFSynthesizer_SetPowerIndex( pHwData, 100 );
break;
case RF_MAXIM_2829:
if( Channel.band <= BAND_TYPE_OFDM_24)
{
for( i=0; i<3; i++ )
pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_channel_data_24[Channel.ChanNo-1][i], 18);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
}
else if( Channel.band == BAND_TYPE_OFDM_5 )
{
count = sizeof(max2829_channel_data_50) / sizeof(max2829_channel_data_50[0]);
for( i=0; i<count; i++ )
{
if( max2829_channel_data_50[i][0] == Channel.ChanNo )
{
for( j=0; j<3; j++ )
pltmp[j] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_channel_data_50[i][j+1], 18);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
if( (max2829_channel_data_50[i][3] & 0x3FFFF) == 0x2A946 )
{
ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( (5<<18)|0x2A906, 18);
Wb35Reg_Write( pHwData, 0x0864, ltmp );
}
else // 0x2A9C6
{
ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( (5<<18)|0x2A986, 18);
Wb35Reg_Write( pHwData, 0x0864, ltmp );
}
}
}
}
set_tx_power_per_channel_max2829( pHwData, Channel );
break;
case RF_AIROHA_2230:
case RF_AIROHA_2230S: // 20060420 Add this
if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 14
{
for( i=0; i<2; i++ )
pltmp[i] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_channel_data_24[Channel.ChanNo-1][i], 20);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 2, NO_INCREMENT );
}
set_tx_power_per_channel_al2230( pHwData, Channel );
break;
case RF_AIROHA_7230:
//Start to fill RF parameters, PLL_ON should be pulled low.
//Wb35Reg_Write( pHwData, 0x03dc, 0x00000000 );
//printk("* PLL_ON low\n");
//Channel independent registers
if( Channel.band != pHwData->band)
{
if (Channel.band <= BAND_TYPE_OFDM_24)
{
//Update BB register
BBProcessor_AL7230_2400(pHwData);
number = sizeof(al7230_rf_data_24)/sizeof(al7230_rf_data_24[0]);
Set_ChanIndep_RfData_al7230_24(pHwData, pltmp, number);
}
else
{
//Update BB register
BBProcessor_AL7230_5000(pHwData);
number = sizeof(al7230_rf_data_50)/sizeof(al7230_rf_data_50[0]);
Set_ChanIndep_RfData_al7230_50(pHwData, pltmp, number);
}
// Write to register. number must less and equal than 16
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, number, NO_INCREMENT );
#ifdef _PE_STATE_DUMP_
printk("Band changed\n");
#endif
}
if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 14
{
for( i=0; i<2; i++ )
pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_channel_data_24[Channel.ChanNo-1][i]&0xffffff);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 2, NO_INCREMENT );
}
else if( Channel.band == BAND_TYPE_OFDM_5 )
{
//Update Reg12
if ((Channel.ChanNo > 64) && (Channel.ChanNo <= 165))
{
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x00143c;
Wb35Reg_Write( pHwData, 0x0864, ltmp );
}
else //reg12 = 0x00147c at Channel 4920 ~ 5320
{
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x00147c;
Wb35Reg_Write( pHwData, 0x0864, ltmp );
}
count = sizeof(al7230_channel_data_5) / sizeof(al7230_channel_data_5[0]);
for (i=0; i<count; i++)
{
if (al7230_channel_data_5[i][0] == Channel.ChanNo)
{
for( j=0; j<3; j++ )
pltmp[j] = (1 << 31) | (0 << 30) | (24 << 24) | ( al7230_channel_data_5[i][j+1]&0xffffff);
Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT );
}
}
}
set_tx_power_per_channel_al7230(pHwData, Channel);
break;
case RF_WB_242:
case RF_WB_242_1: // 20060619.5 Add
if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 14
{
ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( w89rf242_channel_data_24[Channel.ChanNo-1][0], 24);
Wb35Reg_Write( pHwData, 0x864, ltmp );
