blob: 00fe0803c21c3e0f31243866dea1c4d7c4483f9a [file] [log] [blame] [edit]
/*
* Support for the Tundra TSI148 VME-PCI Bridge Chip
*
* Author: Martyn Welch <martyn.welch@gefanuc.com>
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
*
* Based on work by Tom Armistead and Ajit Prem
* Copyright 2004 Motorola Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <asm/time.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "../vme.h"
#include "../vme_bridge.h"
#include "vme_tsi148.h"
static int __init tsi148_init(void);
static int tsi148_probe(struct pci_dev *, const struct pci_device_id *);
static void tsi148_remove(struct pci_dev *);
static void __exit tsi148_exit(void);
int tsi148_slave_set(struct vme_slave_resource *, int, unsigned long long,
unsigned long long, dma_addr_t, vme_address_t, vme_cycle_t);
int tsi148_slave_get(struct vme_slave_resource *, int *, unsigned long long *,
unsigned long long *, dma_addr_t *, vme_address_t *, vme_cycle_t *);
int tsi148_master_get(struct vme_master_resource *, int *, unsigned long long *,
unsigned long long *, vme_address_t *, vme_cycle_t *, vme_width_t *);
int tsi148_master_set(struct vme_master_resource *, int, unsigned long long,
unsigned long long, vme_address_t, vme_cycle_t, vme_width_t);
ssize_t tsi148_master_read(struct vme_master_resource *, void *, size_t,
loff_t);
ssize_t tsi148_master_write(struct vme_master_resource *, void *, size_t,
loff_t);
unsigned int tsi148_master_rmw(struct vme_master_resource *, unsigned int,
unsigned int, unsigned int, loff_t);
int tsi148_dma_list_add (struct vme_dma_list *, struct vme_dma_attr *,
struct vme_dma_attr *, size_t);
int tsi148_dma_list_exec(struct vme_dma_list *);
int tsi148_dma_list_empty(struct vme_dma_list *);
int tsi148_generate_irq(int, int);
int tsi148_slot_get(void);
/* Modue parameter */
int err_chk = 0;
/* XXX These should all be in a per device structure */
struct vme_bridge *tsi148_bridge;
wait_queue_head_t dma_queue[2];
wait_queue_head_t iack_queue;
void (*lm_callback[4])(int); /* Called in interrupt handler, be careful! */
void *crcsr_kernel;
dma_addr_t crcsr_bus;
struct vme_master_resource *flush_image;
struct mutex vme_rmw; /* Only one RMW cycle at a time */
struct mutex vme_int; /*
* Only one VME interrupt can be
* generated at a time, provide locking
*/
struct mutex vme_irq; /* Locking for VME irq callback configuration */
static char driver_name[] = "vme_tsi148";
static struct pci_device_id tsi148_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_TUNDRA, PCI_DEVICE_ID_TUNDRA_TSI148) },
{ },
};
static struct pci_driver tsi148_driver = {
.name = driver_name,
.id_table = tsi148_ids,
.probe = tsi148_probe,
.remove = tsi148_remove,
};
static void reg_join(unsigned int high, unsigned int low,
unsigned long long *variable)
{
*variable = (unsigned long long)high << 32;
*variable |= (unsigned long long)low;
}
static void reg_split(unsigned long long variable, unsigned int *high,
unsigned int *low)
{
*low = (unsigned int)variable & 0xFFFFFFFF;
*high = (unsigned int)(variable >> 32);
}
/*
* Wakes up DMA queue.
*/
static u32 tsi148_DMA_irqhandler(int channel_mask)
{
u32 serviced = 0;
if (channel_mask & TSI148_LCSR_INTS_DMA0S) {
wake_up(&dma_queue[0]);
serviced |= TSI148_LCSR_INTC_DMA0C;
}
if (channel_mask & TSI148_LCSR_INTS_DMA1S) {
wake_up(&dma_queue[1]);
serviced |= TSI148_LCSR_INTC_DMA1C;
}
return serviced;
}
/*
* Wake up location monitor queue
*/
static u32 tsi148_LM_irqhandler(u32 stat)
{
int i;
u32 serviced = 0;
for (i = 0; i < 4; i++) {
if(stat & TSI148_LCSR_INTS_LMS[i]) {
/* We only enable interrupts if the callback is set */
lm_callback[i](i);
serviced |= TSI148_LCSR_INTC_LMC[i];
}
}
return serviced;
}
/*
* Wake up mail box queue.
*
* XXX This functionality is not exposed up though API.
*/
static u32 tsi148_MB_irqhandler(u32 stat)
{
int i;
u32 val;
u32 serviced = 0;
for (i = 0; i < 4; i++) {
if(stat & TSI148_LCSR_INTS_MBS[i]) {
val = ioread32be(tsi148_bridge->base +
TSI148_GCSR_MBOX[i]);
printk("VME Mailbox %d received: 0x%x\n", i, val);
serviced |= TSI148_LCSR_INTC_MBC[i];
}
}
return serviced;
}
/*
* Display error & status message when PERR (PCI) exception interrupt occurs.
*/
static u32 tsi148_PERR_irqhandler(void)
{
printk(KERN_ERR
"PCI Exception at address: 0x%08x:%08x, attributes: %08x\n",
ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPAU),
ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPAL),
ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPAT)
);
printk(KERN_ERR
"PCI-X attribute reg: %08x, PCI-X split completion reg: %08x\n",
ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPXA),
ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPXS)
);
iowrite32be(TSI148_LCSR_EDPAT_EDPCL,
tsi148_bridge->base + TSI148_LCSR_EDPAT);
return TSI148_LCSR_INTC_PERRC;
}
/*
* Save address and status when VME error interrupt occurs.
*/
static u32 tsi148_VERR_irqhandler(void)
{
unsigned int error_addr_high, error_addr_low;
unsigned long long error_addr;
u32 error_attrib;
struct vme_bus_error *error;
error_addr_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_VEAU);
error_addr_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_VEAL);
error_attrib = ioread32be(tsi148_bridge->base + TSI148_LCSR_VEAT);
reg_join(error_addr_high, error_addr_low, &error_addr);
/* Check for exception register overflow (we have lost error data) */
if(error_attrib & TSI148_LCSR_VEAT_VEOF) {
printk(KERN_ERR "VME Bus Exception Overflow Occurred\n");
}
error = (struct vme_bus_error *)kmalloc(sizeof (struct vme_bus_error),
GFP_ATOMIC);
if (error) {
error->address = error_addr;
error->attributes = error_attrib;
list_add_tail(&(error->list), &(tsi148_bridge->vme_errors));
} else {
printk(KERN_ERR
"Unable to alloc memory for VMEbus Error reporting\n");
printk(KERN_ERR
"VME Bus Error at address: 0x%llx, attributes: %08x\n",
error_addr, error_attrib);
}
/* Clear Status */
iowrite32be(TSI148_LCSR_VEAT_VESCL,
tsi148_bridge->base + TSI148_LCSR_VEAT);
return TSI148_LCSR_INTC_VERRC;
}
/*
* Wake up IACK queue.
*/
static u32 tsi148_IACK_irqhandler(void)
{
printk("tsi148_IACK_irqhandler\n");
wake_up(&iack_queue);
return TSI148_LCSR_INTC_IACKC;
}
/*
* Calling VME bus interrupt callback if provided.
*/
static u32 tsi148_VIRQ_irqhandler(u32 stat)
{
int vec, i, serviced = 0;
void (*call)(int, int, void *);
void *priv_data;
for (i = 7; i > 0; i--) {
if (stat & (1 << i)) {
/*
* Note: Even though the registers are defined
* as 32-bits in the spec, we only want to issue
* 8-bit IACK cycles on the bus, read from offset
* 3.
*/
vec = ioread8(tsi148_bridge->base +
TSI148_LCSR_VIACK[i] + 3);
call = tsi148_bridge->irq[i - 1].callback[vec].func;
priv_data =
tsi148_bridge->irq[i-1].callback[vec].priv_data;
if (call != NULL)
call(i, vec, priv_data);
else
printk("Spurilous VME interrupt, level:%x, "
"vector:%x\n", i, vec);
serviced |= (1 << i);
}
}
return serviced;
}
/*
* Top level interrupt handler. Clears appropriate interrupt status bits and
* then calls appropriate sub handler(s).
*/
static irqreturn_t tsi148_irqhandler(int irq, void *dev_id)
{
u32 stat, enable, serviced = 0;
/* Determine which interrupts are unmasked and set */
enable = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
stat = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTS);
/* Only look at unmasked interrupts */
stat &= enable;
if (unlikely(!stat)) {
return IRQ_NONE;
}
/* Call subhandlers as appropriate */
/* DMA irqs */
if (stat & (TSI148_LCSR_INTS_DMA1S | TSI148_LCSR_INTS_DMA0S))
serviced |= tsi148_DMA_irqhandler(stat);
/* Location monitor irqs */
if (stat & (TSI148_LCSR_INTS_LM3S | TSI148_LCSR_INTS_LM2S |
TSI148_LCSR_INTS_LM1S | TSI148_LCSR_INTS_LM0S))
serviced |= tsi148_LM_irqhandler(stat);
/* Mail box irqs */
if (stat & (TSI148_LCSR_INTS_MB3S | TSI148_LCSR_INTS_MB2S |
TSI148_LCSR_INTS_MB1S | TSI148_LCSR_INTS_MB0S))
serviced |= tsi148_MB_irqhandler(stat);
/* PCI bus error */
if (stat & TSI148_LCSR_INTS_PERRS)
serviced |= tsi148_PERR_irqhandler();
/* VME bus error */
if (stat & TSI148_LCSR_INTS_VERRS)
serviced |= tsi148_VERR_irqhandler();
/* IACK irq */
if (stat & TSI148_LCSR_INTS_IACKS)
serviced |= tsi148_IACK_irqhandler();
/* VME bus irqs */
if (stat & (TSI148_LCSR_INTS_IRQ7S | TSI148_LCSR_INTS_IRQ6S |
TSI148_LCSR_INTS_IRQ5S | TSI148_LCSR_INTS_IRQ4S |
TSI148_LCSR_INTS_IRQ3S | TSI148_LCSR_INTS_IRQ2S |
TSI148_LCSR_INTS_IRQ1S))
serviced |= tsi148_VIRQ_irqhandler(stat);
/* Clear serviced interrupts */
iowrite32be(serviced, tsi148_bridge->base + TSI148_LCSR_INTC);
return IRQ_HANDLED;
}
static int tsi148_irq_init(struct vme_bridge *bridge)
{
int result;
unsigned int tmp;
struct pci_dev *pdev;
/* Need pdev */
pdev = container_of(bridge->parent, struct pci_dev, dev);
/* Initialise list for VME bus errors */
INIT_LIST_HEAD(&(bridge->vme_errors));
result = request_irq(pdev->irq,
tsi148_irqhandler,
IRQF_SHARED,
driver_name, pdev);
if (result) {
dev_err(&pdev->dev, "Can't get assigned pci irq vector %02X\n",
pdev->irq);
return result;
}
/* Enable and unmask interrupts */
tmp = TSI148_LCSR_INTEO_DMA1EO | TSI148_LCSR_INTEO_DMA0EO |
TSI148_LCSR_INTEO_MB3EO | TSI148_LCSR_INTEO_MB2EO |
TSI148_LCSR_INTEO_MB1EO | TSI148_LCSR_INTEO_MB0EO |
TSI148_LCSR_INTEO_PERREO | TSI148_LCSR_INTEO_VERREO |
TSI148_LCSR_INTEO_IACKEO;
/* XXX This leaves the following interrupts masked.
