blob: 67f238c01b44cef1e309d8f41577a9b8cf9d57c1 [file] [log] [blame]
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: dpc.c
*
* Purpose: handle dpc rx functions
*
* Author: Lyndon Chen
*
* Date: May 20, 2003
*
* Functions:
* device_receive_frame - Rcv 802.11 frame function
* s_bAPModeRxCtl- AP Rcv frame filer Ctl.
* s_bAPModeRxData- AP Rcv data frame handle
* s_bHandleRxEncryption- Rcv decrypted data via on-fly
* s_bHostWepRxEncryption- Rcv encrypted data via host
* s_byGetRateIdx- get rate index
* s_vGetDASA- get data offset
* s_vProcessRxMACHeader- Rcv 802.11 and translate to 802.3
*
* Revision History:
*
*/
#include "device.h"
#include "rxtx.h"
#include "tether.h"
#include "card.h"
#include "bssdb.h"
#include "mac.h"
#include "baseband.h"
#include "michael.h"
#include "tkip.h"
#include "tcrc.h"
#include "wctl.h"
#include "wroute.h"
#include "hostap.h"
#include "rf.h"
#include "iowpa.h"
#include "aes_ccmp.h"
//#define PLICE_DEBUG
/*--------------------- Static Definitions -------------------------*/
/*--------------------- Static Classes ----------------------------*/
/*--------------------- Static Variables --------------------------*/
//static int msglevel =MSG_LEVEL_DEBUG;
static int msglevel =MSG_LEVEL_INFO;
const BYTE acbyRxRate[MAX_RATE] =
{2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
/*--------------------- Static Functions --------------------------*/
/*--------------------- Static Definitions -------------------------*/
/*--------------------- Static Functions --------------------------*/
static BYTE s_byGetRateIdx(IN BYTE byRate);
static
VOID
s_vGetDASA(
IN PBYTE pbyRxBufferAddr,
OUT PUINT pcbHeaderSize,
OUT PSEthernetHeader psEthHeader
);
static
VOID
s_vProcessRxMACHeader (
IN PSDevice pDevice,
IN PBYTE pbyRxBufferAddr,
IN UINT cbPacketSize,
IN BOOL bIsWEP,
IN BOOL bExtIV,
OUT PUINT pcbHeadSize
);
static BOOL s_bAPModeRxCtl(
IN PSDevice pDevice,
IN PBYTE pbyFrame,
IN INT iSANodeIndex
);
static BOOL s_bAPModeRxData (
IN PSDevice pDevice,
IN struct sk_buff* skb,
IN UINT FrameSize,
IN UINT cbHeaderOffset,
IN INT iSANodeIndex,
IN INT iDANodeIndex
);
static BOOL s_bHandleRxEncryption(
IN PSDevice pDevice,
IN PBYTE pbyFrame,
IN UINT FrameSize,
IN PBYTE pbyRsr,
OUT PBYTE pbyNewRsr,
OUT PSKeyItem *pKeyOut,
int * pbExtIV,
OUT PWORD pwRxTSC15_0,
OUT PDWORD pdwRxTSC47_16
);
static BOOL s_bHostWepRxEncryption(
IN PSDevice pDevice,
IN PBYTE pbyFrame,
IN UINT FrameSize,
IN PBYTE pbyRsr,
IN BOOL bOnFly,
IN PSKeyItem pKey,
OUT PBYTE pbyNewRsr,
int * pbExtIV,
OUT PWORD pwRxTSC15_0,
OUT PDWORD pdwRxTSC47_16
);
/*--------------------- Export Variables --------------------------*/
/*+
*
* Description:
* Translate Rcv 802.11 header to 802.3 header with Rx buffer
*
* Parameters:
* In:
* pDevice
* dwRxBufferAddr - Address of Rcv Buffer
* cbPacketSize - Rcv Packet size
* bIsWEP - If Rcv with WEP
* Out:
* pcbHeaderSize - 802.11 header size
*
* Return Value: None
*
-*/
static
VOID
s_vProcessRxMACHeader (
IN PSDevice pDevice,
IN PBYTE pbyRxBufferAddr,
IN UINT cbPacketSize,
IN BOOL bIsWEP,
IN BOOL bExtIV,
OUT PUINT pcbHeadSize
)
{
PBYTE pbyRxBuffer;
UINT cbHeaderSize = 0;
PWORD pwType;
PS802_11Header pMACHeader;
int ii;
pMACHeader = (PS802_11Header) (pbyRxBufferAddr + cbHeaderSize);
s_vGetDASA((PBYTE)pMACHeader, &cbHeaderSize, &pDevice->sRxEthHeader);
if (bIsWEP) {
if (bExtIV) {
// strip IV&ExtIV , add 8 byte
cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 8);
} else {
// strip IV , add 4 byte
cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 4);
}
}
else {
cbHeaderSize += WLAN_HDR_ADDR3_LEN;
};
pbyRxBuffer = (PBYTE) (pbyRxBufferAddr + cbHeaderSize);
if (IS_ETH_ADDRESS_EQUAL(pbyRxBuffer, &pDevice->abySNAP_Bridgetunnel[0])) {
cbHeaderSize += 6;
}
else if (IS_ETH_ADDRESS_EQUAL(pbyRxBuffer, &pDevice->abySNAP_RFC1042[0])) {
cbHeaderSize += 6;
pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
if ((*pwType!= TYPE_PKT_IPX) && (*pwType != cpu_to_le16(0xF380))) {
}
else {
cbHeaderSize -= 8;
pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
if (bIsWEP) {
