blob: cd07059b25b51dc29da0651b769f5e57f743e803 [file] [log] [blame]
/*++
Copyright (c) Realtek Semiconductor Corp. All rights reserved.
Module Name:
r8185b_init.c
Abstract:
Hardware Initialization and Hardware IO for RTL8185B
Major Change History:
When Who What
---------- --------------- -------------------------------
2006-11-15 Xiong Created
Notes:
This file is ported from RTL8185B Windows driver.
--*/
/*--------------------------Include File------------------------------------*/
#include <linux/spinlock.h>
#include "r8180_hw.h"
#include "r8180.h"
#include "r8180_rtl8225.h" /* RTL8225 Radio frontend */
#include "r8180_93cx6.h" /* Card EEPROM */
#include "r8180_wx.h"
#include "ieee80211/dot11d.h"
//#define CONFIG_RTL8180_IO_MAP
#define TC_3W_POLL_MAX_TRY_CNT 5
static u8 MAC_REG_TABLE[][2]={
//PAGA 0:
// 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185()
// 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185().
// 0x1F0~0x1F8 set in MacConfig_85BASIC()
{0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
{0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
{0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
{0x94, 0x0F}, {0x95, 0x32},
{0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
{0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
{0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
{0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
{0xff, 0x00},
//PAGE 1:
// For Flextronics system Logo PCIHCT failure:
// 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1
{0x5e, 0x01},
{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
{0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
{0x82, 0xFF}, {0x83, 0x03},
{0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, //lzm add 080826
{0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22},//lzm add 080826
{0xe2, 0x00},
//PAGE 2:
{0x5e, 0x02},
{0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
{0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
{0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
{0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
{0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
{0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
{0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},
//PAGA 0:
{0x5e, 0x00},{0x9f, 0x03}
};
static u8 ZEBRA_AGC[]={
0,
0x7E,0x7E,0x7E,0x7E,0x7D,0x7C,0x7B,0x7A,0x79,0x78,0x77,0x76,0x75,0x74,0x73,0x72,
0x71,0x70,0x6F,0x6E,0x6D,0x6C,0x6B,0x6A,0x69,0x68,0x67,0x66,0x65,0x64,0x63,0x62,
0x48,0x47,0x46,0x45,0x44,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x08,0x07,
0x06,0x05,0x04,0x03,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x10,0x11,0x12,0x13,0x15,0x16,
0x17,0x17,0x18,0x18,0x19,0x1a,0x1a,0x1b,0x1b,0x1c,0x1c,0x1d,0x1d,0x1d,0x1e,0x1e,
0x1f,0x1f,0x1f,0x20,0x20,0x20,0x20,0x21,0x21,0x21,0x22,0x22,0x22,0x23,0x23,0x24,
0x24,0x25,0x25,0x25,0x26,0x26,0x27,0x27,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F
};
static u32 ZEBRA_RF_RX_GAIN_TABLE[]={
0x0096,0x0076,0x0056,0x0036,0x0016,0x01f6,0x01d6,0x01b6,
0x0196,0x0176,0x00F7,0x00D7,0x00B7,0x0097,0x0077,0x0057,
0x0037,0x00FB,0x00DB,0x00BB,0x00FF,0x00E3,0x00C3,0x00A3,
0x0083,0x0063,0x0043,0x0023,0x0003,0x01E3,0x01C3,0x01A3,
0x0183,0x0163,0x0143,0x0123,0x0103
};
static u8 OFDM_CONFIG[]={
// OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX
// OFDM reg0x3C[4]=1'b1: Enable RX power saving mode
// ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test
// 0x00
0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
// 0x10
0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
// 0x20
0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
// 0x30
0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
0xD8, 0x3C, 0x7B, 0x10, 0x10
};
/*---------------------------------------------------------------
* Hardware IO
* the code is ported from Windows source code
----------------------------------------------------------------*/
void
PlatformIOWrite1Byte(
struct net_device *dev,
u32 offset,
u8 data
)
{
write_nic_byte(dev, offset, data);
read_nic_byte(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
}
void
PlatformIOWrite2Byte(
struct net_device *dev,
u32 offset,
u16 data
)
{
write_nic_word(dev, offset, data);
read_nic_word(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
}
u8 PlatformIORead1Byte(struct net_device *dev, u32 offset);
void
PlatformIOWrite4Byte(
struct net_device *dev,
u32 offset,
u32 data
)
{
//{by amy 080312
if (offset == PhyAddr)
{//For Base Band configuration.
unsigned char cmdByte;
unsigned long dataBytes;
unsigned char idx;
u8 u1bTmp;
cmdByte = (u8)(data & 0x000000ff);
dataBytes = data>>8;
//
// 071010, rcnjko:
// The critical section is only BB read/write race condition.
// Assumption:
// 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
// acquiring the spinlock in such context.
// 2. PlatformIOWrite4Byte() MUST NOT be recursive.
//
// NdisAcquireSpinLock( &(pDevice->IoSpinLock) );
for(idx = 0; idx < 30; idx++)
{ // Make sure command bit is clear before access it.
u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
if((u1bTmp & BIT7) == 0)
break;
else
mdelay(10);
}
for(idx=0; idx < 3; idx++)
{
PlatformIOWrite1Byte(dev,offset+1+idx,((u8*)&dataBytes)[idx] );
}
write_nic_byte(dev, offset, cmdByte);
// NdisReleaseSpinLock( &(pDevice->IoSpinLock) );
}
//by amy 080312}
else{
write_nic_dword(dev, offset, data);
read_nic_dword(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
}
}
u8
PlatformIORead1Byte(
struct net_device *dev,
u32 offset
)
{
u8 data = 0;
data = read_nic_byte(dev, offset);
return data;
}
u16
PlatformIORead2Byte(
struct net_device *dev,
u32 offset
)
{
u16 data = 0;
data = read_nic_word(dev, offset);
return data;
}
u32
PlatformIORead4Byte(
struct net_device *dev,
u32 offset
)
{
u32 data = 0;
data = read_nic_dword(dev, offset);
return data;
}
void
SetOutputEnableOfRfPins(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
switch(priv->rf_chip)
{
case RFCHIPID_RTL8225:
case RF_ZEBRA2:
case RF_ZEBRA4:
write_nic_word(dev, RFPinsEnable, 0x1bff);
//write_nic_word(dev, RFPinsEnable, 0x1fff);
break;
}
}
void
ZEBRA_RFSerialWrite(
struct net_device *dev,
u32 data2Write,
u8 totalLength,
u8 low2high
)
{
ThreeWireReg twreg;
int i;
u16 oval,oval2,oval3;
u32 mask;
u16 UshortBuffer;
u8 u1bTmp;
// RTL8187S HSSI Read/Write Function
u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
u1bTmp |= RF_SW_CFG_SI; //reg08[1]=1 Serial Interface(SI)
write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
UshortBuffer = read_nic_word(dev, RFPinsOutput);
oval = UshortBuffer & 0xfff8; // We shall clear bit0, 1, 2 first, 2005.10.28, by rcnjko.
oval2 = read_nic_word(dev, RFPinsEnable);
oval3 = read_nic_word(dev, RFPinsSelect);
// <RJ_NOTE> 3-wire should be controled by HW when we finish SW 3-wire programming. 2005.08.10, by rcnjko.
oval3 &= 0xfff8;
write_nic_word(dev, RFPinsEnable, (oval2|0x0007)); // Set To Output Enable
write_nic_word(dev, RFPinsSelect, (oval3|0x0007)); // Set To SW Switch
udelay(10);
// Add this to avoid hardware and software 3-wire conflict.