* TSI148_LCSR_INTEO_VIEEO
* TSI148_LCSR_INTEO_SYSFLEO
* TSI148_LCSR_INTEO_ACFLEO
*/
/* Don't enable Location Monitor interrupts here - they will be
* enabled when the location monitors are properly configured and
* a callback has been attached.
* TSI148_LCSR_INTEO_LM0EO
* TSI148_LCSR_INTEO_LM1EO
* TSI148_LCSR_INTEO_LM2EO
* TSI148_LCSR_INTEO_LM3EO
*/
/* Don't enable VME interrupts until we add a handler, else the board
* will respond to it and we don't want that unless it knows how to
* properly deal with it.
* TSI148_LCSR_INTEO_IRQ7EO
* TSI148_LCSR_INTEO_IRQ6EO
* TSI148_LCSR_INTEO_IRQ5EO
* TSI148_LCSR_INTEO_IRQ4EO
* TSI148_LCSR_INTEO_IRQ3EO
* TSI148_LCSR_INTEO_IRQ2EO
* TSI148_LCSR_INTEO_IRQ1EO
*/
iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEO);
iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEN);
return 0;
}
static void tsi148_irq_exit(struct pci_dev *pdev)
{
/* Turn off interrupts */
iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTEO);
iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTEN);
/* Clear all interrupts */
iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_INTC);
/* Detach interrupt handler */
free_irq(pdev->irq, pdev);
}
/*
* Check to see if an IACk has been received, return true (1) or false (0).
*/
int tsi148_iack_received(void)
{
u32 tmp;
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VICR);
if (tmp & TSI148_LCSR_VICR_IRQS)
return 0;
else
return 1;
}
/*
* Set up an VME interrupt
*/
int tsi148_request_irq(int level, int statid,
void (*callback)(int level, int vector, void *priv_data),
void *priv_data)
{
u32 tmp;
mutex_lock(&(vme_irq));
if(tsi148_bridge->irq[level - 1].callback[statid].func) {
mutex_unlock(&(vme_irq));
printk("VME Interrupt already taken\n");
return -EBUSY;
}
tsi148_bridge->irq[level - 1].count++;
tsi148_bridge->irq[level - 1].callback[statid].priv_data = priv_data;
tsi148_bridge->irq[level - 1].callback[statid].func = callback;
/* Enable IRQ level */
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
tmp |= TSI148_LCSR_INTEO_IRQEO[level - 1];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
tmp |= TSI148_LCSR_INTEN_IRQEN[level - 1];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEN);
mutex_unlock(&(vme_irq));
return 0;
}
/*
* Free VME interrupt
*/
void tsi148_free_irq(int level, int statid)
{
u32 tmp;
struct pci_dev *pdev;
mutex_lock(&(vme_irq));
tsi148_bridge->irq[level - 1].count--;
/* Disable IRQ level if no more interrupts attached at this level*/
if (tsi148_bridge->irq[level - 1].count == 0) {
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
tmp &= ~TSI148_LCSR_INTEN_IRQEN[level - 1];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEN);
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
tmp &= ~TSI148_LCSR_INTEO_IRQEO[level - 1];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);
pdev = container_of(tsi148_bridge->parent, struct pci_dev, dev);
synchronize_irq(pdev->irq);
}
tsi148_bridge->irq[level - 1].callback[statid].func = NULL;
tsi148_bridge->irq[level - 1].callback[statid].priv_data = NULL;
mutex_unlock(&(vme_irq));
}
/*
* Generate a VME bus interrupt at the requested level & vector. Wait for
* interrupt to be acked.
*/
int tsi148_generate_irq(int level, int statid)
{
u32 tmp;
mutex_lock(&(vme_int));
/* Read VICR register */
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VICR);
/* Set Status/ID */
tmp = (tmp & ~TSI148_LCSR_VICR_STID_M) |
(statid & TSI148_LCSR_VICR_STID_M);
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VICR);
/* Assert VMEbus IRQ */
tmp = tmp | TSI148_LCSR_VICR_IRQL[level];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VICR);
/* XXX Consider implementing a timeout? */
wait_event_interruptible(iack_queue, tsi148_iack_received());
mutex_unlock(&(vme_int));
return 0;
}
/*
* Find the first error in this address range
*/
static struct vme_bus_error *tsi148_find_error(vme_address_t aspace,
unsigned long long address, size_t count)
{
struct list_head *err_pos;
struct vme_bus_error *vme_err, *valid = NULL;
unsigned long long bound;
bound = address + count;
/*
* XXX We are currently not looking at the address space when parsing
* for errors. This is because parsing the Address Modifier Codes
* is going to be quite resource intensive to do properly. We
* should be OK just looking at the addresses and this is certainly
* much better than what we had before.
*/
err_pos = NULL;
/* Iterate through errors */
list_for_each(err_pos, &(tsi148_bridge->vme_errors)) {
vme_err = list_entry(err_pos, struct vme_bus_error, list);
if((vme_err->address >= address) && (vme_err->address < bound)){
valid = vme_err;
break;
}
}
return valid;
}
/*
* Clear errors in the provided address range.
*/
static void tsi148_clear_errors(vme_address_t aspace,
unsigned long long address, size_t count)
{
struct list_head *err_pos, *temp;
struct vme_bus_error *vme_err;
unsigned long long bound;
bound = address + count;
/*
* XXX We are currently not looking at the address space when parsing
* for errors. This is because parsing the Address Modifier Codes
* is going to be quite resource intensive to do properly. We
* should be OK just looking at the addresses and this is certainly
* much better than what we had before.
*/
err_pos = NULL;
/* Iterate through errors */
list_for_each_safe(err_pos, temp, &(tsi148_bridge->vme_errors)) {
vme_err = list_entry(err_pos, struct vme_bus_error, list);
if((vme_err->address >= address) && (vme_err->address < bound)){
list_del(err_pos);
kfree(vme_err);
}
}
}
/*
* Initialize a slave window with the requested attributes.
*/
int tsi148_slave_set(struct vme_slave_resource *image, int enabled,
unsigned long long vme_base, unsigned long long size,
dma_addr_t pci_base, vme_address_t aspace, vme_cycle_t cycle)
{
unsigned int i, addr = 0, granularity = 0;
unsigned int temp_ctl = 0;
unsigned int vme_base_low, vme_base_high;
unsigned int vme_bound_low, vme_bound_high;
unsigned int pci_offset_low, pci_offset_high;
unsigned long long vme_bound, pci_offset;
#if 0
printk("Set slave image %d to:\n", image->number);
printk("\tEnabled: %s\n", (enabled == 1)? "yes" : "no");
printk("\tVME Base:0x%llx\n", vme_base);
printk("\tWindow Size:0x%llx\n", size);
printk("\tPCI Base:0x%lx\n", (unsigned long)pci_base);
printk("\tAddress Space:0x%x\n", aspace);
printk("\tTransfer Cycle Properties:0x%x\n", cycle);
#endif
i = image->number;
switch (aspace) {
case VME_A16:
granularity = 0x10;
addr |= TSI148_LCSR_ITAT_AS_A16;
break;
case VME_A24:
granularity = 0x1000;
addr |= TSI148_LCSR_ITAT_AS_A24;
break;
case VME_A32:
granularity = 0x10000;
addr |= TSI148_LCSR_ITAT_AS_A32;
break;
case VME_A64:
granularity = 0x10000;
addr |= TSI148_LCSR_ITAT_AS_A64;
break;
case VME_CRCSR:
case VME_USER1:
case VME_USER2:
case VME_USER3:
case VME_USER4:
default:
printk("Invalid address space\n");
return -EINVAL;
break;
}
/* Convert 64-bit variables to 2x 32-bit variables */
reg_split(vme_base, &vme_base_high, &vme_base_low);
/*
* Bound address is a valid address for the window, adjust
* accordingly
*/
vme_bound = vme_base + size - granularity;
reg_split(vme_bound, &vme_bound_high, &vme_bound_low);
pci_offset = (unsigned long long)pci_base - vme_base;
reg_split(pci_offset, &pci_offset_high, &pci_offset_low);
if (vme_base_low & (granularity - 1)) {
printk("Invalid VME base alignment\n");
return -EINVAL;
}
if (vme_bound_low & (granularity - 1)) {
printk("Invalid VME bound alignment\n");
return -EINVAL;
}
if (pci_offset_low & (granularity - 1)) {
printk("Invalid PCI Offset alignment\n");
return -EINVAL;
}
#if 0
printk("\tVME Bound:0x%llx\n", vme_bound);
printk("\tPCI Offset:0x%llx\n", pci_offset);
#endif
/* Disable while we are mucking around */
temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITAT);
temp_ctl &= ~TSI148_LCSR_ITAT_EN;
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITAT);
/* Setup mapping */
iowrite32be(vme_base_high, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITSAU);
iowrite32be(vme_base_low, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITSAL);
iowrite32be(vme_bound_high, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITEAU);
iowrite32be(vme_bound_low, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITEAL);
iowrite32be(pci_offset_high, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITOFU);
iowrite32be(pci_offset_low, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITOFL);
/* XXX Prefetch stuff currently unsupported */
#if 0
for (x = 0; x < 4; x++) {
if ((64 << x) >= vmeIn->prefetchSize) {
break;
}
}
if (x == 4)
x--;
temp_ctl |= (x << 16);
if (vmeIn->prefetchThreshold)
if (vmeIn->prefetchThreshold)
temp_ctl |= 0x40000;
#endif
/* Setup 2eSST speeds */
temp_ctl &= ~TSI148_LCSR_ITAT_2eSSTM_M;
switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
case VME_2eSST160:
temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_160;
break;
case VME_2eSST267:
temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_267;
break;
case VME_2eSST320:
temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_320;
break;
}
/* Setup cycle types */
temp_ctl &= ~(0x1F << 7);
if (cycle & VME_BLT)
temp_ctl |= TSI148_LCSR_ITAT_BLT;
if (cycle & VME_MBLT)
temp_ctl |= TSI148_LCSR_ITAT_MBLT;
if (cycle & VME_2eVME)
temp_ctl |= TSI148_LCSR_ITAT_2eVME;
if (cycle & VME_2eSST)
temp_ctl |= TSI148_LCSR_ITAT_2eSST;
if (cycle & VME_2eSSTB)
temp_ctl |= TSI148_LCSR_ITAT_2eSSTB;
/* Setup address space */
temp_ctl &= ~TSI148_LCSR_ITAT_AS_M;
temp_ctl |= addr;
temp_ctl &= ~0xF;
if (cycle & VME_SUPER)
temp_ctl |= TSI148_LCSR_ITAT_SUPR ;
if (cycle & VME_USER)
temp_ctl |= TSI148_LCSR_ITAT_NPRIV;
if (cycle & VME_PROG)
temp_ctl |= TSI148_LCSR_ITAT_PGM;
if (cycle & VME_DATA)
temp_ctl |= TSI148_LCSR_ITAT_DATA;
/* Write ctl reg without enable */
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITAT);
if (enabled)
temp_ctl |= TSI148_LCSR_ITAT_EN;
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITAT);
return 0;
}
/*
* Get slave window configuration.