if (bExtIV) {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
} else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
}
}
else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
}
}
}
else {
cbHeaderSize -= 2;
pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
if (bIsWEP) {
if (bExtIV) {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
} else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
}
}
else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
}
}
cbHeaderSize -= (U_ETHER_ADDR_LEN * 2);
pbyRxBuffer = (PBYTE) (pbyRxBufferAddr + cbHeaderSize);
for(ii=0;ii<U_ETHER_ADDR_LEN;ii++)
*pbyRxBuffer++ = pDevice->sRxEthHeader.abyDstAddr[ii];
for(ii=0;ii<U_ETHER_ADDR_LEN;ii++)
*pbyRxBuffer++ = pDevice->sRxEthHeader.abySrcAddr[ii];
*pcbHeadSize = cbHeaderSize;
}
static BYTE s_byGetRateIdx (IN BYTE byRate)
{
BYTE byRateIdx;
for (byRateIdx = 0; byRateIdx <MAX_RATE ; byRateIdx++) {
if (acbyRxRate[byRateIdx%MAX_RATE] == byRate)
return byRateIdx;
}
return 0;
}
static
VOID
s_vGetDASA (
IN PBYTE pbyRxBufferAddr,
OUT PUINT pcbHeaderSize,
OUT PSEthernetHeader psEthHeader
)
{
UINT cbHeaderSize = 0;
PS802_11Header pMACHeader;
int ii;
pMACHeader = (PS802_11Header) (pbyRxBufferAddr + cbHeaderSize);
if ((pMACHeader->wFrameCtl & FC_TODS) == 0) {
if (pMACHeader->wFrameCtl & FC_FROMDS) {
for(ii=0;ii<U_ETHER_ADDR_LEN;ii++) {
psEthHeader->abyDstAddr[ii] = pMACHeader->abyAddr1[ii];
psEthHeader->abySrcAddr[ii] = pMACHeader->abyAddr3[ii];
}
}
else {
// IBSS mode
for(ii=0;ii<U_ETHER_ADDR_LEN;ii++) {
psEthHeader->abyDstAddr[ii] = pMACHeader->abyAddr1[ii];
psEthHeader->abySrcAddr[ii] = pMACHeader->abyAddr2[ii];
}
}
}
else {
// Is AP mode..
if (pMACHeader->wFrameCtl & FC_FROMDS) {
for(ii=0;ii<U_ETHER_ADDR_LEN;ii++) {
psEthHeader->abyDstAddr[ii] = pMACHeader->abyAddr3[ii];
psEthHeader->abySrcAddr[ii] = pMACHeader->abyAddr4[ii];
cbHeaderSize += 6;
}
}
else {
for(ii=0;ii<U_ETHER_ADDR_LEN;ii++) {
psEthHeader->abyDstAddr[ii] = pMACHeader->abyAddr3[ii];
psEthHeader->abySrcAddr[ii] = pMACHeader->abyAddr2[ii];
}
}
};
*pcbHeaderSize = cbHeaderSize;
}
//PLICE_DEBUG ->
VOID MngWorkItem(PVOID Context)
{
PSRxMgmtPacket pRxMgmtPacket;
PSDevice pDevice = (PSDevice) Context;
//printk("Enter MngWorkItem,Queue packet num is %d\n",pDevice->rxManeQueue.packet_num);
spin_lock_irq(&pDevice->lock);
while(pDevice->rxManeQueue.packet_num != 0)
{
pRxMgmtPacket = DeQueue(pDevice);
vMgrRxManagePacket(pDevice, pDevice->pMgmt, pRxMgmtPacket);
}
spin_unlock_irq(&pDevice->lock);
}
//PLICE_DEBUG<-
BOOL
device_receive_frame (
IN PSDevice pDevice,
IN PSRxDesc pCurrRD
)
{
PDEVICE_RD_INFO pRDInfo = pCurrRD->pRDInfo;
#ifdef PLICE_DEBUG
//printk("device_receive_frame:pCurrRD is %x,pRDInfo is %x\n",pCurrRD,pCurrRD->pRDInfo);
#endif
struct net_device_stats* pStats=&pDevice->stats;
struct sk_buff* skb;
PSMgmtObject pMgmt = pDevice->pMgmt;
PSRxMgmtPacket pRxPacket = &(pDevice->pMgmt->sRxPacket);
PS802_11Header p802_11Header;
PBYTE pbyRsr;
PBYTE pbyNewRsr;
PBYTE pbyRSSI;
PQWORD pqwTSFTime;
PWORD pwFrameSize;
PBYTE pbyFrame;
BOOL bDeFragRx = FALSE;
BOOL bIsWEP = FALSE;
UINT cbHeaderOffset;
UINT FrameSize;
WORD wEtherType = 0;
INT iSANodeIndex = -1;
INT iDANodeIndex = -1;
UINT ii;
UINT cbIVOffset;
BOOL bExtIV = FALSE;
PBYTE pbyRxSts;
PBYTE pbyRxRate;
PBYTE pbySQ;
UINT cbHeaderSize;
PSKeyItem pKey = NULL;
WORD wRxTSC15_0 = 0;
DWORD dwRxTSC47_16 = 0;
SKeyItem STempKey;
// 802.11h RPI
DWORD dwDuration = 0;
LONG ldBm = 0;
LONG ldBmThreshold = 0;
PS802_11Header pMACHeader;
BOOL bRxeapol_key = FALSE;
// DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- device_receive_frame---\n");
skb = pRDInfo->skb;
//PLICE_DEBUG->
#if 1
pci_unmap_single(pDevice->pcid, pRDInfo->skb_dma,
pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE);
#endif
//PLICE_DEBUG<-
pwFrameSize = (PWORD)(skb->data + 2);
FrameSize = cpu_to_le16(pCurrRD->m_rd1RD1.wReqCount) - cpu_to_le16(pCurrRD->m_rd0RD0.wResCount);
// Max: 2312Payload + 30HD +4CRC + 2Padding + 4Len + 8TSF + 4RSR
// Min (ACK): 10HD +4CRC + 2Padding + 4Len + 8TSF + 4RSR
if ((FrameSize > 2364)||(FrameSize <= 32)) {
// Frame Size error drop this packet.