}
set_tx_power_per_channel_wb242(pHwData, Channel);
break;
}
if( Channel.band <= BAND_TYPE_OFDM_24 )
{
// BB: select 2.4 GHz, bit[12-11]=00
reg->BB50 &= ~(BIT(11)|BIT(12));
Wb35Reg_Write( pHwData, 0x1050, reg->BB50 ); // MODE_Ctrl
// MAC: select 2.4 GHz, bit[5]=0
reg->M78_ERPInformation &= ~BIT(5);
Wb35Reg_Write( pHwData, 0x0878, reg->M78_ERPInformation );
// enable 11b Baseband
reg->BB30 &= ~BIT(31);
Wb35Reg_Write( pHwData, 0x1030, reg->BB30 );
}
else if( (Channel.band == BAND_TYPE_OFDM_5) )
{
// BB: select 5 GHz
reg->BB50 &= ~(BIT(11)|BIT(12));
if (Channel.ChanNo <=64 )
reg->BB50 |= BIT(12); // 10-5.25GHz
else if ((Channel.ChanNo >= 100) && (Channel.ChanNo <= 124))
reg->BB50 |= BIT(11); // 01-5.48GHz
else if ((Channel.ChanNo >=128) && (Channel.ChanNo <= 161))
reg->BB50 |= (BIT(12)|BIT(11)); // 11-5.775GHz
else //Chan 184 ~ 196 will use bit[12-11] = 10 in version sh-src-1.2.25
reg->BB50 |= BIT(12);
Wb35Reg_Write( pHwData, 0x1050, reg->BB50 ); // MODE_Ctrl
//(1) M78 should alway use 2.4G setting when using RF_AIROHA_7230
//(2) BB30 has been updated previously.
if (pHwData->phy_type != RF_AIROHA_7230)
{
// MAC: select 5 GHz, bit[5]=1
reg->M78_ERPInformation |= BIT(5);
Wb35Reg_Write( pHwData, 0x0878, reg->M78_ERPInformation );
// disable 11b Baseband
reg->BB30 |= BIT(31);
Wb35Reg_Write( pHwData, 0x1030, reg->BB30 );
}
}
}
//Set the tx power directly from DUT GUI, not from the EEPROM. Return the current setting
u8 RFSynthesizer_SetPowerIndex( struct hw_data * pHwData, u8 PowerIndex )
{
u32 Band = pHwData->band;
u8 index=0;
if( pHwData->power_index == PowerIndex ) // 20060620.1 Add
return PowerIndex;
if (RF_MAXIM_2825 == pHwData->phy_type)
{
// Channel 1 - 13
index = RFSynthesizer_SetMaxim2825Power( pHwData, PowerIndex );
}
else if (RF_MAXIM_2827 == pHwData->phy_type)
{
if( Band <= BAND_TYPE_OFDM_24 ) // Channel 1 - 13
index = RFSynthesizer_SetMaxim2827_24Power( pHwData, PowerIndex );
else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64
index = RFSynthesizer_SetMaxim2827_50Power( pHwData, PowerIndex );
}
else if (RF_MAXIM_2828 == pHwData->phy_type)
{
if( Band <= BAND_TYPE_OFDM_24 ) // Channel 1 - 13
index = RFSynthesizer_SetMaxim2828_24Power( pHwData, PowerIndex );
else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64
index = RFSynthesizer_SetMaxim2828_50Power( pHwData, PowerIndex );
}
else if( RF_AIROHA_2230 == pHwData->phy_type )
{
//Power index: 0 ~ 63 // Channel 1 - 14
index = RFSynthesizer_SetAiroha2230Power( pHwData, PowerIndex );
index = (u8)al2230_txvga_data[index][1];
}
else if( RF_AIROHA_2230S == pHwData->phy_type ) // 20060420 Add this
{
//Power index: 0 ~ 63 // Channel 1 - 14
index = RFSynthesizer_SetAiroha2230Power( pHwData, PowerIndex );
index = (u8)al2230_txvga_data[index][1];
}
else if( RF_AIROHA_7230 == pHwData->phy_type )
{
//Power index: 0 ~ 63
index = RFSynthesizer_SetAiroha7230Power( pHwData, PowerIndex );
index = (u8)al7230_txvga_data[index][1];
}
else if( (RF_WB_242 == pHwData->phy_type) ||
(RF_WB_242_1 == pHwData->phy_type) ) // 20060619.5 Add
{
//Power index: 0 ~ 19 for original. New range is 0 ~ 33
index = RFSynthesizer_SetWinbond242Power( pHwData, PowerIndex );
index = (u8)w89rf242_txvga_data[index][1];
}
pHwData->power_index = index; // Backup current
return index;
}
//-- Sub function
u8 RFSynthesizer_SetMaxim2828_24Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
if( index > 1 ) index = 1;
PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_24[index], 18);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