*
* XXX Prefetch currently unsupported.
*/
int tsi148_slave_get(struct vme_slave_resource *image, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
dma_addr_t *pci_base, vme_address_t *aspace, vme_cycle_t *cycle)
{
unsigned int i, granularity = 0, ctl = 0;
unsigned int vme_base_low, vme_base_high;
unsigned int vme_bound_low, vme_bound_high;
unsigned int pci_offset_low, pci_offset_high;
unsigned long long vme_bound, pci_offset;
i = image->number;
/* Read registers */
ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITAT);
vme_base_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITSAU);
vme_base_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITSAL);
vme_bound_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITEAU);
vme_bound_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITEAL);
pci_offset_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITOFU);
pci_offset_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITOFL);
/* Convert 64-bit variables to 2x 32-bit variables */
reg_join(vme_base_high, vme_base_low, vme_base);
reg_join(vme_bound_high, vme_bound_low, &vme_bound);
reg_join(pci_offset_high, pci_offset_low, &pci_offset);
*pci_base = (dma_addr_t)vme_base + pci_offset;
*enabled = 0;
*aspace = 0;
*cycle = 0;
if (ctl & TSI148_LCSR_ITAT_EN)
*enabled = 1;
if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A16) {
granularity = 0x10;
*aspace |= VME_A16;
}
if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A24) {
granularity = 0x1000;
*aspace |= VME_A24;
}
if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A32) {
granularity = 0x10000;
*aspace |= VME_A32;
}
if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A64) {
granularity = 0x10000;
*aspace |= VME_A64;
}
/* Need granularity before we set the size */
*size = (unsigned long long)((vme_bound - *vme_base) + granularity);
if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_160)
*cycle |= VME_2eSST160;
if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_267)
*cycle |= VME_2eSST267;
if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_320)
*cycle |= VME_2eSST320;
if (ctl & TSI148_LCSR_ITAT_BLT)
*cycle |= VME_BLT;
if (ctl & TSI148_LCSR_ITAT_MBLT)
*cycle |= VME_MBLT;
if (ctl & TSI148_LCSR_ITAT_2eVME)
*cycle |= VME_2eVME;
if (ctl & TSI148_LCSR_ITAT_2eSST)
*cycle |= VME_2eSST;
if (ctl & TSI148_LCSR_ITAT_2eSSTB)
*cycle |= VME_2eSSTB;
if (ctl & TSI148_LCSR_ITAT_SUPR)
*cycle |= VME_SUPER;
if (ctl & TSI148_LCSR_ITAT_NPRIV)
*cycle |= VME_USER;
if (ctl & TSI148_LCSR_ITAT_PGM)
*cycle |= VME_PROG;
if (ctl & TSI148_LCSR_ITAT_DATA)
*cycle |= VME_DATA;
return 0;
}
/*
* Allocate and map PCI Resource
*/
static int tsi148_alloc_resource(struct vme_master_resource *image,
unsigned long long size)
{
unsigned long long existing_size;
int retval = 0;
struct pci_dev *pdev;
/* Find pci_dev container of dev */
if (tsi148_bridge->parent == NULL) {
printk("Dev entry NULL\n");
return -EINVAL;
}
pdev = container_of(tsi148_bridge->parent, struct pci_dev, dev);
existing_size = (unsigned long long)(image->pci_resource.end -
image->pci_resource.start);
/* If the existing size is OK, return */
if (existing_size == (size - 1))
return 0;
if (existing_size != 0) {
iounmap(image->kern_base);
image->kern_base = NULL;
if (image->pci_resource.name != NULL)
kfree(image->pci_resource.name);
release_resource(&(image->pci_resource));
memset(&(image->pci_resource), 0, sizeof(struct resource));
}
if (image->pci_resource.name == NULL) {
image->pci_resource.name = kmalloc(VMENAMSIZ+3, GFP_KERNEL);
if (image->pci_resource.name == NULL) {
printk(KERN_ERR "Unable to allocate memory for resource"
" name\n");
retval = -ENOMEM;
goto err_name;
}
}
sprintf((char *)image->pci_resource.name, "%s.%d", tsi148_bridge->name,
image->number);
image->pci_resource.start = 0;
image->pci_resource.end = (unsigned long)size;
image->pci_resource.flags = IORESOURCE_MEM;
retval = pci_bus_alloc_resource(pdev->bus,
&(image->pci_resource), size, size, PCIBIOS_MIN_MEM,
0, NULL, NULL);
if (retval) {
printk(KERN_ERR "Failed to allocate mem resource for "
"window %d size 0x%lx start 0x%lx\n",
image->number, (unsigned long)size,
(unsigned long)image->pci_resource.start);
goto err_resource;
}
image->kern_base = ioremap_nocache(
image->pci_resource.start, size);
if (image->kern_base == NULL) {
printk(KERN_ERR "Failed to remap resource\n");
retval = -ENOMEM;
goto err_remap;
}
return 0;
iounmap(image->kern_base);
image->kern_base = NULL;
err_remap:
release_resource(&(image->pci_resource));
err_resource:
kfree(image->pci_resource.name);
memset(&(image->pci_resource), 0, sizeof(struct resource));
err_name:
return retval;
}
/*
* Free and unmap PCI Resource
*/
static void tsi148_free_resource(struct vme_master_resource *image)
{
iounmap(image->kern_base);
image->kern_base = NULL;
release_resource(&(image->pci_resource));
kfree(image->pci_resource.name);
memset(&(image->pci_resource), 0, sizeof(struct resource));
}
/*
* Set the attributes of an outbound window.
*/
int tsi148_master_set( struct vme_master_resource *image, int enabled,
unsigned long long vme_base, unsigned long long size,
vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
{
int retval = 0;
unsigned int i;
unsigned int temp_ctl = 0;
unsigned int pci_base_low, pci_base_high;
unsigned int pci_bound_low, pci_bound_high;
unsigned int vme_offset_low, vme_offset_high;
unsigned long long pci_bound, vme_offset, pci_base;
/* Verify input data */
if (vme_base & 0xFFFF) {
printk("Invalid VME Window alignment\n");
retval = -EINVAL;
goto err_window;
}
if (size < 0x10000) {
printk("Invalid VME Window size\n");
retval = -EINVAL;
goto err_window;
}
spin_lock(&(image->lock));
/* Let's allocate the resource here rather than further up the stack as
* it avoids pushing loads of bus dependant stuff up the stack
*/
retval = tsi148_alloc_resource(image, size);
if (retval) {
spin_unlock(&(image->lock));
printk(KERN_ERR "Unable to allocate memory for resource "
"name\n");
retval = -ENOMEM;
goto err_res;
}
pci_base = (unsigned long long)image->pci_resource.start;
/*
* Bound address is a valid address for the window, adjust
* according to window granularity.
*/
pci_bound = pci_base + (size - 0x10000);
vme_offset = vme_base - pci_base;
/* Convert 64-bit variables to 2x 32-bit variables */
reg_split(pci_base, &pci_base_high, &pci_base_low);
reg_split(pci_bound, &pci_bound_high, &pci_bound_low);
reg_split(vme_offset, &vme_offset_high, &vme_offset_low);
if (pci_base_low & 0xFFFF) {
spin_unlock(&(image->lock));
printk("Invalid PCI base alignment\n");
retval = -EINVAL;
goto err_gran;
}
if (pci_bound_low & 0xFFFF) {
spin_unlock(&(image->lock));
printk("Invalid PCI bound alignment\n");
retval = -EINVAL;
goto err_gran;
}
if (vme_offset_low & 0xFFFF) {
spin_unlock(&(image->lock));
printk("Invalid VME Offset alignment\n");
retval = -EINVAL;
goto err_gran;
}
i = image->number;
/* Disable while we are mucking around */
temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTAT);
temp_ctl &= ~TSI148_LCSR_OTAT_EN;
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTAT);
/* XXX Prefetch stuff currently unsupported */
#if 0
if (vmeOut->prefetchEnable) {
temp_ctl |= 0x40000;
for (x = 0; x < 4; x++) {
if ((2 << x) >= vmeOut->prefetchSize)
break;
}
if (x == 4)
x = 3;
temp_ctl |= (x << 16);
}
#endif
/* Setup 2eSST speeds */
temp_ctl &= ~TSI148_LCSR_OTAT_2eSSTM_M;
switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
case VME_2eSST160:
temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_160;
break;
case VME_2eSST267:
temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_267;
break;
case VME_2eSST320:
temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_320;
break;
}
/* Setup cycle types */
if (cycle & VME_BLT) {
temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
temp_ctl |= TSI148_LCSR_OTAT_TM_BLT;
}
if (cycle & VME_MBLT) {
temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
temp_ctl |= TSI148_LCSR_OTAT_TM_MBLT;
}
if (cycle & VME_2eVME) {
temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
temp_ctl |= TSI148_LCSR_OTAT_TM_2eVME;
}
if (cycle & VME_2eSST) {
temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
temp_ctl |= TSI148_LCSR_OTAT_TM_2eSST;
}
if (cycle & VME_2eSSTB) {
printk("Currently not setting Broadcast Select Registers\n");
temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
temp_ctl |= TSI148_LCSR_OTAT_TM_2eSSTB;
}
/* Setup data width */
temp_ctl &= ~TSI148_LCSR_OTAT_DBW_M;
switch (dwidth) {
case VME_D16:
temp_ctl |= TSI148_LCSR_OTAT_DBW_16;
break;
case VME_D32:
temp_ctl |= TSI148_LCSR_OTAT_DBW_32;
break;
default:
spin_unlock(&(image->lock));
printk("Invalid data width\n");
retval = -EINVAL;
goto err_dwidth;
}
/* Setup address space */
temp_ctl &= ~TSI148_LCSR_OTAT_AMODE_M;
switch (aspace) {
case VME_A16:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_A16;
break;
case VME_A24:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_A24;
break;
case VME_A32:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_A32;
break;
case VME_A64:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_A64;
break;
case VME_CRCSR:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_CRCSR;
break;
case VME_USER1:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER1;
break;
case VME_USER2:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER2;
break;
case VME_USER3:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER3;
break;
case VME_USER4:
temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER4;
break;
default:
spin_unlock(&(image->lock));
printk("Invalid address space\n");
retval = -EINVAL;
goto err_aspace;
break;
}
temp_ctl &= ~(3<<4);
if (cycle & VME_SUPER)
temp_ctl |= TSI148_LCSR_OTAT_SUP;
if (cycle & VME_PROG)
temp_ctl |= TSI148_LCSR_OTAT_PGM;
/* Setup mapping */
iowrite32be(pci_base_high, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTSAU);
iowrite32be(pci_base_low, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTSAL);
iowrite32be(pci_bound_high, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTEAU);
iowrite32be(pci_bound_low, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTEAL);
iowrite32be(vme_offset_high, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTOFU);
iowrite32be(vme_offset_low, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTOFL);
/* XXX We need to deal with OTBS */
#if 0
iowrite32be(vmeOut->bcastSelect2esst, tsi148_bridge->base +
TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTBS);
#endif
/* Write ctl reg without enable */
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTAT);
if (enabled)
temp_ctl |= TSI148_LCSR_OTAT_EN;
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTAT);
spin_unlock(&(image->lock));
return 0;
err_aspace:
err_dwidth:
err_gran:
tsi148_free_resource(image);
err_res:
err_window:
return retval;
}
/*
* Set the attributes of an outbound window.