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- WRONG Length 1 \n");
return FALSE;
}
pbyRxSts = (PBYTE) (skb->data);
pbyRxRate = (PBYTE) (skb->data + 1);
pbyRsr = (PBYTE) (skb->data + FrameSize - 1);
pbyRSSI = (PBYTE) (skb->data + FrameSize - 2);
pbyNewRsr = (PBYTE) (skb->data + FrameSize - 3);
pbySQ = (PBYTE) (skb->data + FrameSize - 4);
pqwTSFTime = (PQWORD) (skb->data + FrameSize - 12);
pbyFrame = (PBYTE)(skb->data + 4);
// get packet size
FrameSize = cpu_to_le16(*pwFrameSize);
if ((FrameSize > 2346)|(FrameSize < 14)) { // Max: 2312Payload + 30HD +4CRC
// Min: 14 bytes ACK
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- WRONG Length 2 \n");
return FALSE;
}
//PLICE_DEBUG->
#if 1
// update receive statistic counter
STAvUpdateRDStatCounter(&pDevice->scStatistic,
*pbyRsr,
*pbyNewRsr,
*pbyRxRate,
pbyFrame,
FrameSize);
#endif
pMACHeader=(PS802_11Header)((PBYTE) (skb->data)+8);
//PLICE_DEBUG<-
if (pDevice->bMeasureInProgress == TRUE) {
if ((*pbyRsr & RSR_CRCOK) != 0) {
pDevice->byBasicMap |= 0x01;
}
dwDuration = (FrameSize << 4);
dwDuration /= acbyRxRate[*pbyRxRate%MAX_RATE];
if (*pbyRxRate <= RATE_11M) {
if (*pbyRxSts & 0x01) {
// long preamble
dwDuration += 192;
} else {
// short preamble
dwDuration += 96;
}
} else {
dwDuration += 16;
}
RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
ldBmThreshold = -57;
for (ii = 7; ii > 0;) {
if (ldBm > ldBmThreshold) {
break;
}
ldBmThreshold -= 5;
ii--;
}
pDevice->dwRPIs[ii] += dwDuration;
return FALSE;
}
if (!IS_MULTICAST_ADDRESS(pbyFrame) && !IS_BROADCAST_ADDRESS(pbyFrame)) {
if (WCTLbIsDuplicate(&(pDevice->sDupRxCache), (PS802_11Header) (skb->data + 4))) {
pDevice->s802_11Counter.FrameDuplicateCount++;
return FALSE;
}
}
// Use for TKIP MIC
s_vGetDASA(skb->data+4, &cbHeaderSize, &pDevice->sRxEthHeader);
// filter packet send from myself
if (IS_ETH_ADDRESS_EQUAL((PBYTE)&(pDevice->sRxEthHeader.abySrcAddr[0]), pDevice->abyCurrentNetAddr))
return FALSE;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
p802_11Header = (PS802_11Header) (pbyFrame);
// get SA NodeIndex
if (BSSDBbIsSTAInNodeDB(pMgmt, (PBYTE)(p802_11Header->abyAddr2), &iSANodeIndex)) {
pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (s_bAPModeRxCtl(pDevice, pbyFrame, iSANodeIndex) == TRUE) {
return FALSE;
}
}
if (IS_FC_WEP(pbyFrame)) {
BOOL bRxDecryOK = FALSE;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"rx WEP pkt\n");
bIsWEP = TRUE;
if ((pDevice->bEnableHostWEP) && (iSANodeIndex >= 0)) {
pKey = &STempKey;
pKey->byCipherSuite = pMgmt->sNodeDBTable[iSANodeIndex].byCipherSuite;
pKey->dwKeyIndex = pMgmt->sNodeDBTable[iSANodeIndex].dwKeyIndex;
pKey->uKeyLength = pMgmt->sNodeDBTable[iSANodeIndex].uWepKeyLength;
pKey->dwTSC47_16 = pMgmt->sNodeDBTable[iSANodeIndex].dwTSC47_16;
pKey->wTSC15_0 = pMgmt->sNodeDBTable[iSANodeIndex].wTSC15_0;
memcpy(pKey->abyKey,
&pMgmt->sNodeDBTable[iSANodeIndex].abyWepKey[0],
pKey->uKeyLength
);
bRxDecryOK = s_bHostWepRxEncryption(pDevice,
pbyFrame,
FrameSize,
pbyRsr,
pMgmt->sNodeDBTable[iSANodeIndex].bOnFly,
pKey,
pbyNewRsr,
&bExtIV,
&wRxTSC15_0,
&dwRxTSC47_16);
} else {
bRxDecryOK = s_bHandleRxEncryption(pDevice,
pbyFrame,
FrameSize,
pbyRsr,
pbyNewRsr,
&pKey,
&bExtIV,
&wRxTSC15_0,
&dwRxTSC47_16);
}
if (bRxDecryOK) {
if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV Fail\n");
if ( (pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
(pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
(pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
pDevice->s802_11Counter.TKIPICVErrors++;
} else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP)) {
pDevice->s802_11Counter.CCMPDecryptErrors++;
} else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_WEP)) {
// pDevice->s802_11Counter.WEPICVErrorCount.QuadPart++;
}
}
return FALSE;
}
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"WEP Func Fail\n");
return FALSE;
}
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
FrameSize -= 8; // Message Integrity Code
else
FrameSize -= 4; // 4 is ICV
}
//
// RX OK
//
//remove the CRC length