// 2005.03.01, by rcnjko.
twreg.longData = 0;
twreg.struc.enableB = 1;
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Set SI_EN (RFLE)
udelay(2);
twreg.struc.enableB = 0;
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Clear SI_EN (RFLE)
udelay(10);
mask = (low2high)?0x01:((u32)0x01<<(totalLength-1));
for(i=0; i<totalLength/2; i++)
{
twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
twreg.struc.clk = 1;
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
mask = (low2high)?(mask<<1):(mask>>1);
twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
twreg.struc.clk = 0;
write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
mask = (low2high)?(mask<<1):(mask>>1);
}
twreg.struc.enableB = 1;
twreg.struc.clk = 0;
twreg.struc.data = 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval);
udelay(10);
write_nic_word(dev, RFPinsOutput, oval|0x0004);
write_nic_word(dev, RFPinsSelect, oval3|0x0000);
SetOutputEnableOfRfPins(dev);
}
//by amy
int
HwHSSIThreeWire(
struct net_device *dev,
u8 *pDataBuf,
u8 nDataBufBitCnt,
int bSI,
int bWrite
)
{
int bResult = 1;
u8 TryCnt;
u8 u1bTmp;
do
{
// Check if WE and RE are cleared.
for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
{
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
{
break;
}
udelay(10);
}
if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);
// RTL8187S HSSI Read/Write Function
u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
if(bSI)
{
u1bTmp |= RF_SW_CFG_SI; //reg08[1]=1 Serial Interface(SI)
}else
{
u1bTmp &= ~RF_SW_CFG_SI; //reg08[1]=0 Parallel Interface(PI)
}
write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
if(bSI)
{
// jong: HW SI read must set reg84[3]=0.
u1bTmp = read_nic_byte(dev, RFPinsSelect);
u1bTmp &= ~BIT3;
write_nic_byte(dev, RFPinsSelect, u1bTmp );
}
// Fill up data buffer for write operation.
if(bWrite)
{
if(nDataBufBitCnt == 16)
{
write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf));
}
else if(nDataBufBitCnt == 64) // RTL8187S shouldn't enter this case
{
write_nic_dword(dev, SW_3W_DB0, *((u32*)pDataBuf));
write_nic_dword(dev, SW_3W_DB1, *((u32*)(pDataBuf + 4)));
}
else
{
int idx;
int ByteCnt = nDataBufBitCnt / 8;
//printk("%d\n",nDataBufBitCnt);
if ((nDataBufBitCnt % 8) != 0)
panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
nDataBufBitCnt);
if (nDataBufBitCnt > 64)
panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
nDataBufBitCnt);
for(idx = 0; idx < ByteCnt; idx++)
{
write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
}
}
}
else //read
{
if(bSI)
{
// SI - reg274[3:0] : RF register's Address
write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf) );
}
else
{
// PI - reg274[15:12] : RF register's Address
write_nic_word(dev, SW_3W_DB0, (*((u16*)pDataBuf)) << 12);
}
}
// Set up command: WE or RE.
if(bWrite)
{
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
}
else
{
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
}
// Check if DONE is set.
for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
{
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if( (u1bTmp & SW_3W_CMD1_DONE) != 0 )
{
break;
}
udelay(10);
}
write_nic_byte(dev, SW_3W_CMD1, 0);
// Read back data for read operation.
if(bWrite == 0)
{
if(bSI)
{
//Serial Interface : reg363_362[11:0]
*((u16*)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
}
else
{
//Parallel Interface : reg361_360[11:0]
*((u16*)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
}
*((u16*)pDataBuf) &= 0x0FFF;
}
}while(0);
return bResult;
}
//by amy
int
HwThreeWire(
struct net_device *dev,
u8 *pDataBuf,
u8 nDataBufBitCnt,
int bHold,
int bWrite
)
{
int bResult = 1;
u8 TryCnt;
u8 u1bTmp;
do
{
// Check if WE and RE are cleared.
for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
{
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
{
break;
}
udelay(10);
}
if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);
// Fill up data buffer for write operation.
if(nDataBufBitCnt == 16)
{
write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
}
else if(nDataBufBitCnt == 64)
{
write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
}
else
{
int idx;
int ByteCnt = nDataBufBitCnt / 8;
if ((nDataBufBitCnt % 8) != 0)
panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
nDataBufBitCnt);
if (nDataBufBitCnt > 64)
panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
nDataBufBitCnt);
for(idx = 0; idx < ByteCnt; idx++)
{
write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
}
}
// Fill up length field.
u1bTmp = (u8)(nDataBufBitCnt - 1); // Number of bits - 1.
if(bHold)
u1bTmp |= SW_3W_CMD0_HOLD;
write_nic_byte(dev, SW_3W_CMD0, u1bTmp);
// Set up command: WE or RE.
if(bWrite)
{
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
}
else
{
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
}
// Check if WE and RE are cleared and DONE is set.
for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
{
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 &&
(u1bTmp & SW_3W_CMD1_DONE) != 0 )
{
break;
}
udelay(10);
}
if(TryCnt == TC_3W_POLL_MAX_TRY_CNT)
{
//RT_ASSERT(TryCnt != TC_3W_POLL_MAX_TRY_CNT,
// ("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear or DONE is not set!!\n", u1bTmp));
// Workaround suggested by wcchu: clear WE here. 2006.07.07, by rcnjko.
write_nic_byte(dev, SW_3W_CMD1, 0);
}
// Read back data for read operation.
// <RJ_TODO> I am not sure if this is correct output format of a read operation.
if(bWrite == 0)
{
if(nDataBufBitCnt == 16)
{
*((u16 *)pDataBuf) = read_nic_word(dev, SW_3W_DB0);
}
else if(nDataBufBitCnt == 64)
{
*((u32 *)pDataBuf) = read_nic_dword(dev, SW_3W_DB0);
*((u32 *)(pDataBuf + 4)) = read_nic_dword(dev, SW_3W_DB1);
}
else
{
int idx;
int ByteCnt = nDataBufBitCnt / 8;
if ((nDataBufBitCnt % 8) != 0)
panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
nDataBufBitCnt);
if (nDataBufBitCnt > 64)
panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
nDataBufBitCnt);
for(idx = 0; idx < ByteCnt; idx++)
{
*(pDataBuf+idx) = read_nic_byte(dev, (SW_3W_DB0+idx));
}
}
}
}while(0);
return bResult;
}
void
RF_WriteReg(
struct net_device *dev,
u8 offset,
u32 data
)
{
//RFReg reg;
u32 data2Write;
u8 len;
u8 low2high;
//u32 RF_Read = 0;
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
switch(priv->rf_chip)
{
case RFCHIPID_RTL8225:
case RF_ZEBRA2: // Annie 2006-05-12.
case RF_ZEBRA4: //by amy
switch(priv->RegThreeWireMode)
{
case SW_THREE_WIRE:
{ // Perform SW 3-wire programming by driver.
data2Write = (data << 4) | (u32)(offset & 0x0f);
len = 16;
low2high = 0;
ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);
}
break;
case HW_THREE_WIRE:
{ // Pure HW 3-wire.
data2Write = (data << 4) | (u32)(offset & 0x0f);
len = 16;
HwThreeWire(
dev,
(u8 *)(&data2Write), // pDataBuf,
len, // nDataBufBitCnt,
0, // bHold,
1); // bWrite
}
break;
case HW_THREE_WIRE_PI: //Parallel Interface
{ // Pure HW 3-wire.
data2Write = (data << 4) | (u32)(offset & 0x0f);
len = 16;
HwHSSIThreeWire(
dev,
(u8*)(&data2Write), // pDataBuf,
len, // nDataBufBitCnt,
0, // bSI
1); // bWrite
//printk("33333\n");
}
break;
case HW_THREE_WIRE_SI: //Serial Interface
{ // Pure HW 3-wire.