*
* XXX Not parsing prefetch information.
*/
int __tsi148_master_get( struct vme_master_resource *image, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
vme_address_t *aspace, vme_cycle_t *cycle, vme_width_t *dwidth)
{
unsigned int i, ctl;
unsigned int pci_base_low, pci_base_high;
unsigned int pci_bound_low, pci_bound_high;
unsigned int vme_offset_low, vme_offset_high;
unsigned long long pci_base, pci_bound, vme_offset;
i = image->number;
ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTAT);
pci_base_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTSAU);
pci_base_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTSAL);
pci_bound_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTEAU);
pci_bound_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTEAL);
vme_offset_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTOFU);
vme_offset_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTOFL);
/* Convert 64-bit variables to 2x 32-bit variables */
reg_join(pci_base_high, pci_base_low, &pci_base);
reg_join(pci_bound_high, pci_bound_low, &pci_bound);
reg_join(vme_offset_high, vme_offset_low, &vme_offset);
*vme_base = pci_base + vme_offset;
*size = (unsigned long long)(pci_bound - pci_base) + 0x10000;
*enabled = 0;
*aspace = 0;
*cycle = 0;
*dwidth = 0;
if (ctl & TSI148_LCSR_OTAT_EN)
*enabled = 1;
/* Setup address space */
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A16)
*aspace |= VME_A16;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A24)
*aspace |= VME_A24;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A32)
*aspace |= VME_A32;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A64)
*aspace |= VME_A64;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_CRCSR)
*aspace |= VME_CRCSR;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER1)
*aspace |= VME_USER1;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER2)
*aspace |= VME_USER2;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER3)
*aspace |= VME_USER3;
if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER4)
*aspace |= VME_USER4;
/* Setup 2eSST speeds */
if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_160)
*cycle |= VME_2eSST160;
if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_267)
*cycle |= VME_2eSST267;
if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_320)
*cycle |= VME_2eSST320;
/* Setup cycle types */
if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_SCT)
*cycle |= VME_SCT;
if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_BLT)
*cycle |= VME_BLT;
if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_MBLT)
*cycle |= VME_MBLT;
if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_2eVME)
*cycle |= VME_2eVME;
if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_2eSST)
*cycle |= VME_2eSST;
if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_2eSSTB)
*cycle |= VME_2eSSTB;
if (ctl & TSI148_LCSR_OTAT_SUP)
*cycle |= VME_SUPER;
else
*cycle |= VME_USER;
if (ctl & TSI148_LCSR_OTAT_PGM)
*cycle |= VME_PROG;
else
*cycle |= VME_DATA;
/* Setup data width */
if ((ctl & TSI148_LCSR_OTAT_DBW_M) == TSI148_LCSR_OTAT_DBW_16)
*dwidth = VME_D16;
if ((ctl & TSI148_LCSR_OTAT_DBW_M) == TSI148_LCSR_OTAT_DBW_32)
*dwidth = VME_D32;
return 0;
}
int tsi148_master_get( struct vme_master_resource *image, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
vme_address_t *aspace, vme_cycle_t *cycle, vme_width_t *dwidth)
{
int retval;
spin_lock(&(image->lock));
retval = __tsi148_master_get(image, enabled, vme_base, size, aspace,
cycle, dwidth);
spin_unlock(&(image->lock));
return retval;
}
ssize_t tsi148_master_read(struct vme_master_resource *image, void *buf,
size_t count, loff_t offset)
{
int retval, enabled;
unsigned long long vme_base, size;
vme_address_t aspace;
vme_cycle_t cycle;
vme_width_t dwidth;
struct vme_bus_error *vme_err = NULL;
spin_lock(&(image->lock));
memcpy_fromio(buf, image->kern_base + offset, (unsigned int)count);
retval = count;
if (!err_chk)
goto skip_chk;
__tsi148_master_get(image, &enabled, &vme_base, &size, &aspace, &cycle,
&dwidth);
vme_err = tsi148_find_error(aspace, vme_base + offset, count);
if(vme_err != NULL) {
dev_err(image->parent->parent, "First VME read error detected "
"an at address 0x%llx\n", vme_err->address);
retval = vme_err->address - (vme_base + offset);
/* Clear down save errors in this address range */
tsi148_clear_errors(aspace, vme_base + offset, count);
}
skip_chk:
spin_unlock(&(image->lock));
return retval;
}
/* XXX We need to change vme_master_resource->mtx to a spinlock so that read
* and write functions can be used in an interrupt context
*/
ssize_t tsi148_master_write(struct vme_master_resource *image, void *buf,
size_t count, loff_t offset)
{
int retval = 0, enabled;
unsigned long long vme_base, size;
vme_address_t aspace;
vme_cycle_t cycle;
vme_width_t dwidth;
struct vme_bus_error *vme_err = NULL;
spin_lock(&(image->lock));
memcpy_toio(image->kern_base + offset, buf, (unsigned int)count);
retval = count;
/*
* Writes are posted. We need to do a read on the VME bus to flush out
* all of the writes before we check for errors. We can't guarentee
* that reading the data we have just written is safe. It is believed
* that there isn't any read, write re-ordering, so we can read any
* location in VME space, so lets read the Device ID from the tsi148's
* own registers as mapped into CR/CSR space.
*
* We check for saved errors in the written address range/space.
*/
if (!err_chk)
goto skip_chk;
/*
* Get window info first, to maximise the time that the buffers may
* fluch on their own
*/
__tsi148_master_get(image, &enabled, &vme_base, &size, &aspace, &cycle,
&dwidth);
ioread16(flush_image->kern_base + 0x7F000);
vme_err = tsi148_find_error(aspace, vme_base + offset, count);
if(vme_err != NULL) {
printk("First VME write error detected an at address 0x%llx\n",
vme_err->address);
retval = vme_err->address - (vme_base + offset);
/* Clear down save errors in this address range */
tsi148_clear_errors(aspace, vme_base + offset, count);
}
skip_chk:
spin_unlock(&(image->lock));
return retval;
}
/*
* Perform an RMW cycle on the VME bus.
*
* Requires a previously configured master window, returns final value.