FrameSize -= U_CRC_LEN;
if (( !(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI))) && // unicast address
(IS_FRAGMENT_PKT((skb->data+4)))
) {
// defragment
bDeFragRx = WCTLbHandleFragment(pDevice, (PS802_11Header) (skb->data+4), FrameSize, bIsWEP, bExtIV);
pDevice->s802_11Counter.ReceivedFragmentCount++;
if (bDeFragRx) {
// defrag complete
skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;
}
else {
return FALSE;
}
}
// Management & Control frame Handle
if ((IS_TYPE_DATA((skb->data+4))) == FALSE) {
// Handle Control & Manage Frame
if (IS_TYPE_MGMT((skb->data+4))) {
PBYTE pbyData1;
PBYTE pbyData2;
pRxPacket->p80211Header = (PUWLAN_80211HDR)(skb->data+4);
pRxPacket->cbMPDULen = FrameSize;
pRxPacket->uRSSI = *pbyRSSI;
pRxPacket->bySQ = *pbySQ;
HIDWORD(pRxPacket->qwLocalTSF) = cpu_to_le32(HIDWORD(*pqwTSFTime));
LODWORD(pRxPacket->qwLocalTSF) = cpu_to_le32(LODWORD(*pqwTSFTime));
if (bIsWEP) {
// strip IV
pbyData1 = WLAN_HDR_A3_DATA_PTR(skb->data+4);
pbyData2 = WLAN_HDR_A3_DATA_PTR(skb->data+4) + 4;
for (ii = 0; ii < (FrameSize - 4); ii++) {
*pbyData1 = *pbyData2;
pbyData1++;
pbyData2++;
}
}
pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);
pRxPacket->byRxChannel = (*pbyRxSts) >> 2;
//PLICE_DEBUG->
//EnQueue(pDevice,pRxPacket);
#ifdef THREAD
EnQueue(pDevice,pRxPacket);
//printk("enque time is %x\n",jiffies);
//up(&pDevice->mlme_semaphore);
//Enque (pDevice->FirstRecvMngList,pDevice->LastRecvMngList,pMgmt);
#else
#ifdef TASK_LET
EnQueue(pDevice,pRxPacket);
tasklet_schedule(&pDevice->RxMngWorkItem);
#else
//printk("RxMan\n");
vMgrRxManagePacket((HANDLE)pDevice, pDevice->pMgmt, pRxPacket);
//tasklet_schedule(&pDevice->RxMngWorkItem);
#endif
#endif
//PLICE_DEBUG<-
//vMgrRxManagePacket((HANDLE)pDevice, pDevice->pMgmt, pRxPacket);
// hostap Deamon handle 802.11 management
if (pDevice->bEnableHostapd) {
skb->dev = pDevice->apdev;
skb->data += 4;
skb->tail += 4;
skb_put(skb, FrameSize);
skb_reset_mac_header(skb);
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
return TRUE;
}
}
else {
// Control Frame
};
return FALSE;
}
else {
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
//In AP mode, hw only check addr1(BSSID or RA) if equal to local MAC.
if ( !(*pbyRsr & RSR_BSSIDOK)) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return FALSE;
}
}
else {
// discard DATA packet while not associate || BSSID error
if ((pDevice->bLinkPass == FALSE) ||
!(*pbyRsr & RSR_BSSIDOK)) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return FALSE;
}
//mike add:station mode check eapol-key challenge--->
{
BYTE Protocol_Version; //802.1x Authentication
BYTE Packet_Type; //802.1x Authentication
if (bIsWEP)
cbIVOffset = 8;
else
cbIVOffset = 0;
wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
skb->data[cbIVOffset + 8 + 24 + 6 + 1];
Protocol_Version = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1];
Packet_Type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1];
if (wEtherType == ETH_P_PAE) { //Protocol Type in LLC-Header
if(((Protocol_Version==1) ||(Protocol_Version==2)) &&
(Packet_Type==3)) { //802.1x OR eapol-key challenge frame receive
bRxeapol_key = TRUE;
}
}
}
//mike add:station mode check eapol-key challenge<---
}
}
// Data frame Handle
if (pDevice->bEnablePSMode) {
if (IS_FC_MOREDATA((skb->data+4))) {
if (*pbyRsr & RSR_ADDROK) {
//PSbSendPSPOLL((PSDevice)pDevice);
}
}
else {
if (pDevice->pMgmt->bInTIMWake == TRUE) {
pDevice->pMgmt->bInTIMWake = FALSE;
}
}
};
// Now it only supports 802.11g Infrastructure Mode, and support rate must up to 54 Mbps
if (pDevice->bDiversityEnable && (FrameSize>50) &&
(pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
(pDevice->bLinkPass == TRUE)) {
//printk("device_receive_frame: RxRate is %d\n",*pbyRxRate);
BBvAntennaDiversity(pDevice, s_byGetRateIdx(*pbyRxRate), 0);
}
if (pDevice->byLocalID != REV_ID_VT3253_B1) {
pDevice->uCurrRSSI = *pbyRSSI;
}
pDevice->byCurrSQ = *pbySQ;
if ((*pbyRSSI != 0) &&
(pMgmt->pCurrBSS!=NULL)) {
RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
// Moniter if RSSI is too strong.