data2Write = (data << 4) | (u32)(offset & 0x0f);
len = 16;
// printk(" enter ZEBRA_RFSerialWrite\n ");
// low2high = 0;
// ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);
HwHSSIThreeWire(
dev,
(u8*)(&data2Write), // pDataBuf,
len, // nDataBufBitCnt,
1, // bSI
1); // bWrite
// printk(" exit ZEBRA_RFSerialWrite\n ");
}
break;
default:
DMESGE("RF_WriteReg(): invalid RegThreeWireMode(%d) !!!", priv->RegThreeWireMode);
break;
}
break;
default:
DMESGE("RF_WriteReg(): unknown RFChipID: %#X", priv->rf_chip);
break;
}
}
void
ZEBRA_RFSerialRead(
struct net_device *dev,
u32 data2Write,
u8 wLength,
u32 *data2Read,
u8 rLength,
u8 low2high
)
{
ThreeWireReg twreg;
int i;
u16 oval,oval2,oval3,tmp, wReg80;
u32 mask;
u8 u1bTmp;
ThreeWireReg tdata;
//PHAL_DATA_8187 pHalData = GetHalData8187(pAdapter);
{ // RTL8187S HSSI Read/Write Function
u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
u1bTmp |= RF_SW_CFG_SI; //reg08[1]=1 Serial Interface(SI)
write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
}
wReg80 = oval = read_nic_word(dev, RFPinsOutput);
oval2 = read_nic_word(dev, RFPinsEnable);
oval3 = read_nic_word(dev, RFPinsSelect);
write_nic_word(dev, RFPinsEnable, oval2|0xf);
write_nic_word(dev, RFPinsSelect, oval3|0xf);
*data2Read = 0;
// We must clear BIT0-3 here, otherwise,
// SW_Enalbe will be true when we first call ZEBRA_RFSerialRead() after 8187MPVC open,
// which will cause the value read become 0. 2005.04.11, by rcnjko.
oval &= ~0xf;
// Avoid collision with hardware three-wire.
twreg.longData = 0;
twreg.struc.enableB = 1;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(4);
twreg.longData = 0;
twreg.struc.enableB = 0;
twreg.struc.clk = 0;
twreg.struc.read_write = 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(5);
mask = (low2high) ? 0x01 : ((u32)0x01<<(32-1));
for(i = 0; i < wLength/2; i++)
{
twreg.struc.data = ((data2Write&mask) != 0) ? 1 : 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
twreg.struc.clk = 1;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
mask = (low2high) ? (mask<<1): (mask>>1);
if(i == 2)
{
// Commented out by Jackie, 2004.08.26. <RJ_NOTE> We must comment out the following two lines for we cannot pull down VCOPDN during RF Serail Read.
//PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0xe); // turn off data enable
//PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0xe);
twreg.struc.read_write=1;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
twreg.struc.clk = 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
break;
}
twreg.struc.data = ((data2Write&mask) != 0) ? 1: 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
twreg.struc.clk = 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
mask = (low2high) ? (mask<<1) : (mask>>1);
}
twreg.struc.clk = 0;
twreg.struc.data = 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
mask = (low2high) ? 0x01 : ((u32)0x01 << (12-1));
//
// 061016, by rcnjko:
// We must set data pin to HW controled, otherwise RF can't driver it and
// value RF register won't be able to read back properly.
//
write_nic_word(dev, RFPinsEnable, ( ((oval2|0x0E) & (~0x01))) );
for(i = 0; i < rLength; i++)
{
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
twreg.struc.clk = 1;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
tmp = read_nic_word(dev, RFPinsInput);
tdata.longData = tmp;
*data2Read |= tdata.struc.clk ? mask : 0;
twreg.struc.clk = 0;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
mask = (low2high) ? (mask<<1) : (mask>>1);
}
twreg.struc.enableB = 1;
twreg.struc.clk = 0;
twreg.struc.data = 0;
twreg.struc.read_write = 1;
write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
//PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, oval2|0x8); // Set To Output Enable
write_nic_word(dev, RFPinsEnable, oval2); // Set To Output Enable, <RJ_NOTE> We cannot enable BIT3 here, otherwise, we will failed to switch channel. 2005.04.12.
//PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0x1bff);
write_nic_word(dev, RFPinsSelect, oval3); // Set To SW Switch
//PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0x0488);
write_nic_word(dev, RFPinsOutput, 0x3a0);
//PlatformEFIOWrite2Byte(pAdapter, RFPinsOutput, 0x0480);
}
u32
RF_ReadReg(
struct net_device *dev,
u8 offset
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u32 data2Write;
u8 wlen;
u8 rlen;
u8 low2high;
u32 dataRead;
switch(priv->rf_chip)
{
case RFCHIPID_RTL8225:
case RF_ZEBRA2:
case RF_ZEBRA4:
switch(priv->RegThreeWireMode)
{
case HW_THREE_WIRE_PI: // For 87S Parallel Interface.
{
data2Write = ((u32)(offset&0x0f));
wlen=16;
HwHSSIThreeWire(
dev,
(u8*)(&data2Write), // pDataBuf,
wlen, // nDataBufBitCnt,
0, // bSI
0); // bWrite
dataRead= data2Write;
}
break;
case HW_THREE_WIRE_SI: // For 87S Serial Interface.
{
data2Write = ((u32)(offset&0x0f)) ;
wlen=16;
HwHSSIThreeWire(
dev,
(u8*)(&data2Write), // pDataBuf,
wlen, // nDataBufBitCnt,
1, // bSI
0 // bWrite
);
dataRead= data2Write;
}
break;
// Perform SW 3-wire programming by driver.
default:
{
data2Write = ((u32)(offset&0x1f)) << 27; // For Zebra E-cut. 2005.04.11, by rcnjko.
wlen = 6;
rlen = 12;
low2high = 0;
ZEBRA_RFSerialRead(dev, data2Write, wlen,&dataRead,rlen, low2high);
}
break;
}
break;
default:
dataRead = 0;
break;
}
return dataRead;
}
// by Owen on 04/07/14 for writing BB register successfully
void
WriteBBPortUchar(
struct net_device *dev,
u32 Data
)
{
//u8 TimeoutCounter;
u8 RegisterContent;
u8 UCharData;
UCharData = (u8)((Data & 0x0000ff00) >> 8);
PlatformIOWrite4Byte(dev, PhyAddr, Data);
//for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--)
{
PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
//if(UCharData == RegisterContent)
// break;
}
}
u8
ReadBBPortUchar(
struct net_device *dev,
u32 addr
)
{
//u8 TimeoutCounter;
u8 RegisterContent;
PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
return RegisterContent;
}
//{by amy 080312
//
// Description:
// Perform Antenna settings with antenna diversity on 87SE.
// Created by Roger, 2008.01.25.
//
bool
SetAntennaConfig87SE(
struct net_device *dev,
u8 DefaultAnt, // 0: Main, 1: Aux.
bool bAntDiversity // 1:Enable, 0: Disable.
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bAntennaSwitched = true;
//printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity);
// Threshold for antenna diversity.
write_phy_cck(dev, 0x0c, 0x09); // Reg0c : 09
if( bAntDiversity ) // Enable Antenna Diversity.
{
if( DefaultAnt == 1 ) // aux antenna
{
// Mac register, aux antenna
write_nic_byte(dev, ANTSEL, 0x00);
// Config CCK RX antenna.
write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7
// Config OFDM RX antenna.
write_phy_ofdm(dev, 0x0D, 0x54); // Reg0d : 54
write_phy_ofdm(dev, 0x18, 0xb2); // Reg18 : b2
}
else // use main antenna
{
// Mac register, main antenna
write_nic_byte(dev, ANTSEL, 0x03);
//base band
// Config CCK RX antenna.
write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7
// Config OFDM RX antenna.
write_phy_ofdm(dev, 0x0d, 0x5c); // Reg0d : 5c
write_phy_ofdm(dev, 0x18, 0xb2); // Reg18 : b2
}
}
else // Disable Antenna Diversity.