*/
unsigned int tsi148_master_rmw(struct vme_master_resource *image,
unsigned int mask, unsigned int compare, unsigned int swap,
loff_t offset)
{
unsigned long long pci_addr;
unsigned int pci_addr_high, pci_addr_low;
u32 tmp, result;
int i;
/* Find the PCI address that maps to the desired VME address */
i = image->number;
/* Locking as we can only do one of these at a time */
mutex_lock(&(vme_rmw));
/* Lock image */
spin_lock(&(image->lock));
pci_addr_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTSAU);
pci_addr_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTSAL);
reg_join(pci_addr_high, pci_addr_low, &pci_addr);
reg_split(pci_addr + offset, &pci_addr_high, &pci_addr_low);
/* Configure registers */
iowrite32be(mask, tsi148_bridge->base + TSI148_LCSR_RMWEN);
iowrite32be(compare, tsi148_bridge->base + TSI148_LCSR_RMWC);
iowrite32be(swap, tsi148_bridge->base + TSI148_LCSR_RMWS);
iowrite32be(pci_addr_high, tsi148_bridge->base + TSI148_LCSR_RMWAU);
iowrite32be(pci_addr_low, tsi148_bridge->base + TSI148_LCSR_RMWAL);
/* Enable RMW */
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);
tmp |= TSI148_LCSR_VMCTRL_RMWEN;
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VMCTRL);
/* Kick process off with a read to the required address. */
result = ioread32be(image->kern_base + offset);
/* Disable RMW */
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);
tmp &= ~TSI148_LCSR_VMCTRL_RMWEN;
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VMCTRL);
spin_unlock(&(image->lock));
mutex_unlock(&(vme_rmw));
return result;
}
static int tsi148_dma_set_vme_src_attributes (u32 *attr, vme_address_t aspace,
vme_cycle_t cycle, vme_width_t dwidth)
{
/* Setup 2eSST speeds */
switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
case VME_2eSST160:
*attr |= TSI148_LCSR_DSAT_2eSSTM_160;
break;
case VME_2eSST267:
*attr |= TSI148_LCSR_DSAT_2eSSTM_267;
break;
case VME_2eSST320:
*attr |= TSI148_LCSR_DSAT_2eSSTM_320;
break;
}
/* Setup cycle types */
if (cycle & VME_SCT) {
*attr |= TSI148_LCSR_DSAT_TM_SCT;
}
if (cycle & VME_BLT) {
*attr |= TSI148_LCSR_DSAT_TM_BLT;
}
if (cycle & VME_MBLT) {
*attr |= TSI148_LCSR_DSAT_TM_MBLT;
}
if (cycle & VME_2eVME) {
*attr |= TSI148_LCSR_DSAT_TM_2eVME;
}
if (cycle & VME_2eSST) {
*attr |= TSI148_LCSR_DSAT_TM_2eSST;
}
if (cycle & VME_2eSSTB) {
printk("Currently not setting Broadcast Select Registers\n");
*attr |= TSI148_LCSR_DSAT_TM_2eSSTB;
}
/* Setup data width */
switch (dwidth) {
case VME_D16:
*attr |= TSI148_LCSR_DSAT_DBW_16;
break;
case VME_D32:
*attr |= TSI148_LCSR_DSAT_DBW_32;
break;
default:
printk("Invalid data width\n");
return -EINVAL;
}
/* Setup address space */
switch (aspace) {
case VME_A16:
*attr |= TSI148_LCSR_DSAT_AMODE_A16;
break;
case VME_A24:
*attr |= TSI148_LCSR_DSAT_AMODE_A24;
break;
case VME_A32:
*attr |= TSI148_LCSR_DSAT_AMODE_A32;
break;
case VME_A64:
*attr |= TSI148_LCSR_DSAT_AMODE_A64;
break;
case VME_CRCSR:
*attr |= TSI148_LCSR_DSAT_AMODE_CRCSR;
break;
case VME_USER1:
*attr |= TSI148_LCSR_DSAT_AMODE_USER1;
break;
case VME_USER2:
*attr |= TSI148_LCSR_DSAT_AMODE_USER2;
break;
case VME_USER3:
*attr |= TSI148_LCSR_DSAT_AMODE_USER3;
break;
case VME_USER4:
*attr |= TSI148_LCSR_DSAT_AMODE_USER4;
break;
default:
printk("Invalid address space\n");
return -EINVAL;
break;
}
if (cycle & VME_SUPER)
*attr |= TSI148_LCSR_DSAT_SUP;
if (cycle & VME_PROG)
*attr |= TSI148_LCSR_DSAT_PGM;
return 0;
}
static int tsi148_dma_set_vme_dest_attributes(u32 *attr, vme_address_t aspace,
vme_cycle_t cycle, vme_width_t dwidth)
{
/* Setup 2eSST speeds */
switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
case VME_2eSST160:
*attr |= TSI148_LCSR_DDAT_2eSSTM_160;
break;
case VME_2eSST267:
*attr |= TSI148_LCSR_DDAT_2eSSTM_267;
break;
case VME_2eSST320:
*attr |= TSI148_LCSR_DDAT_2eSSTM_320;
break;
}
/* Setup cycle types */
if (cycle & VME_SCT) {
*attr |= TSI148_LCSR_DDAT_TM_SCT;
}
if (cycle & VME_BLT) {
*attr |= TSI148_LCSR_DDAT_TM_BLT;
}
if (cycle & VME_MBLT) {
*attr |= TSI148_LCSR_DDAT_TM_MBLT;
}
if (cycle & VME_2eVME) {
*attr |= TSI148_LCSR_DDAT_TM_2eVME;
}
if (cycle & VME_2eSST) {
*attr |= TSI148_LCSR_DDAT_TM_2eSST;
}
if (cycle & VME_2eSSTB) {
printk("Currently not setting Broadcast Select Registers\n");
*attr |= TSI148_LCSR_DDAT_TM_2eSSTB;
}
/* Setup data width */
switch (dwidth) {
case VME_D16:
*attr |= TSI148_LCSR_DDAT_DBW_16;
break;
case VME_D32:
*attr |= TSI148_LCSR_DDAT_DBW_32;
break;
default:
printk("Invalid data width\n");
return -EINVAL;
}
/* Setup address space */
switch (aspace) {
case VME_A16:
*attr |= TSI148_LCSR_DDAT_AMODE_A16;
break;
case VME_A24:
*attr |= TSI148_LCSR_DDAT_AMODE_A24;
break;
case VME_A32:
*attr |= TSI148_LCSR_DDAT_AMODE_A32;
break;
case VME_A64:
*attr |= TSI148_LCSR_DDAT_AMODE_A64;
break;
case VME_CRCSR:
*attr |= TSI148_LCSR_DDAT_AMODE_CRCSR;
break;
case VME_USER1:
*attr |= TSI148_LCSR_DDAT_AMODE_USER1;
break;
case VME_USER2:
*attr |= TSI148_LCSR_DDAT_AMODE_USER2;
break;
case VME_USER3:
*attr |= TSI148_LCSR_DDAT_AMODE_USER3;
break;
case VME_USER4:
*attr |= TSI148_LCSR_DDAT_AMODE_USER4;
break;
default:
printk("Invalid address space\n");
return -EINVAL;
break;
}
if (cycle & VME_SUPER)
*attr |= TSI148_LCSR_DDAT_SUP;
if (cycle & VME_PROG)
*attr |= TSI148_LCSR_DDAT_PGM;
return 0;
}
/*
* Add a link list descriptor to the list
*
* XXX Need to handle 2eSST Broadcast select bits
*/
int tsi148_dma_list_add (struct vme_dma_list *list, struct vme_dma_attr *src,
struct vme_dma_attr *dest, size_t count)
{
struct tsi148_dma_entry *entry, *prev;
u32 address_high, address_low;
struct vme_dma_pattern *pattern_attr;
struct vme_dma_pci *pci_attr;
struct vme_dma_vme *vme_attr;
dma_addr_t desc_ptr;
int retval = 0;
/* XXX descriptor must be aligned on 64-bit boundaries */
entry = (struct tsi148_dma_entry *)kmalloc(
sizeof(struct tsi148_dma_entry), GFP_KERNEL);
if (entry == NULL) {
printk("Failed to allocate memory for dma resource "
"structure\n");
retval = -ENOMEM;
goto err_mem;
}
/* Test descriptor alignment */
if ((unsigned long)&(entry->descriptor) & 0x7) {
printk("Descriptor not aligned to 8 byte boundary as "
"required: %p\n", &(entry->descriptor));
retval = -EINVAL;
goto err_align;
}
/* Given we are going to fill out the structure, we probably don't
* need to zero it, but better safe than sorry for now.
*/
memset(&(entry->descriptor), 0, sizeof(struct tsi148_dma_descriptor));
/* Fill out source part */
switch (src->type) {
case VME_DMA_PATTERN:
pattern_attr = (struct vme_dma_pattern *)src->private;
entry->descriptor.dsal = pattern_attr->pattern;
entry->descriptor.dsat = TSI148_LCSR_DSAT_TYP_PAT;
/* Default behaviour is 32 bit pattern */
if (pattern_attr->type & VME_DMA_PATTERN_BYTE) {
entry->descriptor.dsat |= TSI148_LCSR_DSAT_PSZ;
}
/* It seems that the default behaviour is to increment */
if ((pattern_attr->type & VME_DMA_PATTERN_INCREMENT) == 0) {
entry->descriptor.dsat |= TSI148_LCSR_DSAT_NIN;
}
break;
case VME_DMA_PCI:
pci_attr = (struct vme_dma_pci *)src->private;
reg_split((unsigned long long)pci_attr->address, &address_high,
&address_low);
entry->descriptor.dsau = address_high;
entry->descriptor.dsal = address_low;
entry->descriptor.dsat = TSI148_LCSR_DSAT_TYP_PCI;
break;
case VME_DMA_VME:
vme_attr = (struct vme_dma_vme *)src->private;
reg_split((unsigned long long)vme_attr->address, &address_high,
&address_low);
entry->descriptor.dsau = address_high;
entry->descriptor.dsal = address_low;
entry->descriptor.dsat = TSI148_LCSR_DSAT_TYP_VME;
retval = tsi148_dma_set_vme_src_attributes(
&(entry->descriptor.dsat), vme_attr->aspace,
vme_attr->cycle, vme_attr->dwidth);
if(retval < 0 )
goto err_source;
break;
default:
printk("Invalid source type\n");
retval = -EINVAL;
goto err_source;
break;
}
/* Assume last link - this will be over-written by adding another */
entry->descriptor.dnlau = 0;
entry->descriptor.dnlal = TSI148_LCSR_DNLAL_LLA;
/* Fill out destination part */
switch (dest->type) {
case VME_DMA_PCI:
pci_attr = (struct vme_dma_pci *)dest->private;
reg_split((unsigned long long)pci_attr->address, &address_high,
&address_low);
entry->descriptor.ddau = address_high;
entry->descriptor.ddal = address_low;
entry->descriptor.ddat = TSI148_LCSR_DDAT_TYP_PCI;
break;
case VME_DMA_VME:
vme_attr = (struct vme_dma_vme *)dest->private;
reg_split((unsigned long long)vme_attr->address, &address_high,
&address_low);
entry->descriptor.ddau = address_high;
entry->descriptor.ddal = address_low;
entry->descriptor.ddat = TSI148_LCSR_DDAT_TYP_VME;
retval = tsi148_dma_set_vme_dest_attributes(
&(entry->descriptor.ddat), vme_attr->aspace,
vme_attr->cycle, vme_attr->dwidth);
if(retval < 0 )
goto err_dest;
break;
default:
printk("Invalid destination type\n");
retval = -EINVAL;
goto err_dest;
break;
}
/* Fill out count */
entry->descriptor.dcnt = (u32)count;
/* Add to list */
list_add_tail(&(entry->list), &(list->entries));
/* Fill out previous descriptors "Next Address" */
if(entry->list.prev != &(list->entries)){
prev = list_entry(entry->list.prev, struct tsi148_dma_entry,
list);
/* We need the bus address for the pointer */
desc_ptr = virt_to_bus(&(entry->descriptor));
reg_split(desc_ptr, &(prev->descriptor.dnlau),
&(prev->descriptor.dnlal));
}
return 0;
err_dest:
err_source:
err_align:
kfree(entry);
err_mem:
return retval;
}
/*
* Check to see if the provided DMA channel is busy.
*/
static int tsi148_dma_busy(int channel)
{
u32 tmp;
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
TSI148_LCSR_OFFSET_DSTA);
if (tmp & TSI148_LCSR_DSTA_BSY)
return 0;
else
return 1;
}
/*
* Execute a previously generated link list
*
* XXX Need to provide control register configuration.