return index;
}
//--
u8 RFSynthesizer_SetMaxim2828_50Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
if( index > 1 ) index = 1;
PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_50[index], 18);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
return index;
}
//--
u8 RFSynthesizer_SetMaxim2827_24Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
if( index > 1 ) index = 1;
PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_24[index], 18);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
return index;
}
//--
u8 RFSynthesizer_SetMaxim2827_50Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
if( index > 1 ) index = 1;
PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_50[index], 18);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
return index;
}
//--
u8 RFSynthesizer_SetMaxim2825Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
if( index > 1 ) index = 1;
PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_power_data_24[index], 18);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
return index;
}
//--
u8 RFSynthesizer_SetAiroha2230Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
u8 i,count;
count = sizeof(al2230_txvga_data) / sizeof(al2230_txvga_data[0]);
for (i=0; i<count; i++)
{
if (al2230_txvga_data[i][1] >= index)
break;
}
if (i == count)
i--;
PowerData = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_txvga_data[i][0], 20);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
return i;
}
//--
u8 RFSynthesizer_SetAiroha7230Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
u8 i,count;
//PowerData = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( airoha_power_data_24[index], 20);
count = sizeof(al7230_txvga_data) / sizeof(al7230_txvga_data[0]);
for (i=0; i<count; i++)
{
if (al7230_txvga_data[i][1] >= index)
break;
}
if (i == count)
i--;
PowerData = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_txvga_data[i][0]&0xffffff);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
return i;
}
u8 RFSynthesizer_SetWinbond242Power( struct hw_data * pHwData, u8 index )
{
u32 PowerData;
u8 i,count;
count = sizeof(w89rf242_txvga_data) / sizeof(w89rf242_txvga_data[0]);
for (i=0; i<count; i++)
{
if (w89rf242_txvga_data[i][1] >= index)
break;
}
if (i == count)
i--;
// Set TxVga into RF
PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( w89rf242_txvga_data[i][0], 24);
Wb35Reg_Write( pHwData, 0x0864, PowerData );
// Update BB48 BB4C BB58 for high precision txvga
Wb35Reg_Write( pHwData, 0x1048, w89rf242_txvga_data[i][2] );
Wb35Reg_Write( pHwData, 0x104c, w89rf242_txvga_data[i][3] );
Wb35Reg_Write( pHwData, 0x1058, w89rf242_txvga_data[i][4] );
// Rf vga 0 ~ 3 for temperature compensate. It will affect the scan Bss.
// The i value equals to 8 or 7 usually. So It's not necessary to setup this RF register.
// if( i <= 3 )
// PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x000024, 24 );
// else
// PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x001824, 24 );
// Wb35Reg_Write( pHwData, 0x0864, PowerData );
return i;
}
//===========================================================================================================
// Dxx_initial --
// Mxx_initial --
//
// Routine Description:
// Initial the hardware setting and module variable
//
//===========================================================================================================
void Dxx_initial( struct hw_data * pHwData )
{
struct wb35_reg *reg = &pHwData->reg;
// Old IC:Single mode only.