pMgmt->pCurrBSS->byRSSIStatCnt++;
pMgmt->pCurrBSS->byRSSIStatCnt %= RSSI_STAT_COUNT;
pMgmt->pCurrBSS->ldBmAverage[pMgmt->pCurrBSS->byRSSIStatCnt] = ldBm;
for(ii=0;ii<RSSI_STAT_COUNT;ii++) {
if (pMgmt->pCurrBSS->ldBmAverage[ii] != 0) {
pMgmt->pCurrBSS->ldBmMAX = max(pMgmt->pCurrBSS->ldBmAverage[ii], ldBm);
}
}
}
// -----------------------------------------------
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->bEnable8021x == TRUE)){
BYTE abyMacHdr[24];
// Only 802.1x packet incoming allowed
if (bIsWEP)
cbIVOffset = 8;
else
cbIVOffset = 0;
wEtherType = (skb->data[cbIVOffset + 4 + 24 + 6] << 8) |
skb->data[cbIVOffset + 4 + 24 + 6 + 1];
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"wEtherType = %04x \n", wEtherType);
if (wEtherType == ETH_P_PAE) {
skb->dev = pDevice->apdev;
if (bIsWEP == TRUE) {
// strip IV header(8)
memcpy(&abyMacHdr[0], (skb->data + 4), 24);
memcpy((skb->data + 4 + cbIVOffset), &abyMacHdr[0], 24);
}
skb->data += (cbIVOffset + 4);
skb->tail += (cbIVOffset + 4);
skb_put(skb, FrameSize);
skb_reset_mac_header(skb);
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
return TRUE;
}
// check if 802.1x authorized
if (!(pMgmt->sNodeDBTable[iSANodeIndex].dwFlags & WLAN_STA_AUTHORIZED))
return FALSE;
}
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
if (bIsWEP) {
FrameSize -= 8; //MIC
}
}
//--------------------------------------------------------------------------------
// Soft MIC
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
if (bIsWEP) {
PDWORD pdwMIC_L;
PDWORD pdwMIC_R;
DWORD dwMIC_Priority;
DWORD dwMICKey0 = 0, dwMICKey1 = 0;
DWORD dwLocalMIC_L = 0;
DWORD dwLocalMIC_R = 0;
viawget_wpa_header *wpahdr;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[24]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[28]));
}
else {
if (pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[16]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[20]));
} else if ((pKey->dwKeyIndex & BIT28) == 0) {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[16]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[20]));
} else {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[24]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[28]));
}
}
MIC_vInit(dwMICKey0, dwMICKey1);
MIC_vAppend((PBYTE)&(pDevice->sRxEthHeader.abyDstAddr[0]), 12);
dwMIC_Priority = 0;
MIC_vAppend((PBYTE)&dwMIC_Priority, 4);
// 4 is Rcv buffer header, 24 is MAC Header, and 8 is IV and Ext IV.
MIC_vAppend((PBYTE)(skb->data + 4 + WLAN_HDR_ADDR3_LEN + 8),
FrameSize - WLAN_HDR_ADDR3_LEN - 8);
MIC_vGetMIC(&dwLocalMIC_L, &dwLocalMIC_R);
MIC_vUnInit();
pdwMIC_L = (PDWORD)(skb->data + 4 + FrameSize);
pdwMIC_R = (PDWORD)(skb->data + 4 + FrameSize + 4);
//DBG_PRN_GRP12(("RxL: %lx, RxR: %lx\n", *pdwMIC_L, *pdwMIC_R));
//DBG_PRN_GRP12(("LocalL: %lx, LocalR: %lx\n", dwLocalMIC_L, dwLocalMIC_R));
//DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"dwMICKey0= %lx,dwMICKey1= %lx \n", dwMICKey0, dwMICKey1);
if ((cpu_to_le32(*pdwMIC_L) != dwLocalMIC_L) || (cpu_to_le32(*pdwMIC_R) != dwLocalMIC_R) ||
(pDevice->bRxMICFail == TRUE)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC comparison is fail!\n");
pDevice->bRxMICFail = FALSE;
//pDevice->s802_11Counter.TKIPLocalMICFailures.QuadPart++;
pDevice->s802_11Counter.TKIPLocalMICFailures++;
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
//2008-0409-07, <Add> by Einsn Liu
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
//send event to wpa_supplicant
//if(pDevice->bWPADevEnable == TRUE)
{
union iwreq_data wrqu;
struct iw_michaelmicfailure ev;
int keyidx = pbyFrame[cbHeaderSize+3] >> 6; //top two-bits
memset(&ev, 0, sizeof(ev));
ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
ev.flags |= IW_MICFAILURE_PAIRWISE;
} else {
ev.flags |= IW_MICFAILURE_GROUP;
}
ev.src_addr.sa_family = ARPHRD_ETHER;
memcpy(ev.src_addr.sa_data, pMACHeader->abyAddr2, ETH_ALEN);
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = sizeof(ev);
wireless_send_event(pDevice->dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
}
#endif
if ((pDevice->bWPADEVUp) && (pDevice->skb != NULL)) {
wpahdr = (viawget_wpa_header *)pDevice->skb->data;
if ((pDevice->pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pDevice->pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
//s802_11_Status.Flags = NDIS_802_11_AUTH_REQUEST_PAIRWISE_ERROR;
wpahdr->type = VIAWGET_PTK_MIC_MSG;
} else {
//s802_11_Status.Flags = NDIS_802_11_AUTH_REQUEST_GROUP_ERROR;
wpahdr->type = VIAWGET_GTK_MIC_MSG;
}
wpahdr->resp_ie_len = 0;
wpahdr->req_ie_len = 0;
skb_put(pDevice->skb, sizeof(viawget_wpa_header));
pDevice->skb->dev = pDevice->wpadev;
skb_reset_mac_header(pDevice->skb);
pDevice->skb->pkt_type = PACKET_HOST;
pDevice->skb->protocol = htons(ETH_P_802_2);
memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
netif_rx(pDevice->skb);
pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
};
return FALSE;
}
}
} //---end of SOFT MIC-----------------------------------------------------------------------
// ++++++++++ Reply Counter Check +++++++++++++
if ((pKey != NULL) && ((pKey->byCipherSuite == KEY_CTL_TKIP) ||
(pKey->byCipherSuite == KEY_CTL_CCMP))) {
if (bIsWEP) {
WORD wLocalTSC15_0 = 0;
DWORD dwLocalTSC47_16 = 0;
ULONGLONG RSC = 0;
// endian issues
RSC = *((ULONGLONG *) &(pKey->KeyRSC));
wLocalTSC15_0 = (WORD) RSC;
dwLocalTSC47_16 = (DWORD) (RSC>>16);
RSC = dwRxTSC47_16;
RSC <<= 16;
RSC += wRxTSC15_0;
memcpy(&(pKey->KeyRSC), &RSC, sizeof(QWORD));
if ( (pDevice->sMgmtObj.eCurrMode == WMAC_MODE_ESS_STA) &&
(pDevice->sMgmtObj.eCurrState == WMAC_STATE_ASSOC)) {
// check RSC
if ( (wRxTSC15_0 < wLocalTSC15_0) &&
(dwRxTSC47_16 <= dwLocalTSC47_16) &&
!((dwRxTSC47_16 == 0) && (dwLocalTSC47_16 == 0xFFFFFFFF))) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC is illegal~~!\n ");
if (pKey->byCipherSuite == KEY_CTL_TKIP)
//pDevice->s802_11Counter.TKIPReplays.QuadPart++;
pDevice->s802_11Counter.TKIPReplays++;
else
//pDevice->s802_11Counter.CCMPReplays.QuadPart++;
pDevice->s802_11Counter.CCMPReplays++;
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return FALSE;
}
}
}
} // ----- End of Reply Counter Check --------------------------
if ((pKey != NULL) && (bIsWEP)) {
// pDevice->s802_11Counter.DecryptSuccessCount.QuadPart++;
}
s_vProcessRxMACHeader(pDevice, (PBYTE)(skb->data+4), FrameSize, bIsWEP, bExtIV, &cbHeaderOffset);
FrameSize -= cbHeaderOffset;
cbHeaderOffset += 4; // 4 is Rcv buffer header
// Null data, framesize = 14
if (FrameSize < 15)
return FALSE;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (s_bAPModeRxData(pDevice,
skb,
FrameSize,
cbHeaderOffset,
iSANodeIndex,
iDANodeIndex
) == FALSE) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return FALSE;
}
// if(pDevice->bRxMICFail == FALSE) {
// for (ii =0; ii < 100; ii++)
// printk(" %02x", *(skb->data + ii));
// printk("\n");
// }
}
skb->data += cbHeaderOffset;
skb->tail += cbHeaderOffset;
skb_put(skb, FrameSize);
skb->protocol=eth_type_trans(skb, skb->dev);
//drop frame not met IEEE 802.3
/*
if (pDevice->flags & DEVICE_FLAGS_VAL_PKT_LEN) {
if ((skb->protocol==htons(ETH_P_802_3)) &&
(skb->len!=htons(skb->mac.ethernet->h_proto))) {
pStats->rx_length_errors++;
pStats->rx_dropped++;
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return FALSE;
}
}
*/
skb->ip_summed=CHECKSUM_NONE;
pStats->rx_bytes +=skb->len;
pStats->rx_packets++;
netif_rx(skb);
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
return FALSE;
}
return TRUE;
}
static BOOL s_bAPModeRxCtl (
IN PSDevice pDevice,
IN PBYTE pbyFrame,
IN INT iSANodeIndex
)
{
PS802_11Header p802_11Header;
CMD_STATUS Status;
PSMgmtObject pMgmt = pDevice->pMgmt;
if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
p802_11Header = (PS802_11Header) (pbyFrame);
if (!IS_TYPE_MGMT(pbyFrame)) {
// Data & PS-Poll packet
// check frame class
if (iSANodeIndex > 0) {
// frame class 3 fliter & checking
if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_AUTH) {
// send deauth notification
// reason = (6) class 2 received from nonauth sta
vMgrDeAuthenBeginSta(pDevice,
pMgmt,
(PBYTE)(p802_11Header->abyAddr2),
(WLAN_MGMT_REASON_CLASS2_NONAUTH),
&Status
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 1\n");
return TRUE;
};
if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_ASSOC) {
// send deassoc notification
// reason = (7) class 3 received from nonassoc sta
vMgrDisassocBeginSta(pDevice,
pMgmt,
(PBYTE)(p802_11Header->abyAddr2),
(WLAN_MGMT_REASON_CLASS3_NONASSOC),
&Status
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDisassocBeginSta 2\n");
return TRUE;
};
if (pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable) {
// delcare received ps-poll event
if (IS_CTL_PSPOLL(pbyFrame)) {
pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = TRUE;
bScheduleCommand((HANDLE)pDevice, WLAN_CMD_RX_PSPOLL, NULL);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 1\n");
}
else {
// check Data PS state
// if PW bit off, send out all PS bufferring packets.
if (!IS_FC_POWERMGT(pbyFrame)) {
pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = FALSE;
pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = TRUE;
bScheduleCommand((HANDLE)pDevice, WLAN_CMD_RX_PSPOLL, NULL);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 2\n");
}
}
}
else {
if (IS_FC_POWERMGT(pbyFrame)) {
pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = TRUE;
// Once if STA in PS state, enable multicast bufferring
pMgmt->sNodeDBTable[0].bPSEnable = TRUE;
}
else {
// clear all pending PS frame.