*/
int tsi148_dma_list_exec(struct vme_dma_list *list)
{
struct vme_dma_resource *ctrlr;
int channel, retval = 0;
struct tsi148_dma_entry *entry;
dma_addr_t bus_addr;
u32 bus_addr_high, bus_addr_low;
u32 val, dctlreg = 0;
#if 0
int x;
#endif
ctrlr = list->parent;
mutex_lock(&(ctrlr->mtx));
channel = ctrlr->number;
if (! list_empty(&(ctrlr->running))) {
/*
* XXX We have an active DMA transfer and currently haven't
* sorted out the mechanism for "pending" DMA transfers.
* Return busy.
*/
/* Need to add to pending here */
mutex_unlock(&(ctrlr->mtx));
return -EBUSY;
} else {
list_add(&(list->list), &(ctrlr->running));
}
#if 0
/* XXX Still todo */
for (x = 0; x < 8; x++) { /* vme block size */
if ((32 << x) >= vmeDma->maxVmeBlockSize) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 12);
for (x = 0; x < 8; x++) { /* pci block size */
if ((32 << x) >= vmeDma->maxPciBlockSize) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 4);
if (vmeDma->vmeBackOffTimer) {
for (x = 1; x < 8; x++) { /* vme timer */
if ((1 << (x - 1)) >= vmeDma->vmeBackOffTimer) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 8);
}
if (vmeDma->pciBackOffTimer) {
for (x = 1; x < 8; x++) { /* pci timer */
if ((1 << (x - 1)) >= vmeDma->pciBackOffTimer) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 0);
}
#endif
/* Get first bus address and write into registers */
entry = list_first_entry(&(list->entries), struct tsi148_dma_entry,
list);
bus_addr = virt_to_bus(&(entry->descriptor));
mutex_unlock(&(ctrlr->mtx));
reg_split(bus_addr, &bus_addr_high, &bus_addr_low);
iowrite32be(bus_addr_high, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DNLAU);
iowrite32be(bus_addr_low, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DNLAL);
/* Start the operation */
iowrite32be(dctlreg | TSI148_LCSR_DCTL_DGO, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCTL);
wait_event_interruptible(dma_queue[channel], tsi148_dma_busy(channel));
/*
* Read status register, this register is valid until we kick off a
* new transfer.
*/
val = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
TSI148_LCSR_OFFSET_DSTA);
if (val & TSI148_LCSR_DSTA_VBE) {
printk(KERN_ERR "tsi148: DMA Error. DSTA=%08X\n", val);
retval = -EIO;
}
/* Remove list from running list */
mutex_lock(&(ctrlr->mtx));
list_del(&(list->list));
mutex_unlock(&(ctrlr->mtx));
return retval;
}
/*
* Clean up a previously generated link list
*
* We have a separate function, don't assume that the chain can't be reused.
*/
int tsi148_dma_list_empty(struct vme_dma_list *list)
{
struct list_head *pos, *temp;
struct tsi148_dma_entry *entry;
/* detach and free each entry */
list_for_each_safe(pos, temp, &(list->entries)) {
list_del(pos);
entry = list_entry(pos, struct tsi148_dma_entry, list);
kfree(entry);
}
return (0);
}
/*
* All 4 location monitors reside at the same base - this is therefore a
* system wide configuration.
*
* This does not enable the LM monitor - that should be done when the first
* callback is attached and disabled when the last callback is removed.
*/
int tsi148_lm_set(struct vme_lm_resource *lm, unsigned long long lm_base,
vme_address_t aspace, vme_cycle_t cycle)
{
u32 lm_base_high, lm_base_low, lm_ctl = 0;
int i;
mutex_lock(&(lm->mtx));
/* If we already have a callback attached, we can't move it! */
for (i = 0; i < lm->monitors; i++) {
if(lm_callback[i] != NULL) {
mutex_unlock(&(lm->mtx));
printk("Location monitor callback attached, can't "
"reset\n");
return -EBUSY;
}
}
switch (aspace) {
case VME_A16:
lm_ctl |= TSI148_LCSR_LMAT_AS_A16;
break;
case VME_A24:
lm_ctl |= TSI148_LCSR_LMAT_AS_A24;
break;
case VME_A32:
lm_ctl |= TSI148_LCSR_LMAT_AS_A32;
break;
case VME_A64:
lm_ctl |= TSI148_LCSR_LMAT_AS_A64;
break;
default:
mutex_unlock(&(lm->mtx));
printk("Invalid address space\n");
return -EINVAL;
break;
}
if (cycle & VME_SUPER)
lm_ctl |= TSI148_LCSR_LMAT_SUPR ;
if (cycle & VME_USER)
lm_ctl |= TSI148_LCSR_LMAT_NPRIV;
if (cycle & VME_PROG)
lm_ctl |= TSI148_LCSR_LMAT_PGM;
if (cycle & VME_DATA)
lm_ctl |= TSI148_LCSR_LMAT_DATA;
reg_split(lm_base, &lm_base_high, &lm_base_low);
iowrite32be(lm_base_high, tsi148_bridge->base + TSI148_LCSR_LMBAU);
iowrite32be(lm_base_low, tsi148_bridge->base + TSI148_LCSR_LMBAL);
iowrite32be(lm_ctl, tsi148_bridge->base + TSI148_LCSR_LMAT);
mutex_unlock(&(lm->mtx));
return 0;
}
/* Get configuration of the callback monitor and return whether it is enabled
* or disabled.
*/
int tsi148_lm_get(struct vme_lm_resource *lm, unsigned long long *lm_base,
vme_address_t *aspace, vme_cycle_t *cycle)
{
u32 lm_base_high, lm_base_low, lm_ctl, enabled = 0;
mutex_lock(&(lm->mtx));
lm_base_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMBAU);
lm_base_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMBAL);
lm_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMAT);
reg_join(lm_base_high, lm_base_low, lm_base);
if (lm_ctl & TSI148_LCSR_LMAT_EN)
enabled = 1;
if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A16) {
*aspace |= VME_A16;
}
if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A24) {
*aspace |= VME_A24;
}
if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A32) {
*aspace |= VME_A32;
}
if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A64) {
*aspace |= VME_A64;
}
if (lm_ctl & TSI148_LCSR_LMAT_SUPR)
*cycle |= VME_SUPER;
if (lm_ctl & TSI148_LCSR_LMAT_NPRIV)
*cycle |= VME_USER;
if (lm_ctl & TSI148_LCSR_LMAT_PGM)
*cycle |= VME_PROG;
if (lm_ctl & TSI148_LCSR_LMAT_DATA)
*cycle |= VME_DATA;
mutex_unlock(&(lm->mtx));
return enabled;
}
/*
* Attach a callback to a specific location monitor.
*
* Callback will be passed the monitor triggered.
*/
int tsi148_lm_attach(struct vme_lm_resource *lm, int monitor,
void (*callback)(int))
{
u32 lm_ctl, tmp;
mutex_lock(&(lm->mtx));
/* Ensure that the location monitor is configured - need PGM or DATA */
lm_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMAT);
if ((lm_ctl & (TSI148_LCSR_LMAT_PGM | TSI148_LCSR_LMAT_DATA)) == 0) {
mutex_unlock(&(lm->mtx));
printk("Location monitor not properly configured\n");
return -EINVAL;
}
/* Check that a callback isn't already attached */
if (lm_callback[monitor] != NULL) {
mutex_unlock(&(lm->mtx));
printk("Existing callback attached\n");
return -EBUSY;
}
/* Attach callback */
lm_callback[monitor] = callback;
/* Enable Location Monitor interrupt */
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
tmp |= TSI148_LCSR_INTEN_LMEN[monitor];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEN);
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
tmp |= TSI148_LCSR_INTEO_LMEO[monitor];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);
/* Ensure that global Location Monitor Enable set */
if ((lm_ctl & TSI148_LCSR_LMAT_EN) == 0) {
lm_ctl |= TSI148_LCSR_LMAT_EN;
iowrite32be(lm_ctl, tsi148_bridge->base + TSI148_LCSR_LMAT);
}
mutex_unlock(&(lm->mtx));
return 0;
}
/*
* Detach a callback function forn a specific location monitor.
*/
int tsi148_lm_detach(struct vme_lm_resource *lm, int monitor)
{
u32 lm_en, tmp;
mutex_lock(&(lm->mtx));
/* Disable Location Monitor and ensure previous interrupts are clear */
lm_en = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
lm_en &= ~TSI148_LCSR_INTEN_LMEN[monitor];
iowrite32be(lm_en, tsi148_bridge->base + TSI148_LCSR_INTEN);
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
tmp &= ~TSI148_LCSR_INTEO_LMEO[monitor];
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);
iowrite32be(TSI148_LCSR_INTC_LMC[monitor],
tsi148_bridge->base + TSI148_LCSR_INTEO);
/* Detach callback */
lm_callback[monitor] = NULL;
/* If all location monitors disabled, disable global Location Monitor */
if ((lm_en & (TSI148_LCSR_INTS_LM0S | TSI148_LCSR_INTS_LM1S |
TSI148_LCSR_INTS_LM2S | TSI148_LCSR_INTS_LM3S)) == 0) {
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMAT);
tmp &= ~TSI148_LCSR_LMAT_EN;
iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_LMAT);
}
mutex_unlock(&(lm->mtx));
return 0;
}
/*
* Determine Geographical Addressing
*/
int tsi148_slot_get(void)
{
u32 slot = 0;
slot = ioread32be(tsi148_bridge->base + TSI148_LCSR_VSTAT);
slot = slot & TSI148_LCSR_VSTAT_GA_M;
return (int)slot;
}
static int __init tsi148_init(void)
{
return pci_register_driver(&tsi148_driver);
}
/*
* Configure CR/CSR space
*
* Access to the CR/CSR can be configured at power-up. The location of the
* CR/CSR registers in the CR/CSR address space is determined by the boards
* Auto-ID or Geographic address. This function ensures that the window is
* enabled at an offset consistent with the boards geopgraphic address.
*
* Each board has a 512kB window, with the highest 4kB being used for the
* boards registers, this means there is a fix length 508kB window which must
* be mapped onto PCI memory.