// New IC: operation decide by Software set bit[4]. 1:multiple 0: single
reg->D00_DmaControl = 0xc0000004; //Txon, Rxon, multiple Rx for new 4k DMA
//Txon, Rxon, single Rx for old 8k ASIC
if( !HAL_USB_MODE_BURST( pHwData ) )
reg->D00_DmaControl = 0xc0000000;//Txon, Rxon, single Rx for new 4k DMA
Wb35Reg_WriteSync( pHwData, 0x0400, reg->D00_DmaControl );
}
void Mxx_initial( struct hw_data * pHwData )
{
struct wb35_reg *reg = &pHwData->reg;
u32 tmp;
u32 pltmp[11];
u16 i;
//======================================================
// Initial Mxx register
//======================================================
// M00 bit set
#ifdef _IBSS_BEACON_SEQ_STICK_
reg->M00_MacControl = 0; // Solve beacon sequence number stop by software
#else
reg->M00_MacControl = 0x80000000; // Solve beacon sequence number stop by hardware
#endif
// M24 disable enter power save, BB RxOn and enable NAV attack
reg->M24_MacControl = 0x08040042;
pltmp[0] = reg->M24_MacControl;
pltmp[1] = 0; // Skip M28, because no initialize value is required.
// M2C CWmin and CWmax setting
pHwData->cwmin = DEFAULT_CWMIN;
pHwData->cwmax = DEFAULT_CWMAX;
reg->M2C_MacControl = DEFAULT_CWMIN << 10;
reg->M2C_MacControl |= DEFAULT_CWMAX;
pltmp[2] = reg->M2C_MacControl;
// M30 BSSID
pltmp[3] = *(u32 *)pHwData->bssid;
// M34
pHwData->AID = DEFAULT_AID;
tmp = *(u16 *)(pHwData->bssid+4);
tmp |= DEFAULT_AID << 16;
pltmp[4] = tmp;
// M38
reg->M38_MacControl = (DEFAULT_RATE_RETRY_LIMIT<<8) | (DEFAULT_LONG_RETRY_LIMIT << 4) | DEFAULT_SHORT_RETRY_LIMIT;
pltmp[5] = reg->M38_MacControl;
// M3C
tmp = (DEFAULT_PIFST << 26) | (DEFAULT_EIFST << 16) | (DEFAULT_DIFST << 8) | (DEFAULT_SIFST << 4) | DEFAULT_OSIFST ;
reg->M3C_MacControl = tmp;
pltmp[6] = tmp;
// M40
pHwData->slot_time_select = DEFAULT_SLOT_TIME;
tmp = (DEFAULT_ATIMWD << 16) | DEFAULT_SLOT_TIME;
reg->M40_MacControl = tmp;
pltmp[7] = tmp;
// M44
tmp = DEFAULT_MAX_TX_MSDU_LIFE_TIME << 10; // *1024
reg->M44_MacControl = tmp;
pltmp[8] = tmp;
// M48
pHwData->BeaconPeriod = DEFAULT_BEACON_INTERVAL;
pHwData->ProbeDelay = DEFAULT_PROBE_DELAY_TIME;
tmp = (DEFAULT_BEACON_INTERVAL << 16) | DEFAULT_PROBE_DELAY_TIME;
reg->M48_MacControl = tmp;
pltmp[9] = tmp;
//M4C
reg->M4C_MacStatus = (DEFAULT_PROTOCOL_VERSION << 30) | (DEFAULT_MAC_POWER_STATE << 28) | (DEFAULT_DTIM_ALERT_TIME << 24);
pltmp[10] = reg->M4C_MacStatus;
// Burst write
//Wb35Reg_BurstWrite( pHwData, 0x0824, pltmp, 11, AUTO_INCREMENT );
for( i=0; i<11; i++ )
Wb35Reg_WriteSync( pHwData, 0x0824 + i*4, pltmp[i] );
// M60
Wb35Reg_WriteSync( pHwData, 0x0860, 0x12481248 );
reg->M60_MacControl = 0x12481248;
// M68
Wb35Reg_WriteSync( pHwData, 0x0868, 0x00050900 ); // 20051018 0x000F0F00 ); // 940930 0x00131300
reg->M68_MacControl = 0x00050900;
// M98
Wb35Reg_WriteSync( pHwData, 0x0898, 0xffff8888 );
reg->M98_MacControl = 0xffff8888;
}
void Uxx_power_off_procedure( struct hw_data * pHwData )
{
// SW, PMU reset and turn off clock
Wb35Reg_WriteSync( pHwData, 0x03b0, 3 );
Wb35Reg_WriteSync( pHwData, 0x03f0, 0xf9 );
}
//Decide the TxVga of every channel
void GetTxVgaFromEEPROM( struct hw_data * pHwData )
{
u32 i, j, ltmp;
u16 Value[MAX_TXVGA_EEPROM];
u8 *pctmp;
u8 ctmp=0;
// Get the entire TxVga setting in EEPROM
for( i=0; i<MAX_TXVGA_EEPROM; i++ )
{
Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 + 0x00010000*i );
Wb35Reg_ReadSync( pHwData, 0x03b4, &ltmp );
Value[i] = (u16)( ltmp & 0xffff ); // Get 16 bit available
Value[i] = cpu_to_le16( Value[i] ); // [7:0]2412 [7:0]2417 ....