if (pMgmt->sNodeDBTable[iSANodeIndex].wEnQueueCnt > 0) {
pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = FALSE;
pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = TRUE;
bScheduleCommand((HANDLE)pDevice, WLAN_CMD_RX_PSPOLL, NULL);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 3\n");
}
}
}
}
else {
vMgrDeAuthenBeginSta(pDevice,
pMgmt,
(PBYTE)(p802_11Header->abyAddr2),
(WLAN_MGMT_REASON_CLASS2_NONAUTH),
&Status
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 3\n");
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSID:%02x-%02x-%02x=%02x-%02x-%02x \n",
p802_11Header->abyAddr3[0],
p802_11Header->abyAddr3[1],
p802_11Header->abyAddr3[2],
p802_11Header->abyAddr3[3],
p802_11Header->abyAddr3[4],
p802_11Header->abyAddr3[5]
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR2:%02x-%02x-%02x=%02x-%02x-%02x \n",
p802_11Header->abyAddr2[0],
p802_11Header->abyAddr2[1],
p802_11Header->abyAddr2[2],
p802_11Header->abyAddr2[3],
p802_11Header->abyAddr2[4],
p802_11Header->abyAddr2[5]
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR1:%02x-%02x-%02x=%02x-%02x-%02x \n",
p802_11Header->abyAddr1[0],
p802_11Header->abyAddr1[1],
p802_11Header->abyAddr1[2],
p802_11Header->abyAddr1[3],
p802_11Header->abyAddr1[4],
p802_11Header->abyAddr1[5]
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: wFrameCtl= %x\n", p802_11Header->wFrameCtl );
VNSvInPortB(pDevice->PortOffset + MAC_REG_RCR, &(pDevice->byRxMode));
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc:pDevice->byRxMode = %x\n", pDevice->byRxMode );
return TRUE;
}
}
}
return FALSE;
}
static BOOL s_bHandleRxEncryption (
IN PSDevice pDevice,
IN PBYTE pbyFrame,
IN UINT FrameSize,
IN PBYTE pbyRsr,
OUT PBYTE pbyNewRsr,
OUT PSKeyItem *pKeyOut,
int * pbExtIV,
OUT PWORD pwRxTSC15_0,
OUT PDWORD pdwRxTSC47_16
)
{
UINT PayloadLen = FrameSize;
PBYTE pbyIV;
BYTE byKeyIdx;
PSKeyItem pKey = NULL;
BYTE byDecMode = KEY_CTL_WEP;
PSMgmtObject pMgmt = pDevice->pMgmt;
*pwRxTSC15_0 = 0;
*pdwRxTSC47_16 = 0;
pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
if ( WLAN_GET_FC_TODS(*(PWORD)pbyFrame) &&
WLAN_GET_FC_FROMDS(*(PWORD)pbyFrame) ) {
pbyIV += 6; // 6 is 802.11 address4
PayloadLen -= 6;
}
byKeyIdx = (*(pbyIV+3) & 0xc0);
byKeyIdx >>= 6;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
if (((*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) &&
(pDevice->pMgmt->byCSSPK != KEY_CTL_NONE)) {
// unicast pkt use pairwise key
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt\n");
if (KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, 0xFFFFFFFF, &pKey) == TRUE) {
if (pDevice->pMgmt->byCSSPK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pDevice->pMgmt->byCSSPK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt: %d, %p\n", byDecMode, pKey);
} else {
// use group key
KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, byKeyIdx, &pKey);
if (pDevice->pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pDevice->pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"group pkt: %d, %d, %p\n", byKeyIdx, byDecMode, pKey);
}
}
// our WEP only support Default Key
if (pKey == NULL) {
// use default group key
KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, byKeyIdx, &pKey);
if (pDevice->pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pDevice->pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
}
*pKeyOut = pKey;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pDevice->pMgmt->byCSSPK, pDevice->pMgmt->byCSSGK, byDecMode);
if (pKey == NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pKey == NULL\n");
if (byDecMode == KEY_CTL_WEP) {
// pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
} else if (pDevice->bLinkPass == TRUE) {
// pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
}
return FALSE;
}
if (byDecMode != pKey->byCipherSuite) {
if (byDecMode == KEY_CTL_WEP) {
// pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
} else if (pDevice->bLinkPass == TRUE) {
// pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
}
*pKeyOut = NULL;
return FALSE;
}
if (byDecMode == KEY_CTL_WEP) {
// handle WEP
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
(((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == TRUE)) {
// Software WEP
// 1. 3253A
// 2. WEP 256
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
memcpy(pDevice->abyPRNG, pbyIV, 3);
memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
}
}
} else if ((byDecMode == KEY_CTL_TKIP) ||
(byDecMode == KEY_CTL_CCMP)) {
// TKIP/AES
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
*pdwRxTSC47_16 = cpu_to_le32(*(PDWORD)(pbyIV + 4));
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %lx\n",*pdwRxTSC47_16);
if (byDecMode == KEY_CTL_TKIP) {
*pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
} else {
*pwRxTSC15_0 = cpu_to_le16(*(PWORD)pbyIV);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
if ((byDecMode == KEY_CTL_TKIP) &&
(pDevice->byLocalID <= REV_ID_VT3253_A1)) {
// Software TKIP
// 1. 3253 A
PS802_11Header pMACHeader = (PS802_11Header) (pbyFrame);
TKIPvMixKey(pKey->abyKey, pMACHeader->abyAddr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
}
}