*/
static int tsi148_crcsr_init(struct pci_dev *pdev)
{
u32 cbar, crat, vstat;
u32 crcsr_bus_high, crcsr_bus_low;
int retval;
/* Allocate mem for CR/CSR image */
crcsr_kernel = pci_alloc_consistent(pdev, VME_CRCSR_BUF_SIZE,
&crcsr_bus);
if (crcsr_kernel == NULL) {
dev_err(&pdev->dev, "Failed to allocate memory for CR/CSR "
"image\n");
return -ENOMEM;
}
memset(crcsr_kernel, 0, VME_CRCSR_BUF_SIZE);
reg_split(crcsr_bus, &crcsr_bus_high, &crcsr_bus_low);
iowrite32be(crcsr_bus_high, tsi148_bridge->base + TSI148_LCSR_CROU);
iowrite32be(crcsr_bus_low, tsi148_bridge->base + TSI148_LCSR_CROL);
/* Ensure that the CR/CSR is configured at the correct offset */
cbar = ioread32be(tsi148_bridge->base + TSI148_CBAR);
cbar = (cbar & TSI148_CRCSR_CBAR_M)>>3;
vstat = tsi148_slot_get();
if (cbar != vstat) {
dev_info(&pdev->dev, "Setting CR/CSR offset\n");
iowrite32be(cbar<<3, tsi148_bridge->base + TSI148_CBAR);
}
dev_info(&pdev->dev, "CR/CSR Offset: %d\n", cbar);
crat = ioread32be(tsi148_bridge->base + TSI148_LCSR_CRAT);
if (crat & TSI148_LCSR_CRAT_EN) {
dev_info(&pdev->dev, "Enabling CR/CSR space\n");
iowrite32be(crat | TSI148_LCSR_CRAT_EN,
tsi148_bridge->base + TSI148_LCSR_CRAT);
} else
dev_info(&pdev->dev, "CR/CSR already enabled\n");
/* If we want flushed, error-checked writes, set up a window
* over the CR/CSR registers. We read from here to safely flush
* through VME writes.
*/
if(err_chk) {
retval = tsi148_master_set(flush_image, 1, (vstat * 0x80000),
0x80000, VME_CRCSR, VME_SCT, VME_D16);
if (retval)
dev_err(&pdev->dev, "Configuring flush image failed\n");
}
return 0;
}
static void tsi148_crcsr_exit(struct pci_dev *pdev)
{
u32 crat;
/* Turn off CR/CSR space */
crat = ioread32be(tsi148_bridge->base + TSI148_LCSR_CRAT);
iowrite32be(crat & ~TSI148_LCSR_CRAT_EN,
tsi148_bridge->base + TSI148_LCSR_CRAT);
/* Free image */
iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_CROU);
iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_CROL);
pci_free_consistent(pdev, VME_CRCSR_BUF_SIZE, crcsr_kernel, crcsr_bus);
}
static int tsi148_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int retval, i, master_num;
u32 data;
struct list_head *pos = NULL;
struct vme_master_resource *master_image;
struct vme_slave_resource *slave_image;
struct vme_dma_resource *dma_ctrlr;
struct vme_lm_resource *lm;
/* If we want to support more than one of each bridge, we need to
* dynamically generate this so we get one per device
*/
tsi148_bridge = (struct vme_bridge *)kmalloc(sizeof(struct vme_bridge),
GFP_KERNEL);
if (tsi148_bridge == NULL) {
dev_err(&pdev->dev, "Failed to allocate memory for device "
"structure\n");
retval = -ENOMEM;
goto err_struct;
}
memset(tsi148_bridge, 0, sizeof(struct vme_bridge));
/* Enable the device */
retval = pci_enable_device(pdev);
if (retval) {
dev_err(&pdev->dev, "Unable to enable device\n");
goto err_enable;
}
/* Map Registers */
retval = pci_request_regions(pdev, driver_name);
if (retval) {
dev_err(&pdev->dev, "Unable to reserve resources\n");
goto err_resource;
}
/* map registers in BAR 0 */
tsi148_bridge->base = ioremap_nocache(pci_resource_start(pdev, 0), 4096);
if (!tsi148_bridge->base) {
dev_err(&pdev->dev, "Unable to remap CRG region\n");
retval = -EIO;
goto err_remap;
}
/* Check to see if the mapping worked out */
data = ioread32(tsi148_bridge->base + TSI148_PCFS_ID) & 0x0000FFFF;
if (data != PCI_VENDOR_ID_TUNDRA) {
dev_err(&pdev->dev, "CRG region check failed\n");
retval = -EIO;
goto err_test;
}
/* Initialize wait queues & mutual exclusion flags */
/* XXX These need to be moved to the vme_bridge structure */
init_waitqueue_head(&dma_queue[0]);
init_waitqueue_head(&dma_queue[1]);
init_waitqueue_head(&iack_queue);
mutex_init(&(vme_int));
mutex_init(&(vme_irq));
mutex_init(&(vme_rmw));
tsi148_bridge->parent = &(pdev->dev);
strcpy(tsi148_bridge->name, driver_name);
/* Setup IRQ */
retval = tsi148_irq_init(tsi148_bridge);
if (retval != 0) {
dev_err(&pdev->dev, "Chip Initialization failed.\n");
goto err_irq;
}
/* If we are going to flush writes, we need to read from the VME bus.
* We need to do this safely, thus we read the devices own CR/CSR
* register. To do this we must set up a window in CR/CSR space and
* hence have one less master window resource available.
*/
master_num = TSI148_MAX_MASTER;
if(err_chk){
master_num--;
/* XXX */
flush_image = (struct vme_master_resource *)kmalloc(
sizeof(struct vme_master_resource), GFP_KERNEL);
if (flush_image == NULL) {
dev_err(&pdev->dev, "Failed to allocate memory for "
"flush resource structure\n");
retval = -ENOMEM;
goto err_master;
}
flush_image->parent = tsi148_bridge;
spin_lock_init(&(flush_image->lock));
flush_image->locked = 1;
flush_image->number = master_num;
flush_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
VME_A64;
flush_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
VME_PROG | VME_DATA;
flush_image->width_attr = VME_D16 | VME_D32;
memset(&(flush_image->pci_resource), 0,
sizeof(struct resource));
flush_image->kern_base = NULL;
}
/* Add master windows to list */
INIT_LIST_HEAD(&(tsi148_bridge->master_resources));
for (i = 0; i < master_num; i++) {
master_image = (struct vme_master_resource *)kmalloc(
sizeof(struct vme_master_resource), GFP_KERNEL);
if (master_image == NULL) {
dev_err(&pdev->dev, "Failed to allocate memory for "
"master resource structure\n");
retval = -ENOMEM;
goto err_master;
}
master_image->parent = tsi148_bridge;
spin_lock_init(&(master_image->lock));
master_image->locked = 0;
master_image->number = i;
master_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
VME_A64;
master_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
VME_PROG | VME_DATA;
master_image->width_attr = VME_D16 | VME_D32;
memset(&(master_image->pci_resource), 0,
sizeof(struct resource));
master_image->kern_base = NULL;
list_add_tail(&(master_image->list),
&(tsi148_bridge->master_resources));
}
/* Add slave windows to list */
INIT_LIST_HEAD(&(tsi148_bridge->slave_resources));
for (i = 0; i < TSI148_MAX_SLAVE; i++) {
slave_image = (struct vme_slave_resource *)kmalloc(
sizeof(struct vme_slave_resource), GFP_KERNEL);
if (slave_image == NULL) {
dev_err(&pdev->dev, "Failed to allocate memory for "
"slave resource structure\n");
retval = -ENOMEM;
goto err_slave;
}
slave_image->parent = tsi148_bridge;
mutex_init(&(slave_image->mtx));
slave_image->locked = 0;
slave_image->number = i;
slave_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
VME_A64 | VME_CRCSR | VME_USER1 | VME_USER2 |
VME_USER3 | VME_USER4;
slave_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
VME_PROG | VME_DATA;
list_add_tail(&(slave_image->list),
&(tsi148_bridge->slave_resources));
}
/* Add dma engines to list */
INIT_LIST_HEAD(&(tsi148_bridge->dma_resources));
for (i = 0; i < TSI148_MAX_DMA; i++) {
dma_ctrlr = (struct vme_dma_resource *)kmalloc(
sizeof(struct vme_dma_resource), GFP_KERNEL);
if (dma_ctrlr == NULL) {
dev_err(&pdev->dev, "Failed to allocate memory for "
"dma resource structure\n");
retval = -ENOMEM;
goto err_dma;
}
dma_ctrlr->parent = tsi148_bridge;
mutex_init(&(dma_ctrlr->mtx));
dma_ctrlr->locked = 0;
dma_ctrlr->number = i;
INIT_LIST_HEAD(&(dma_ctrlr->pending));
INIT_LIST_HEAD(&(dma_ctrlr->running));
list_add_tail(&(dma_ctrlr->list),
&(tsi148_bridge->dma_resources));
}
/* Add location monitor to list */
INIT_LIST_HEAD(&(tsi148_bridge->lm_resources));
lm = kmalloc(sizeof(struct vme_lm_resource), GFP_KERNEL);
if (lm == NULL) {
dev_err(&pdev->dev, "Failed to allocate memory for "
"location monitor resource structure\n");
retval = -ENOMEM;
goto err_lm;
}
lm->parent = tsi148_bridge;
mutex_init(&(lm->mtx));
lm->locked = 0;
lm->number = 1;
lm->monitors = 4;
list_add_tail(&(lm->list), &(tsi148_bridge->lm_resources));
tsi148_bridge->slave_get = tsi148_slave_get;
tsi148_bridge->slave_set = tsi148_slave_set;
tsi148_bridge->master_get = tsi148_master_get;
tsi148_bridge->master_set = tsi148_master_set;
tsi148_bridge->master_read = tsi148_master_read;
tsi148_bridge->master_write = tsi148_master_write;
tsi148_bridge->master_rmw = tsi148_master_rmw;
tsi148_bridge->dma_list_add = tsi148_dma_list_add;
tsi148_bridge->dma_list_exec = tsi148_dma_list_exec;
tsi148_bridge->dma_list_empty = tsi148_dma_list_empty;
tsi148_bridge->request_irq = tsi148_request_irq;
tsi148_bridge->free_irq = tsi148_free_irq;
tsi148_bridge->generate_irq = tsi148_generate_irq;
tsi148_bridge->lm_set = tsi148_lm_set;
tsi148_bridge->lm_get = tsi148_lm_get;
tsi148_bridge->lm_attach = tsi148_lm_attach;
tsi148_bridge->lm_detach = tsi148_lm_detach;
tsi148_bridge->slot_get = tsi148_slot_get;
data = ioread32be(tsi148_bridge->base + TSI148_LCSR_VSTAT);
dev_info(&pdev->dev, "Board is%s the VME system controller\n",
(data & TSI148_LCSR_VSTAT_SCONS)? "" : " not");
dev_info(&pdev->dev, "VME geographical address is %d\n",
data & TSI148_LCSR_VSTAT_GA_M);
dev_info(&pdev->dev, "VME Write and flush and error check is %s\n",
err_chk ? "enabled" : "disabled");
if(tsi148_crcsr_init(pdev)) {
dev_err(&pdev->dev, "CR/CSR configuration failed.\n");
goto err_crcsr;
}
/* Need to save tsi148_bridge pointer locally in link list for use in
* tsi148_remove()
*/
retval = vme_register_bridge(tsi148_bridge);
if (retval != 0) {
dev_err(&pdev->dev, "Chip Registration failed.\n");
goto err_reg;
}
/* Clear VME bus "board fail", and "power-up reset" lines */
data = ioread32be(tsi148_bridge->base + TSI148_LCSR_VSTAT);
data &= ~TSI148_LCSR_VSTAT_BRDFL;
data |= TSI148_LCSR_VSTAT_CPURST;
iowrite32be(data, tsi148_bridge->base + TSI148_LCSR_VSTAT);
return 0;
vme_unregister_bridge(tsi148_bridge);
err_reg:
tsi148_crcsr_exit(pdev);
err_crcsr:
err_lm:
/* resources are stored in link list */
list_for_each(pos, &(tsi148_bridge->lm_resources)) {
lm = list_entry(pos, struct vme_lm_resource, list);
list_del(pos);
kfree(lm);
}
err_dma:
/* resources are stored in link list */
list_for_each(pos, &(tsi148_bridge->dma_resources)) {
dma_ctrlr = list_entry(pos, struct vme_dma_resource, list);
list_del(pos);
kfree(dma_ctrlr);
}
err_slave:
/* resources are stored in link list */
list_for_each(pos, &(tsi148_bridge->slave_resources)) {
slave_image = list_entry(pos, struct vme_slave_resource, list);
list_del(pos);
kfree(slave_image);
}
err_master:
/* resources are stored in link list */
list_for_each(pos, &(tsi148_bridge->master_resources)) {
master_image = list_entry(pos, struct vme_master_resource, list);
list_del(pos);
kfree(master_image);
}
tsi148_irq_exit(pdev);
err_irq:
err_test:
iounmap(tsi148_bridge->base);
err_remap:
pci_release_regions(pdev);
err_resource:
pci_disable_device(pdev);
err_enable:
kfree(tsi148_bridge);
err_struct:
return retval;
}
static void tsi148_remove(struct pci_dev *pdev)
{
struct list_head *pos = NULL;
struct vme_master_resource *master_image;
struct vme_slave_resource *slave_image;
struct vme_dma_resource *dma_ctrlr;
int i;
dev_dbg(&pdev->dev, "Driver is being unloaded.\n");
/* XXX We need to find the pdev->dev in the list of vme_bridge->dev's */
/*
* Shutdown all inbound and outbound windows.