}
// Adjust the filed which fills with reserved value.
pctmp = (u8 *)Value;
for( i=0; i<(MAX_TXVGA_EEPROM*2); i++ )
{
if( pctmp[i] != 0xff )
ctmp = pctmp[i];
else
pctmp[i] = ctmp;
}
// Adjust WB_242 to WB_242_1 TxVga scale
if( pHwData->phy_type == RF_WB_242 )
{
for( i=0; i<4; i++ ) // Only 2412 2437 2462 2484 case must be modified
{
for( j=0; j<(sizeof(w89rf242_txvga_old_mapping)/sizeof(w89rf242_txvga_old_mapping[0])); j++ )
{
if( pctmp[i] < (u8)w89rf242_txvga_old_mapping[j][1] )
{
pctmp[i] = (u8)w89rf242_txvga_old_mapping[j][0];
break;
}
}
if( j == (sizeof(w89rf242_txvga_old_mapping)/sizeof(w89rf242_txvga_old_mapping[0])) )
pctmp[i] = (u8)w89rf242_txvga_old_mapping[j-1][0];
}
}
// 20060621 Add
memcpy( pHwData->TxVgaSettingInEEPROM, pctmp, MAX_TXVGA_EEPROM*2 ); //MAX_TXVGA_EEPROM is u16 count
EEPROMTxVgaAdjust( pHwData );
}
// This function will affect the TxVga parameter in HAL. If hal_set_current_channel
// or RFSynthesizer_SetPowerIndex be called, new TxVga will take effect.
// TxVgaSettingInEEPROM of sHwData is an u8 array point to EEPROM contain for IS89C35
// This function will use default TxVgaSettingInEEPROM data to calculate new TxVga.
void EEPROMTxVgaAdjust( struct hw_data * pHwData ) // 20060619.5 Add
{
u8 * pTxVga = pHwData->TxVgaSettingInEEPROM;
s16 i, stmp;
//-- 2.4G -- 20060704.2 Request from Tiger
//channel 1 ~ 5
stmp = pTxVga[1] - pTxVga[0];
for( i=0; i<5; i++ )
pHwData->TxVgaFor24[i] = pTxVga[0] + stmp*i/4;
//channel 6 ~ 10
stmp = pTxVga[2] - pTxVga[1];
for( i=5; i<10; i++ )
pHwData->TxVgaFor24[i] = pTxVga[1] + stmp*(i-5)/4;
//channel 11 ~ 13
stmp = pTxVga[3] - pTxVga[2];
for( i=10; i<13; i++ )
pHwData->TxVgaFor24[i] = pTxVga[2] + stmp*(i-10)/2;
//channel 14
pHwData->TxVgaFor24[13] = pTxVga[3];
//-- 5G --
if( pHwData->phy_type == RF_AIROHA_7230 )
{
//channel 184
pHwData->TxVgaFor50[0].ChanNo = 184;
pHwData->TxVgaFor50[0].TxVgaValue = pTxVga[4];
//channel 196
pHwData->TxVgaFor50[3].ChanNo = 196;
pHwData->TxVgaFor50[3].TxVgaValue = pTxVga[5];
//interpolate
pHwData->TxVgaFor50[1].ChanNo = 188;
pHwData->TxVgaFor50[2].ChanNo = 192;
stmp = pTxVga[5] - pTxVga[4];
pHwData->TxVgaFor50[2].TxVgaValue = pTxVga[5] - stmp/3;
pHwData->TxVgaFor50[1].TxVgaValue = pTxVga[5] - stmp*2/3;
//channel 16
pHwData->TxVgaFor50[6].ChanNo = 16;
pHwData->TxVgaFor50[6].TxVgaValue = pTxVga[6];
pHwData->TxVgaFor50[4].ChanNo = 8;