}// end of TKIP/AES
if ((*(pbyIV+3) & 0x20) != 0)
*pbExtIV = TRUE;
return TRUE;
}
static BOOL s_bHostWepRxEncryption (
IN PSDevice pDevice,
IN PBYTE pbyFrame,
IN UINT FrameSize,
IN PBYTE pbyRsr,
IN BOOL bOnFly,
IN PSKeyItem pKey,
OUT PBYTE pbyNewRsr,
int * pbExtIV,
OUT PWORD pwRxTSC15_0,
OUT PDWORD pdwRxTSC47_16
)
{
UINT PayloadLen = FrameSize;
PBYTE pbyIV;
BYTE byKeyIdx;
BYTE byDecMode = KEY_CTL_WEP;
PS802_11Header pMACHeader;
*pwRxTSC15_0 = 0;
*pdwRxTSC47_16 = 0;
pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
if ( WLAN_GET_FC_TODS(*(PWORD)pbyFrame) &&
WLAN_GET_FC_FROMDS(*(PWORD)pbyFrame) ) {
pbyIV += 6; // 6 is 802.11 address4
PayloadLen -= 6;
}
byKeyIdx = (*(pbyIV+3) & 0xc0);
byKeyIdx >>= 6;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
if (pDevice->pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pDevice->pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pDevice->pMgmt->byCSSPK, pDevice->pMgmt->byCSSGK, byDecMode);
if (byDecMode != pKey->byCipherSuite) {
if (byDecMode == KEY_CTL_WEP) {
// pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
} else if (pDevice->bLinkPass == TRUE) {
// pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
}
return FALSE;
}
if (byDecMode == KEY_CTL_WEP) {
// handle WEP
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"byDecMode == KEY_CTL_WEP \n");
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
(((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == TRUE) ||
(bOnFly == FALSE)) {
// Software WEP
// 1. 3253A
// 2. WEP 256
// 3. NotOnFly
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
memcpy(pDevice->abyPRNG, pbyIV, 3);
memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
}
}
} else if ((byDecMode == KEY_CTL_TKIP) ||
(byDecMode == KEY_CTL_CCMP)) {
// TKIP/AES
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
*pdwRxTSC47_16 = cpu_to_le32(*(PDWORD)(pbyIV + 4));
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %lx\n",*pdwRxTSC47_16);
if (byDecMode == KEY_CTL_TKIP) {
*pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
} else {
*pwRxTSC15_0 = cpu_to_le16(*(PWORD)pbyIV);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
if (byDecMode == KEY_CTL_TKIP) {
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) || (bOnFly == FALSE)) {
// Software TKIP
// 1. 3253 A
// 2. NotOnFly
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_TKIP \n");
pMACHeader = (PS802_11Header) (pbyFrame);
TKIPvMixKey(pKey->abyKey, pMACHeader->abyAddr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
}
}
}
if (byDecMode == KEY_CTL_CCMP) {
if (bOnFly == FALSE) {
// Software CCMP
// NotOnFly
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_CCMP\n");
if (AESbGenCCMP(pKey->abyKey, pbyFrame, FrameSize)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC compare OK!\n");
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC fail!\n");
}
}
}
}// end of TKIP/AES
if ((*(pbyIV+3) & 0x20) != 0)
*pbExtIV = TRUE;
return TRUE;
}
static BOOL s_bAPModeRxData (
IN PSDevice pDevice,
IN struct sk_buff* skb,
IN UINT FrameSize,
IN UINT cbHeaderOffset,
IN INT iSANodeIndex,
IN INT iDANodeIndex
)
{
PSMgmtObject pMgmt = pDevice->pMgmt;
BOOL bRelayAndForward = FALSE;
BOOL bRelayOnly = FALSE;
BYTE byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
WORD wAID;
struct sk_buff* skbcpy = NULL;
if (FrameSize > CB_MAX_BUF_SIZE)
return FALSE;
// check DA
if(IS_MULTICAST_ADDRESS((PBYTE)(skb->data+cbHeaderOffset))) {
if (pMgmt->sNodeDBTable[0].bPSEnable) {
skbcpy = dev_alloc_skb((int)pDevice->rx_buf_sz);
// if any node in PS mode, buffer packet until DTIM.
if (skbcpy == NULL) {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "relay multicast no skb available \n");
}
else {
skbcpy->dev = pDevice->dev;
skbcpy->len = FrameSize;
memcpy(skbcpy->data, skb->data+cbHeaderOffset, FrameSize);
skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skbcpy);
pMgmt->sNodeDBTable[0].wEnQueueCnt++;
// set tx map
pMgmt->abyPSTxMap[0] |= byMask[0];
}
}
else {
bRelayAndForward = TRUE;
}
}
else {
// check if relay
if (BSSDBbIsSTAInNodeDB(pMgmt, (PBYTE)(skb->data+cbHeaderOffset), &iDANodeIndex)) {
if (pMgmt->sNodeDBTable[iDANodeIndex].eNodeState >= NODE_ASSOC) {
if (pMgmt->sNodeDBTable[iDANodeIndex].bPSEnable) {
// queue this skb until next PS tx, and then release.
skb->data += cbHeaderOffset;
skb->tail += cbHeaderOffset;
skb_put(skb, FrameSize);
skb_queue_tail(&pMgmt->sNodeDBTable[iDANodeIndex].sTxPSQueue, skb);
pMgmt->sNodeDBTable[iDANodeIndex].wEnQueueCnt++;
wAID = pMgmt->sNodeDBTable[iDANodeIndex].wAID;
pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "relay: index= %d, pMgmt->abyPSTxMap[%d]= %d\n",
iDANodeIndex, (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
return TRUE;
}
else {
bRelayOnly = TRUE;
}
}
};
}
if (bRelayOnly || bRelayAndForward) {
// relay this packet right now
if (bRelayAndForward)
iDANodeIndex = 0;
if ((pDevice->uAssocCount > 1) && (iDANodeIndex >= 0)) {
ROUTEbRelay(pDevice, (PBYTE)(skb->data + cbHeaderOffset), FrameSize, (UINT)iDANodeIndex);
}
if (bRelayOnly)
return FALSE;
}
// none associate, don't forward
if (pDevice->uAssocCount == 0)
return FALSE;
return TRUE;
}