*/
for (i = 0; i < 8; i++) {
iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_IT[i] +
TSI148_LCSR_OFFSET_ITAT);
iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_OT[i] +
TSI148_LCSR_OFFSET_OTAT);
}
/*
* Shutdown Location monitor.
*/
iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_LMAT);
/*
* Shutdown CRG map.
*/
iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_CSRAT);
/*
* Clear error status.
*/
iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_EDPAT);
iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_VEAT);
iowrite32be(0x07000700, tsi148_bridge->base + TSI148_LCSR_PSTAT);
/*
* Remove VIRQ interrupt (if any)
*/
if (ioread32be(tsi148_bridge->base + TSI148_LCSR_VICR) & 0x800) {
iowrite32be(0x8000, tsi148_bridge->base + TSI148_LCSR_VICR);
}
/*
* Disable and clear all interrupts.
*/
iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTEO);
iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_INTC);
iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_INTEN);
/*
* Map all Interrupts to PCI INTA
*/
iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTM1);
iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTM2);
tsi148_irq_exit(pdev);
vme_unregister_bridge(tsi148_bridge);
tsi148_crcsr_exit(pdev);
/* resources are stored in link list */
list_for_each(pos, &(tsi148_bridge->dma_resources)) {
dma_ctrlr = list_entry(pos, struct vme_dma_resource, list);
list_del(pos);
kfree(dma_ctrlr);
}
/* resources are stored in link list */
list_for_each(pos, &(tsi148_bridge->slave_resources)) {
slave_image = list_entry(pos, struct vme_slave_resource, list);
list_del(pos);
kfree(slave_image);
}
/* resources are stored in link list */
list_for_each(pos, &(tsi148_bridge->master_resources)) {
master_image = list_entry(pos, struct vme_master_resource, list);
list_del(pos);
kfree(master_image);
}
tsi148_irq_exit(pdev);
iounmap(tsi148_bridge->base);
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(tsi148_bridge);
}
static void __exit tsi148_exit(void)
{
pci_unregister_driver(&tsi148_driver);
printk(KERN_DEBUG "Driver removed.\n");
}
MODULE_PARM_DESC(err_chk, "Check for VME errors on reads and writes");
module_param(err_chk, bool, 0);
MODULE_DESCRIPTION("VME driver for the Tundra Tempe VME bridge");
MODULE_LICENSE("GPL");
module_init(tsi148_init);
module_exit(tsi148_exit);
/*----------------------------------------------------------------------------
* STAGING
*--------------------------------------------------------------------------*/
#if 0
/*
* Direct Mode DMA transfer
*
* XXX Not looking at direct mode for now, we can always use link list mode
* with a single entry.
*/
int tsi148_dma_run(struct vme_dma_resource *resource, struct vme_dma_attr src,
struct vme_dma_attr dest, size_t count)
{
u32 dctlreg = 0;
unsigned int tmp;
int val;
int channel, x;
struct vmeDmaPacket *cur_dma;
struct tsi148_dma_descriptor *dmaLL;
/* direct mode */
dctlreg = 0x800000;
for (x = 0; x < 8; x++) { /* vme block size */
if ((32 << x) >= vmeDma->maxVmeBlockSize) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 12);
for (x = 0; x < 8; x++) { /* pci block size */
if ((32 << x) >= vmeDma->maxPciBlockSize) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 4);
if (vmeDma->vmeBackOffTimer) {
for (x = 1; x < 8; x++) { /* vme timer */
if ((1 << (x - 1)) >= vmeDma->vmeBackOffTimer) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 8);
}
if (vmeDma->pciBackOffTimer) {
for (x = 1; x < 8; x++) { /* pci timer */
if ((1 << (x - 1)) >= vmeDma->pciBackOffTimer) {
break;
}
}
if (x == 8)
x = 7;
dctlreg |= (x << 0);
}
/* Program registers for DMA transfer */
iowrite32be(dmaLL->dsau, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSAU);
iowrite32be(dmaLL->dsal, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSAL);
iowrite32be(dmaLL->ddau, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDAU);
iowrite32be(dmaLL->ddal, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDAL);
iowrite32be(dmaLL->dsat, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSAT);
iowrite32be(dmaLL->ddat, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDAT);
iowrite32be(dmaLL->dcnt, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCNT);
iowrite32be(dmaLL->ddbs, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDBS);
/* Start the operation */
iowrite32be(dctlreg | 0x2000000, tsi148_bridge->base +
TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCTL);
tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
TSI148_LCSR_OFFSET_DSTA);
wait_event_interruptible(dma_queue[channel], (tmp & 0x1000000) == 0);
/*
* Read status register, we should probably do this in some error
* handler rather than here so that we can be sure we haven't kicked off
* another DMA transfer.
*/
val = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
TSI148_LCSR_OFFSET_DSTA);
vmeDma->vmeDmaStatus = 0;
if (val & 0x10000000) {
printk(KERN_ERR
"DMA Error in DMA_tempe_irqhandler DSTA=%08X\n",
val);
vmeDma->vmeDmaStatus = val;
}
return (0);
}
#endif
#if 0
/* Global VME controller information */
struct pci_dev *vme_pci_dev;
/*
* Set the VME bus arbiter with the requested attributes
*/
int tempe_set_arbiter(vmeArbiterCfg_t * vmeArb)
{
int temp_ctl = 0;
int gto = 0;
temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VCTRL);
temp_ctl &= 0xFFEFFF00;
if (vmeArb->globalTimeoutTimer == 0xFFFFFFFF) {
gto = 8;
} else if (vmeArb->globalTimeoutTimer > 2048) {
return (-EINVAL);
} else if (vmeArb->globalTimeoutTimer == 0) {
gto = 0;
} else {
gto = 1;
while ((16 * (1 << (gto - 1))) < vmeArb->globalTimeoutTimer) {
gto += 1;
}
}
temp_ctl |= gto;
if (vmeArb->arbiterMode != VME_PRIORITY_MODE) {
temp_ctl |= 1 << 6;
}
if (vmeArb->arbiterTimeoutFlag) {
temp_ctl |= 1 << 7;
}
if (vmeArb->noEarlyReleaseFlag) {
temp_ctl |= 1 << 20;
}
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_VCTRL);
return (0);
}
/*
* Return the attributes of the VME bus arbiter.
*/
int tempe_get_arbiter(vmeArbiterCfg_t * vmeArb)
{
int temp_ctl = 0;
int gto = 0;
temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VCTRL);
gto = temp_ctl & 0xF;
if (gto != 0) {
vmeArb->globalTimeoutTimer = (16 * (1 << (gto - 1)));
}
if (temp_ctl & (1 << 6)) {
vmeArb->arbiterMode = VME_R_ROBIN_MODE;
} else {
vmeArb->arbiterMode = VME_PRIORITY_MODE;
}
if (temp_ctl & (1 << 7)) {
vmeArb->arbiterTimeoutFlag = 1;
}
if (temp_ctl & (1 << 20)) {
vmeArb->noEarlyReleaseFlag = 1;
}
return (0);
}
/*
* Set the VME bus requestor with the requested attributes
*/
int tempe_set_requestor(vmeRequesterCfg_t * vmeReq)
{
int temp_ctl = 0;
temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);
temp_ctl &= 0xFFFF0000;
if (vmeReq->releaseMode == 1) {
temp_ctl |= (1 << 3);
}
if (vmeReq->fairMode == 1) {
temp_ctl |= (1 << 2);
}
temp_ctl |= (vmeReq->timeonTimeoutTimer & 7) << 8;
temp_ctl |= (vmeReq->timeoffTimeoutTimer & 7) << 12;
temp_ctl |= vmeReq->requestLevel;
iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_VMCTRL);
return (0);
}
/*
* Return the attributes of the VME bus requestor
*/
int tempe_get_requestor(vmeRequesterCfg_t * vmeReq)
{
int temp_ctl = 0;
temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);
if (temp_ctl & 0x18) {
vmeReq->releaseMode = 1;
}
if (temp_ctl & (1 << 2)) {
vmeReq->fairMode = 1;
}
vmeReq->requestLevel = temp_ctl & 3;
vmeReq->timeonTimeoutTimer = (temp_ctl >> 8) & 7;
vmeReq->timeoffTimeoutTimer = (temp_ctl >> 12) & 7;
return (0);
}
#endif