{
if( DefaultAnt == 1 ) // aux Antenna
{
// Mac register, aux antenna
write_nic_byte(dev, ANTSEL, 0x00);
// Config CCK RX antenna.
write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47
// Config OFDM RX antenna.
write_phy_ofdm(dev, 0x0D, 0x54); // Reg0d : 54
write_phy_ofdm(dev, 0x18, 0x32); // Reg18 : 32
}
else // main Antenna
{
// Mac register, main antenna
write_nic_byte(dev, ANTSEL, 0x03);
// Config CCK RX antenna.
write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47
// Config OFDM RX antenna.
write_phy_ofdm(dev, 0x0D, 0x5c); // Reg0d : 5c
write_phy_ofdm(dev, 0x18, 0x32); // Reg18 : 32
}
}
priv->CurrAntennaIndex = DefaultAnt; // Update default settings.
return bAntennaSwitched;
}
//by amy 080312
/*---------------------------------------------------------------
* Hardware Initialization.
* the code is ported from Windows source code
----------------------------------------------------------------*/
void
ZEBRA_Config_85BASIC_HardCode(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u32 i;
u32 addr,data;
u32 u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
u8 u1b24E;
//=============================================================================
// 87S_PCIE :: RADIOCFG.TXT
//=============================================================================
// Page1 : reg16-reg30
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); // switch to page1
u4bRF23= RF_ReadReg(dev, 0x08); mdelay(1);
u4bRF24= RF_ReadReg(dev, 0x09); mdelay(1);
if (u4bRF23==0x818 && u4bRF24==0x70C && priv->card_8185 == VERSION_8187S_C)
priv->card_8185 = VERSION_8187S_D;
// Page0 : reg0-reg15
// RF_WriteReg(dev, 0x00, 0x003f); mdelay(1);//1
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1);// 1
RF_WriteReg(dev, 0x01, 0x06e0); mdelay(1);
// RF_WriteReg(dev, 0x02, 0x004c); mdelay(1);//2
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1);// 2
// RF_WriteReg(dev, 0x03, 0x0000); mdelay(1);//3
RF_WriteReg(dev, 0x03, 0x07f1); mdelay(1);// 3
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1);
RF_WriteReg(dev, 0x05, 0x0c72); mdelay(1);
RF_WriteReg(dev, 0x06, 0x0ae6); mdelay(1);
RF_WriteReg(dev, 0x07, 0x00ca); mdelay(1);
RF_WriteReg(dev, 0x08, 0x0e1c); mdelay(1);
RF_WriteReg(dev, 0x09, 0x02f0); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x09d0); mdelay(1);
RF_WriteReg(dev, 0x0b, 0x01ba); mdelay(1);
RF_WriteReg(dev, 0x0c, 0x0640); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0020); mdelay(1);
RF_WriteReg(dev, 0x0f, 0x0990); mdelay(1);
// Page1 : reg16-reg30
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1);
RF_WriteReg(dev, 0x03, 0x0806); mdelay(1);
if(priv->card_8185 < VERSION_8187S_C)
{
RF_WriteReg(dev, 0x04, 0x03f7); mdelay(1);
RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1);
RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
}
else
{
RF_WriteReg(dev, 0x04, 0x03a7); mdelay(1);
RF_WriteReg(dev, 0x05, 0x059b); mdelay(1);
RF_WriteReg(dev, 0x06, 0x0081); mdelay(1);
}
RF_WriteReg(dev, 0x07, 0x01A0); mdelay(1);
// Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl.
// RF_WriteReg(dev, 0x08, 0x0597); mdelay(1);
// RF_WriteReg(dev, 0x09, 0x050a); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
RF_WriteReg(dev, 0x0b, 0x0418); mdelay(1);
if(priv->card_8185 == VERSION_8187S_D)
{
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0807); mdelay(1); // RX LO buffer
}
else
{
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0806); mdelay(1); // RX LO buffer
}
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
// RF_WriteReg(dev, 0x00, 0x017f); mdelay(1);//6
RF_WriteReg(dev, 0x00, 0x01d7); mdelay(1);// 6
RF_WriteReg(dev, 0x03, 0x0e00); mdelay(1);
RF_WriteReg(dev, 0x04, 0x0e50); mdelay(1);
for(i=0;i<=36;i++)
{
RF_WriteReg(dev, 0x01, i); mdelay(1);
RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
//DbgPrint("RF - 0x%x = 0x%x", i, ZEBRA_RF_RX_GAIN_TABLE[i]);
}
RF_WriteReg(dev, 0x05, 0x0203); mdelay(1); /// 203, 343
//RF_WriteReg(dev, 0x06, 0x0300); mdelay(1); // 400
RF_WriteReg(dev, 0x06, 0x0200); mdelay(1); // 400
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); // switch to reg16-reg30, and HSSI disable 137
mdelay(10); // Deay 10 ms. //0xfd
// RF_WriteReg(dev, 0x0c, 0x09be); mdelay(1); // 7
//RF_WriteReg(dev, 0x0c, 0x07be); mdelay(1);
//mdelay(10); // Deay 10 ms. //0xfd
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); // Z4 synthesizer loop filter setting, 392
mdelay(10); // Deay 10 ms. //0xfd
RF_WriteReg(dev, 0x00, 0x0037); mdelay(1); // switch to reg0-reg15, and HSSI disable
mdelay(10); // Deay 10 ms. //0xfd
RF_WriteReg(dev, 0x04, 0x0160); mdelay(1); // CBC on, Tx Rx disable, High gain
mdelay(10); // Deay 10 ms. //0xfd
RF_WriteReg(dev, 0x07, 0x0080); mdelay(1); // Z4 setted channel 1
mdelay(10); // Deay 10 ms. //0xfd
RF_WriteReg(dev, 0x02, 0x088D); mdelay(1); // LC calibration
mdelay(200); // Deay 200 ms. //0xfd
mdelay(10); // Deay 10 ms. //0xfd
mdelay(10); // Deay 10 ms. //0xfd
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); // switch to reg16-reg30 137, and HSSI disable 137
mdelay(10); // Deay 10 ms. //0xfd
RF_WriteReg(dev, 0x07, 0x0000); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0180); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0220); mdelay(1);
RF_WriteReg(dev, 0x07, 0x03E0); mdelay(1);
// DAC calibration off 20070702
RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
//{by amy 080312
// For crystal calibration, added by Roger, 2007.12.11.
if( priv->bXtalCalibration ) // reg 30.
{ // enable crystal calibration.
// RF Reg[30], (1)Xin:[12:9], Xout:[8:5], addr[4:0].
// (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
// (3)RF signal on/off when calibration[13], default: on, set BIT13=0.
// So we should minus 4 BITs offset.
RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5)|(priv->XtalCal_Xout<<1)|BIT11|BIT9); mdelay(1);
printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
(priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11| BIT9);
}
else
{ // using default value. Xin=6, Xout=6.
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
}
//by amy 080312
// RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1); //-by amy 080312
RF_WriteReg(dev, 0x00, 0x00bf); mdelay(1); // switch to reg0-reg15, and HSSI enable
// RF_WriteReg(dev, 0x0d, 0x009f); mdelay(1); // Rx BB start calibration, 00c//-edward
RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1); // Rx BB start calibration, 00c//+edward
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1); // temperature meter off
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); // Rx mode
mdelay(10); // Deay 10 ms. //0xfe
mdelay(10); // Deay 10 ms. //0xfe
mdelay(10); // Deay 10 ms. //0xfe
RF_WriteReg(dev, 0x00, 0x0197); mdelay(1); // Rx mode//+edward
RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1); // Rx mode//+edward
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1); // Rx mode//+edward
RF_WriteReg(dev, 0x01, 0x0000); mdelay(1); // Rx mode//+edward
RF_WriteReg(dev, 0x02, 0x0000); mdelay(1); // Rx mode//+edward
//power save parameters.