pHwData->TxVgaFor50[4].TxVgaValue = pTxVga[6];
pHwData->TxVgaFor50[5].ChanNo = 12;
pHwData->TxVgaFor50[5].TxVgaValue = pTxVga[6];
//channel 36
pHwData->TxVgaFor50[8].ChanNo = 36;
pHwData->TxVgaFor50[8].TxVgaValue = pTxVga[7];
pHwData->TxVgaFor50[7].ChanNo = 34;
pHwData->TxVgaFor50[7].TxVgaValue = pTxVga[7];
pHwData->TxVgaFor50[9].ChanNo = 38;
pHwData->TxVgaFor50[9].TxVgaValue = pTxVga[7];
//channel 40
pHwData->TxVgaFor50[10].ChanNo = 40;
pHwData->TxVgaFor50[10].TxVgaValue = pTxVga[8];
//channel 48
pHwData->TxVgaFor50[14].ChanNo = 48;
pHwData->TxVgaFor50[14].TxVgaValue = pTxVga[9];
//interpolate
pHwData->TxVgaFor50[11].ChanNo = 42;
pHwData->TxVgaFor50[12].ChanNo = 44;
pHwData->TxVgaFor50[13].ChanNo = 46;
stmp = pTxVga[9] - pTxVga[8];
pHwData->TxVgaFor50[13].TxVgaValue = pTxVga[9] - stmp/4;
pHwData->TxVgaFor50[12].TxVgaValue = pTxVga[9] - stmp*2/4;
pHwData->TxVgaFor50[11].TxVgaValue = pTxVga[9] - stmp*3/4;
//channel 52
pHwData->TxVgaFor50[15].ChanNo = 52;
pHwData->TxVgaFor50[15].TxVgaValue = pTxVga[10];
//channel 64
pHwData->TxVgaFor50[18].ChanNo = 64;
pHwData->TxVgaFor50[18].TxVgaValue = pTxVga[11];
//interpolate
pHwData->TxVgaFor50[16].ChanNo = 56;
pHwData->TxVgaFor50[17].ChanNo = 60;
stmp = pTxVga[11] - pTxVga[10];
pHwData->TxVgaFor50[17].TxVgaValue = pTxVga[11] - stmp/3;
pHwData->TxVgaFor50[16].TxVgaValue = pTxVga[11] - stmp*2/3;
//channel 100
pHwData->TxVgaFor50[19].ChanNo = 100;
pHwData->TxVgaFor50[19].TxVgaValue = pTxVga[12];
//channel 112
pHwData->TxVgaFor50[22].ChanNo = 112;
pHwData->TxVgaFor50[22].TxVgaValue = pTxVga[13];
//interpolate
pHwData->TxVgaFor50[20].ChanNo = 104;
pHwData->TxVgaFor50[21].ChanNo = 108;
stmp = pTxVga[13] - pTxVga[12];
pHwData->TxVgaFor50[21].TxVgaValue = pTxVga[13] - stmp/3;
pHwData->TxVgaFor50[20].TxVgaValue = pTxVga[13] - stmp*2/3;
//channel 128
pHwData->TxVgaFor50[26].ChanNo = 128;
pHwData->TxVgaFor50[26].TxVgaValue = pTxVga[14];
//interpolate
pHwData->TxVgaFor50[23].ChanNo = 116;
pHwData->TxVgaFor50[24].ChanNo = 120;
pHwData->TxVgaFor50[25].ChanNo = 124;
stmp = pTxVga[14] - pTxVga[13];
pHwData->TxVgaFor50[25].TxVgaValue = pTxVga[14] - stmp/4;
pHwData->TxVgaFor50[24].TxVgaValue = pTxVga[14] - stmp*2/4;
pHwData->TxVgaFor50[23].TxVgaValue = pTxVga[14] - stmp*3/4;
//channel 140
pHwData->TxVgaFor50[29].ChanNo = 140;
pHwData->TxVgaFor50[29].TxVgaValue = pTxVga[15];
//interpolate
pHwData->TxVgaFor50[27].ChanNo = 132;