u1b24E = read_nic_byte(dev, 0x24E);
write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));
//=============================================================================
//=============================================================================
// CCKCONF.TXT
//=============================================================================
/* [POWER SAVE] Power Saving Parameters by jong. 2007-11-27
CCK reg0x00[7]=1'b1 :power saving for TX (default)
CCK reg0x00[6]=1'b1: power saving for RX (default)
CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
*/
write_phy_cck(dev,0x00,0xc8);
write_phy_cck(dev,0x06,0x1c);
write_phy_cck(dev,0x10,0x78);
write_phy_cck(dev,0x2e,0xd0);
write_phy_cck(dev,0x2f,0x06);
write_phy_cck(dev,0x01,0x46);
// power control
write_nic_byte(dev, CCK_TXAGC, 0x10);
write_nic_byte(dev, OFDM_TXAGC, 0x1B);
write_nic_byte(dev, ANTSEL, 0x03);
//=============================================================================
// AGC.txt
//=============================================================================
// PlatformIOWrite4Byte( dev, PhyAddr, 0x00001280); // Annie, 2006-05-05
write_phy_ofdm(dev, 0x00, 0x12);
//WriteBBPortUchar(dev, 0x00001280);
for (i=0; i<128; i++)
{
//DbgPrint("AGC - [%x+1] = 0x%x\n", i, ZEBRA_AGC[i+1]);
data = ZEBRA_AGC[i+1];
data = data << 8;
data = data | 0x0000008F;
addr = i + 0x80; //enable writing AGC table
addr = addr << 8;
addr = addr | 0x0000008E;
WriteBBPortUchar(dev, data);
WriteBBPortUchar(dev, addr);
WriteBBPortUchar(dev, 0x0000008E);
}
PlatformIOWrite4Byte( dev, PhyAddr, 0x00001080); // Annie, 2006-05-05
//WriteBBPortUchar(dev, 0x00001080);
//=============================================================================
//=============================================================================
// OFDMCONF.TXT
//=============================================================================
for(i=0; i<60; i++)
{
u4bRegOffset=i;
u4bRegValue=OFDM_CONFIG[i];
//DbgPrint("OFDM - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);
WriteBBPortUchar(dev,
(0x00000080 |
(u4bRegOffset & 0x7f) |
((u4bRegValue & 0xff) << 8)));
}
//=============================================================================
//by amy for antenna
//=============================================================================
//{by amy 080312
// Config Sw/Hw Combinational Antenna Diversity. Added by Roger, 2008.02.26.
SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
//by amy 080312}
//by amy for antenna
}
void
UpdateInitialGain(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
//unsigned char* IGTable;
//u8 DIG_CurrentInitialGain = 4;
//unsigned char u1Tmp;
//lzm add 080826
if(priv->eRFPowerState != eRfOn)
{
//Don't access BB/RF under disable PLL situation.
//RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
// Back to the original state
priv->InitialGain= priv->InitialGainBackUp;
return;
}
switch(priv->rf_chip)
{
case RF_ZEBRA4:
// Dynamic set initial gain, follow 87B
switch(priv->InitialGain)
{
case 1: //m861dBm
//DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm \n");
write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
case 2: //m862dBm
//DMESG("RTL8187 + 8225 Initial Gain State 2: -82 dBm \n");
write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
case 3: //m863dBm
//DMESG("RTL8187 + 8225 Initial Gain State 3: -82 dBm \n");
write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 4: //m864dBm
//DMESG("RTL8187 + 8225 Initial Gain State 4: -78 dBm \n");
write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 5: //m82dBm
//DMESG("RTL8187 + 8225 Initial Gain State 5: -74 dBm \n");
write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 6: //m78dBm
//DMESG ("RTL8187 + 8225 Initial Gain State 6: -70 dBm \n");
write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
case 7: //m74dBm
//DMESG("RTL8187 + 8225 Initial Gain State 7: -66 dBm \n");
write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
write_phy_ofdm(dev, 0x24, 0xa6); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
case 8:
//DMESG("RTL8187 + 8225 Initial Gain State 8:\n");
write_phy_ofdm(dev, 0x17, 0x66); mdelay(1);
write_phy_ofdm(dev, 0x24, 0xb6); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
default: //MP
//DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm (default)\n");
write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
}
break;
default:
DMESG("UpdateInitialGain(): unknown RFChipID: %#X\n", priv->rf_chip);
break;
}
}
//
// Description:
// Tx Power tracking mechanism routine on 87SE.
// Created by Roger, 2007.12.11.
//
void
InitTxPwrTracking87SE(
struct net_device *dev
)
{
//struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u32 u4bRfReg;
u4bRfReg = RF_ReadReg(dev, 0x02);
// Enable Thermal meter indication.
//printk("InitTxPwrTracking87SE(): Enable thermal meter indication, Write RF[0x02] = %#x", u4bRfReg|PWR_METER_EN);
RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN); mdelay(1);
}
void
PhyConfig8185(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
write_nic_dword(dev, RCR, priv->ReceiveConfig);
priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
// RF config
switch(priv->rf_chip)
{
case RF_ZEBRA2:
case RF_ZEBRA4:
ZEBRA_Config_85BASIC_HardCode( dev);
break;
}
//{by amy 080312
// Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06.
if(priv->bDigMechanism)
{
if(priv->InitialGain == 0)
priv->InitialGain = 4;
//printk("PhyConfig8185(): DIG is enabled, set default initial gain index to %d\n", priv->InitialGain);
}
//
// Enable thermal meter indication to implement TxPower tracking on 87SE.
// We initialize thermal meter here to avoid unsuccessful configuration.
// Added by Roger, 2007.12.11.
//
if(priv->bTxPowerTrack)
InitTxPwrTracking87SE(dev);
//by amy 080312}
priv->InitialGainBackUp= priv->InitialGain;
UpdateInitialGain(dev);
return;
}
void
HwConfigureRTL8185(
struct net_device *dev
)
{
//RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control.
// u8 bUNIVERSAL_CONTROL_RL = 1;
u8 bUNIVERSAL_CONTROL_RL = 0;
u8 bUNIVERSAL_CONTROL_AGC = 1;
u8 bUNIVERSAL_CONTROL_ANT = 1;
u8 bAUTO_RATE_FALLBACK_CTL = 1;
u8 val8;
//struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
//struct ieee80211_device *ieee = priv->ieee80211;
//if(IS_WIRELESS_MODE_A(dev) || IS_WIRELESS_MODE_G(dev))
//{by amy 080312 if((ieee->mode == IEEE_G)||(ieee->mode == IEEE_A))
// {
// write_nic_word(dev, BRSR, 0xffff);
// }
// else
// {
// write_nic_word(dev, BRSR, 0x000f);
// }
//by amy 080312}
write_nic_word(dev, BRSR, 0x0fff);
// Retry limit
val8 = read_nic_byte(dev, CW_CONF);
if(bUNIVERSAL_CONTROL_RL)
val8 = val8 & 0xfd;
else
val8 = val8 | 0x02;
write_nic_byte(dev, CW_CONF, val8);
// Tx AGC
val8 = read_nic_byte(dev, TXAGC_CTL);
if(bUNIVERSAL_CONTROL_AGC)
{
write_nic_byte(dev, CCK_TXAGC, 128);
write_nic_byte(dev, OFDM_TXAGC, 128);
val8 = val8 & 0xfe;
}
else
{
val8 = val8 | 0x01 ;
}
write_nic_byte(dev, TXAGC_CTL, val8);
// Tx Antenna including Feedback control
val8 = read_nic_byte(dev, TXAGC_CTL );
if(bUNIVERSAL_CONTROL_ANT)
{
write_nic_byte(dev, ANTSEL, 0x00);
val8 = val8 & 0xfd;
}
else
{
val8 = val8 & (val8|0x02); //xiong-2006-11-15
}
write_nic_byte(dev, TXAGC_CTL, val8);
// Auto Rate fallback control
val8 = read_nic_byte(dev, RATE_FALLBACK);
val8 &= 0x7c;
if( bAUTO_RATE_FALLBACK_CTL )
{
val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;
// <RJ_TODO_8185B> We shall set up the ARFR according to user's setting.