pHwData->TxVgaFor50[28].ChanNo = 136;
stmp = pTxVga[15] - pTxVga[14];
pHwData->TxVgaFor50[28].TxVgaValue = pTxVga[15] - stmp/3;
pHwData->TxVgaFor50[27].TxVgaValue = pTxVga[15] - stmp*2/3;
//channel 149
pHwData->TxVgaFor50[30].ChanNo = 149;
pHwData->TxVgaFor50[30].TxVgaValue = pTxVga[16];
//channel 165
pHwData->TxVgaFor50[34].ChanNo = 165;
pHwData->TxVgaFor50[34].TxVgaValue = pTxVga[17];
//interpolate
pHwData->TxVgaFor50[31].ChanNo = 153;
pHwData->TxVgaFor50[32].ChanNo = 157;
pHwData->TxVgaFor50[33].ChanNo = 161;
stmp = pTxVga[17] - pTxVga[16];
pHwData->TxVgaFor50[33].TxVgaValue = pTxVga[17] - stmp/4;
pHwData->TxVgaFor50[32].TxVgaValue = pTxVga[17] - stmp*2/4;
pHwData->TxVgaFor50[31].TxVgaValue = pTxVga[17] - stmp*3/4;
}
#ifdef _PE_STATE_DUMP_
printk(" TxVgaFor24 : \n");
DataDmp((u8 *)pHwData->TxVgaFor24, 14 ,0);
printk(" TxVgaFor50 : \n");
DataDmp((u8 *)pHwData->TxVgaFor50, 70 ,0);
#endif
}
void BBProcessor_RateChanging( struct hw_data * pHwData, u8 rate ) // 20060613.1
{
struct wb35_reg *reg = &pHwData->reg;
unsigned char Is11bRate;
Is11bRate = (rate % 6) ? 1 : 0;
switch( pHwData->phy_type )
{
case RF_AIROHA_2230:
case RF_AIROHA_2230S: // 20060420 Add this
if( Is11bRate )
{
if( (reg->BB48 != BB48_DEFAULT_AL2230_11B) &&
(reg->BB4C != BB4C_DEFAULT_AL2230_11B) )
{
Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_AL2230_11B );
Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_AL2230_11B );
}
}
else
{
if( (reg->BB48 != BB48_DEFAULT_AL2230_11G) &&
(reg->BB4C != BB4C_DEFAULT_AL2230_11G) )
{
Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_AL2230_11G );
Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_AL2230_11G );
}
}
break;
case RF_WB_242: // 20060623 The fix only for old TxVGA setting
if( Is11bRate )
{
if( (reg->BB48 != BB48_DEFAULT_WB242_11B) &&
(reg->BB4C != BB4C_DEFAULT_WB242_11B) )
{
reg->BB48 = BB48_DEFAULT_WB242_11B;
reg->BB4C = BB4C_DEFAULT_WB242_11B;
Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_WB242_11B );
Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_WB242_11B );
}
}
else
{
if( (reg->BB48 != BB48_DEFAULT_WB242_11G) &&
(reg->BB4C != BB4C_DEFAULT_WB242_11G) )
{
reg->BB48 = BB48_DEFAULT_WB242_11G;
reg->BB4C = BB4C_DEFAULT_WB242_11G;
Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_WB242_11G );
Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_WB242_11G );
}
}
break;
}
}