//write_nic_word(dev, ARFR, 0x0fff); // set 1M ~ 54M
//by amy
// Aadded by Roger, 2007.11.15.
PlatformIOWrite2Byte(dev, ARFR, 0x0fff); //set 1M ~ 54Mbps.
//by amy
}
else
{
}
write_nic_byte(dev, RATE_FALLBACK, val8);
}
static void
MacConfig_85BASIC_HardCode(
struct net_device *dev)
{
//============================================================================
// MACREG.TXT
//============================================================================
int nLinesRead = 0;
u32 u4bRegOffset, u4bRegValue,u4bPageIndex = 0;
int i;
nLinesRead=sizeof(MAC_REG_TABLE)/2;
for(i = 0; i < nLinesRead; i++) //nLinesRead=101
{
u4bRegOffset=MAC_REG_TABLE[i][0];
u4bRegValue=MAC_REG_TABLE[i][1];
if(u4bRegOffset == 0x5e)
{
u4bPageIndex = u4bRegValue;
}
else
{
u4bRegOffset |= (u4bPageIndex << 8);
}
//DbgPrint("MAC - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);
write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
}
//============================================================================
}
static void
MacConfig_85BASIC(
struct net_device *dev)
{
u8 u1DA;
MacConfig_85BASIC_HardCode(dev);
//============================================================================
// Follow TID_AC_MAP of WMac.
write_nic_word(dev, TID_AC_MAP, 0xfa50);
// Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko.
write_nic_word(dev, IntMig, 0x0000);
// Prevent TPC to cause CRC error. Added by Annie, 2006-06-10.
PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
PlatformIOWrite1Byte(dev, 0x1F8, 0x00);
// Asked for by SD3 CM Lin, 2006.06.27, by rcnjko.
//PlatformIOWrite4Byte(dev, RFTiming, 0x00004001);
//by amy
// power save parameter based on "87SE power save parameters 20071127.doc", as follow.
//Enable DA10 TX power saving
u1DA = read_nic_byte(dev, PHYPR);
write_nic_byte(dev, PHYPR, (u1DA | BIT2) );
//POWER:
write_nic_word(dev, 0x360, 0x1000);
write_nic_word(dev, 0x362, 0x1000);
// AFE.
write_nic_word(dev, 0x370, 0x0560);
write_nic_word(dev, 0x372, 0x0560);
write_nic_word(dev, 0x374, 0x0DA4);
write_nic_word(dev, 0x376, 0x0DA4);
write_nic_word(dev, 0x378, 0x0560);
write_nic_word(dev, 0x37A, 0x0560);
write_nic_word(dev, 0x37C, 0x00EC);
// write_nic_word(dev, 0x37E, 0x00FE);//-edward
write_nic_word(dev, 0x37E, 0x00EC);//+edward
write_nic_byte(dev, 0x24E,0x01);
//by amy
}
u8
GetSupportedWirelessMode8185(
struct net_device *dev
)
{
u8 btSupportedWirelessMode = 0;
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
switch(priv->rf_chip)
{
case RF_ZEBRA2:
case RF_ZEBRA4:
btSupportedWirelessMode = (WIRELESS_MODE_B | WIRELESS_MODE_G);
break;
default:
btSupportedWirelessMode = WIRELESS_MODE_B;
break;
}
return btSupportedWirelessMode;
}
void
ActUpdateChannelAccessSetting(
struct net_device *dev,
WIRELESS_MODE WirelessMode,
PCHANNEL_ACCESS_SETTING ChnlAccessSetting
)
{
struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
AC_CODING eACI;
AC_PARAM AcParam;
//PSTA_QOS pStaQos = Adapter->MgntInfo.pStaQos;
u8 bFollowLegacySetting = 0;
u8 u1bAIFS;
//
// <RJ_TODO_8185B>
// TODO: We still don't know how to set up these registers, just follow WMAC to
// verify 8185B FPAG.
//
// <RJ_TODO_8185B>
// Jong said CWmin/CWmax register are not functional in 8185B,
// so we shall fill channel access realted register into AC parameter registers,
// even in nQBss.
//
ChnlAccessSetting->SIFS_Timer = 0x22; // Suggested by Jong, 2005.12.08.
ChnlAccessSetting->DIFS_Timer = 0x1C; // 2006.06.02, by rcnjko.
ChnlAccessSetting->SlotTimeTimer = 9; // 2006.06.02, by rcnjko.
ChnlAccessSetting->EIFS_Timer = 0x5B; // Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.
ChnlAccessSetting->CWminIndex = 3; // 2006.06.02, by rcnjko.
ChnlAccessSetting->CWmaxIndex = 7; // 2006.06.02, by rcnjko.
write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
//Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_SLOT_TIME, &ChnlAccessSetting->SlotTimeTimer ); // Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.
write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer); // Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.
u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer );
//write_nic_byte(dev, AC_VO_PARAM, u1bAIFS);
//write_nic_byte(dev, AC_VI_PARAM, u1bAIFS);
//write_nic_byte(dev, AC_BE_PARAM, u1bAIFS);
//write_nic_byte(dev, AC_BK_PARAM, u1bAIFS);
write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);
write_nic_byte(dev, AckTimeOutReg, 0x5B); // <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.
#ifdef TODO
// <RJ_TODO_NOW_8185B> Update ECWmin/ECWmax, AIFS, TXOP Limit of each AC to the value defined by SPEC.
if( pStaQos->CurrentQosMode > QOS_DISABLE )
{ // QoS mode.
if(pStaQos->QBssWirelessMode == WirelessMode)
{
// Follow AC Parameters of the QBSS.
for(eACI = 0; eACI < AC_MAX; eACI++)
{
Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_AC_PARAM, (pu1Byte)(&(pStaQos->WMMParamEle.AcParam[eACI])) );
}
}
else
{
// Follow Default WMM AC Parameters.
bFollowLegacySetting = 1;
}
}
else
#endif
{ // Legacy 802.11.
bFollowLegacySetting = 1;
}
// this setting is copied from rtl8187B. xiong-2006-11-13
if(bFollowLegacySetting)
{
//
// Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
// 2005.12.01, by rcnjko.
//
AcParam.longData = 0;
AcParam.f.AciAifsn.f.AIFSN = 2; // Follow 802.11 DIFS.
AcParam.f.AciAifsn.f.ACM = 0;
AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; // Follow 802.11 CWmin.
AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; // Follow 802.11 CWmax.
AcParam.f.TXOPLimit = 0;
//lzm reserved 080826
#if 1
// For turbo mode setting. port from 87B by Isaiah 2008-08-01
if( ieee->current_network.Turbo_Enable == 1 )
AcParam.f.TXOPLimit = 0x01FF;
// For 87SE with Intel 4965 Ad-Hoc mode have poor throughput (19MB)
if (ieee->iw_mode == IW_MODE_ADHOC)
AcParam.f.TXOPLimit = 0x0020;
#endif
for(eACI = 0; eACI < AC_MAX; eACI++)
{
AcParam.f.AciAifsn.f.ACI = (u8)eACI;
{
PAC_PARAM pAcParam = (PAC_PARAM)(&AcParam);
AC_CODING eACI;
u8 u1bAIFS;
u32 u4bAcParam;
// Retrive paramters to udpate.
eACI = pAcParam->f.AciAifsn.f.ACI;
u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
u4bAcParam = ( (((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET) |
(((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));
switch(eACI)
{
case AC1_BK:
//write_nic_dword(dev, AC_BK_PARAM, u4bAcParam);
break;
case AC0_BE:
//write_nic_dword(dev, AC_BE_PARAM, u4bAcParam);
break;
case AC2_VI:
//write_nic_dword(dev, AC_VI_PARAM, u4bAcParam);
break;
case AC3_VO:
//write_nic_dword(dev, AC_VO_PARAM, u4bAcParam);
break;
default:
DMESGW( "SetHwReg8185(): invalid ACI: %d !\n", eACI);
break;
}
// Cehck ACM bit.
// If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13.
//write_nic_byte(dev, ACM_CONTROL, pAcParam->f.AciAifsn);
{
PACI_AIFSN pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
AC_CODING eACI = pAciAifsn->f.ACI;
//modified Joseph
//for 8187B AsynIORead issue
#ifdef TODO
u8 AcmCtrl = pHalData->AcmControl;
#else
u8 AcmCtrl = 0;
#endif
if( pAciAifsn->f.ACM )
{ // ACM bit is 1.
switch(eACI)
{
case AC0_BE:
AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN); // or 0x21
break;
case AC2_VI:
AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN); // or 0x42
break;
case AC3_VO:
AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN); // or 0x84
break;
default:
DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI );
break;
}
}
else
{ // ACM bit is 0.
switch(eACI)
{
case AC0_BE:
AcmCtrl &= ( (~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0xDE
break;
case AC2_VI:
AcmCtrl &= ( (~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0xBD
break;
case AC3_VO:
AcmCtrl &= ( (~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0x7B
break;
default:
break;
}
}
//printk(KERN_WARNING "SetHwReg8185(): [HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
#ifdef TO_DO
pHalData->AcmControl = AcmCtrl;
#endif
//write_nic_byte(dev, ACM_CONTROL, AcmCtrl);
write_nic_byte(dev, ACM_CONTROL, 0);
}
}
}
}
}
void
ActSetWirelessMode8185(
struct net_device *dev,
u8 btWirelessMode
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
//PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
u8 btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if( (btWirelessMode & btSupportedWirelessMode) == 0 )
{ // Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko.
DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
btWirelessMode, btSupportedWirelessMode);
return;
}
// 1. Assign wireless mode to swtich if necessary.
if (btWirelessMode == WIRELESS_MODE_AUTO)
{
if((btSupportedWirelessMode & WIRELESS_MODE_A))
{
btWirelessMode = WIRELESS_MODE_A;
}
else if((btSupportedWirelessMode & WIRELESS_MODE_G))
{
btWirelessMode = WIRELESS_MODE_G;
}
else if((btSupportedWirelessMode & WIRELESS_MODE_B))
{
btWirelessMode = WIRELESS_MODE_B;
}
else
{
DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
btSupportedWirelessMode);
btWirelessMode = WIRELESS_MODE_B;
}
}
// 2. Swtich band: RF or BB specific actions,
// for example, refresh tables in omc8255, or change initial gain if necessary.
switch(priv->rf_chip)
{
case RF_ZEBRA2:
case RF_ZEBRA4:
{
// Nothing to do for Zebra to switch band.
// Update current wireless mode if we swtich to specified band successfully.
ieee->mode = (WIRELESS_MODE)btWirelessMode;
}
break;
default:
DMESGW("ActSetWirelessMode8185(): unsupported RF: 0x%X !!!\n", priv->rf_chip);
break;
}
// 3. Change related setting.
if( ieee->mode == WIRELESS_MODE_A ){
DMESG("WIRELESS_MODE_A\n");
}
else if( ieee->mode == WIRELESS_MODE_B ){
DMESG("WIRELESS_MODE_B\n");
}
else if( ieee->mode == WIRELESS_MODE_G ){
DMESG("WIRELESS_MODE_G\n");
}
ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
}
void rtl8185b_irq_enable(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
priv->irq_enabled = 1;
write_nic_dword(dev, IMR, priv->IntrMask);
}
//by amy for power save
void
DrvIFIndicateDisassociation(
struct net_device *dev,
u16 reason
)
{
//printk("==> DrvIFIndicateDisassociation()\n");
// nothing is needed after disassociation request.
//printk("<== DrvIFIndicateDisassociation()\n");
}
void
MgntDisconnectIBSS(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u8 i;
//printk("XXXXXXXXXX MgntDisconnect IBSS\n");
DrvIFIndicateDisassociation(dev, unspec_reason);
// PlatformZeroMemory( pMgntInfo->Bssid, 6 );
for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x55;
priv->ieee80211->state = IEEE80211_NOLINK;
//Stop Beacon.
// Vista add a Adhoc profile, HW radio off untill OID_DOT11_RESET_REQUEST
// Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
// Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
// Disable Beacon Queue Own bit, suggested by jong
// Adapter->HalFunc.SetTxDescOWNHandler(Adapter, BEACON_QUEUE, 0, 0);
ieee80211_stop_send_beacons(priv->ieee80211);
priv->ieee80211->link_change(dev);
notify_wx_assoc_event(priv->ieee80211);
// Stop SW Beacon.Use hw beacon so do not need to do so.by amy
// MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE );
}
void
MlmeDisassociateRequest(
struct net_device *dev,
u8* asSta,
u8 asRsn
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u8 i;
SendDisassociation(priv->ieee80211, asSta, asRsn );
if( memcmp(priv->ieee80211->current_network.bssid, asSta, 6 ) == 0 ){
//ShuChen TODO: change media status.
//ShuChen TODO: What to do when disassociate.
DrvIFIndicateDisassociation(dev, unspec_reason);
// pMgntInfo->AsocTimestamp = 0;
for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x22;
// pMgntInfo->mBrates.Length = 0;
// Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) );
ieee80211_disassociate(priv->ieee80211);
}
}
void
MgntDisconnectAP(
struct net_device *dev,
u8 asRsn
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
//
// Commented out by rcnjko, 2005.01.27:
// I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
//
// //2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
// SecClearAllKeys(Adapter);
// In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
#ifdef TODO
if( pMgntInfo->SecurityInfo.AuthMode > RT_802_11AuthModeAutoSwitch ||
(pMgntInfo->bAPSuportCCKM && pMgntInfo->bCCX8021xenable) ) // In CCKM mode will Clear key
{
SecClearAllKeys(Adapter);
RT_TRACE(COMP_SEC, DBG_LOUD,("======>CCKM clear key..."))
}
#endif
// 2004.10.11, by rcnjko.
//MlmeDisassociateRequest( Adapter, pMgntInfo->Bssid, disas_lv_ss );
MlmeDisassociateRequest( dev, priv->ieee80211->current_network.bssid, asRsn );
priv->ieee80211->state = IEEE80211_NOLINK;
// pMgntInfo->AsocTimestamp = 0;
}
bool
MgntDisconnect(
struct net_device *dev,
u8 asRsn
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
//
// Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
//
#ifdef TODO
if(pMgntInfo->mPss != eAwake)
{
//
// Using AwkaeTimer to prevent mismatch ps state.
// In the timer the state will be changed according to the RF is being awoke or not. By Bruce, 2007-10-31.
//
// PlatformScheduleWorkItem( &(pMgntInfo->AwakeWorkItem) );
PlatformSetTimer( Adapter, &(pMgntInfo->AwakeTimer), 0 );
}
#endif
// Indication of disassociation event.
//DrvIFIndicateDisassociation(Adapter, asRsn);
if(IS_DOT11D_ENABLE(priv->ieee80211))
Dot11d_Reset(priv->ieee80211);
// In adhoc mode, update beacon frame.
if( priv->ieee80211->state == IEEE80211_LINKED )
{
if( priv->ieee80211->iw_mode == IW_MODE_ADHOC )
{
// RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectIBSS\n"));
//printk("MgntDisconnect() ===> MgntDisconnectIBSS\n");
MgntDisconnectIBSS(dev);
}
if( priv->ieee80211->iw_mode == IW_MODE_INFRA )
{
// We clear key here instead of MgntDisconnectAP() because that
// MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
// e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
// used to handle disassociation related things to AP, e.g. send Disassoc
// frame to AP. 2005.01.27, by rcnjko.
// SecClearAllKeys(Adapter);
// RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectAP\n"));
//printk("MgntDisconnect() ===> MgntDisconnectAP\n");
MgntDisconnectAP(dev, asRsn);
}
// Inidicate Disconnect, 2005.02.23, by rcnjko.
// MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE);
}
return true;
}
//
// Description:
// Chang RF Power State.
// Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
//
// Assumption:
// PASSIVE LEVEL.
//
bool
SetRFPowerState(
struct net_device *dev,
RT_RF_POWER_STATE eRFPowerState
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bResult = false;
// printk("---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState);
if(eRFPowerState == priv->eRFPowerState)
{
// printk("<--------- SetRFPowerState(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState);
return bResult;
}
switch(priv->rf_chip)
{
case RF_ZEBRA2:
case RF_ZEBRA4:
bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
break;
default:
printk("SetRFPowerState8185(): unknown RFChipID: 0x%X!!!\n", priv->rf_chip);
break;;
}
// printk("<--------- SetRFPowerState(): bResult(%d)\n", bResult);
return bResult;
}
void
HalEnableRx8185Dummy(
struct net_device *dev
)
{
}
void
HalDisableRx8185Dummy(
struct net_device *dev
)
{
}
bool
MgntActSet_RF_State(
struct net_device *dev,
RT_RF_POWER_STATE StateToSet,
u32 ChangeSource
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bActionAllowed = false;
bool bConnectBySSID = false;
RT_RF_POWER_STATE rtState;
u16 RFWaitCounter = 0;
unsigned long flag;
// printk("===>MgntActSet_RF_State(): StateToSet(%d), ChangeSource(0x%x)\n",StateToSet, ChangeSource);
//
// Prevent the race condition of RF state change. By Bruce, 2007-11-28.
// Only one thread can change the RF state at one time, and others should wait to be executed.
//
#if 1
while(true)
{
// down(&priv->rf_state);
spin_lock_irqsave(&priv->rf_ps_lock,flag);
if(priv->RFChangeInProgress)
{
// printk("====================>haha111111111\n");
// up(&priv->rf_state);
// RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): RF Change in progress! Wait to set..StateToSet(%d).\n", StateToSet));
spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
// Set RF after the previous action is done.
while(priv->RFChangeInProgress)
{
RFWaitCounter ++;
// RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Wait 1 ms (%d times)...\n", RFWaitCounter));
udelay(1000); // 1 ms
// Wait too long, return FALSE to avoid to be stuck here.
if(RFWaitCounter > 1000) // 1sec
{
// RT_ASSERT(FALSE, ("MgntActSet_RF_State(): Wait too logn to set RF\n"));
printk("MgntActSet_RF_State(): Wait too long to set RF\n");
// TODO: Reset RF state?
return false;
}
}
}
else
{
// printk("========================>haha2\n");
priv->RFChangeInProgress = true;
// up(&priv->rf_state);
spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
break;
}
}
#endif
rtState = priv->eRFPowerState;
switch(StateToSet)
{
case eRfOn:
//
// Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
// the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
//
priv->RfOffReason &= (~ChangeSource);
if(! priv->RfOffReason)
{
priv->RfOffReason = 0;
bActionAllowed = true;
if(rtState == eRfOff && ChangeSource >=RF_CHANGE_BY_HW && !priv->bInHctTest)
{
bConnectBySSID = true;
}
}
else
// RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State - eRfon reject pMgntInfo->RfOffReason= 0x%x, ChangeSource=0x%X\n", pMgntInfo->RfOffReason, ChangeSource));
;
break;
case eRfOff:
// 070125, rcnjko: we always keep connected in AP mode.
if (priv->RfOffReason > RF_CHANGE_BY_IPS)
{
//
// 060808, Annie:
// Disconnect to current BSS when radio off. Asked by QuanTa.
//
//
// Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
// because we do NOT need to set ssid to dummy ones.
// Revised by Roger, 2007.12.04.
//
MgntDisconnect( dev, disas_lv_ss );
// Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI.
// 2007.05.28, by shien chang.
// PlatformZeroMemory( pMgntInfo->bssDesc, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
// pMgntInfo->NumBssDesc = 0;
// PlatformZeroMemory( pMgntInfo->bssDesc4Query, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
// pMgntInfo->NumBssDesc4Query = 0;
}
priv->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
case eRfSleep:
priv->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
default:
break;
}
if(bActionAllowed)
{
// RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, pMgntInfo->RfOffReason));
// Config HW to the specified mode.
// printk("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, priv->RfOffReason);
SetRFPowerState(dev, StateToSet);
// Turn on RF.
if(StateToSet == eRfOn)
{
HalEnableRx8185Dummy(dev);
if(bConnectBySSID)
{
// by amy not supported
// MgntActSet_802_11_SSID(Adapter, Adapter->MgntInfo.Ssid.Octet, Adapter->MgntInfo.Ssid.Length, TRUE );
}
}
// Turn off RF.
else if(StateToSet == eRfOff)
{
HalDisableRx8185Dummy(dev);
}
}
else
{
// printk("MgntActSet_RF_State(): Action is rejected.... StateToSet(%d), ChangeSource(%#X), RfOffReason(%#X)\n", StateToSet, ChangeSource, priv->RfOffReason);
}
// Release RF spinlock
// down(&priv->rf_state);
spin_lock_irqsave(&priv->rf_ps_lock,flag);
priv->RFChangeInProgress = false;
// up(&priv->rf_state);
spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
// printk("<===MgntActSet_RF_State()\n");
return bActionAllowed;
}
void
InactivePowerSave(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
//u8 index = 0;
//
// This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
// is really scheduled.
// The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
// previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
// blocks the IPS procedure of switching RF.
// By Bruce, 2007-12-25.
//
priv->bSwRfProcessing = true;
MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);
//
// To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
//
priv->bSwRfProcessing = false;
}
//
// Description:
// Enter the inactive power save mode. RF will be off
// 2007.08.17, by shien chang.
//
void
IPSEnter(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState;
//printk("==============================>enter IPS\n");
if (priv->bInactivePs)
{
rtState = priv->eRFPowerState;
//
// Added by Bruce, 2007-12-25.
// Do not enter IPS in the following conditions:
// (1) RF is already OFF or Sleep
// (2) bSwRfProcessing (indicates the IPS is still under going)
// (3) Connectted (only disconnected can trigger IPS)
// (4) IBSS (send Beacon)
// (5) AP mode (send Beacon)
//
if (rtState == eRfOn && !priv->bSwRfProcessing
&& (priv->ieee80211->state != IEEE80211_LINKED ))
{
// printk("IPSEnter(): Turn off RF.\n");
priv->eInactivePowerState = eRfOff;
InactivePowerSave(dev);
}
}
// printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
}
void
IPSLeave(
struct net_device *dev
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState;
//printk("===================================>leave IPS\n");
if (priv->bInactivePs)
{
rtState = priv->eRFPowerState;
if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS)
{
// printk("IPSLeave(): Turn on RF.\n");
priv->eInactivePowerState = eRfOn;
InactivePowerSave(dev);
}
}
// printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
}
//by amy for power save
void rtl8185b_adapter_start(struct net_device *dev)
{
struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
u8 SupportedWirelessMode;
u8 InitWirelessMode;
u8 bInvalidWirelessMode = 0;
//int i;
u8 tmpu8;
//u8 u1tmp,u2tmp;
u8 btCR9346;
u8 TmpU1b;
u8 btPSR;
//rtl8180_rtx_disable(dev);
//{by amy 080312
write_nic_byte(dev,0x24e, (BIT5|BIT6|BIT0));
//by amy 080312}
rtl8180_reset(dev);
priv->dma_poll_mask = 0;
priv->dma_poll_stop_mask = 0;
//rtl8180_beacon_tx_disable(dev);
HwConfigureRTL8185(dev);
write_nic_dword(dev, MAC0, ((u32*)dev->dev_addr)[0]);
write_nic_word(dev, MAC4, ((u32*)dev->dev_addr)[1] & 0xffff );
write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3); // default network type to 'No Link'
//write_nic_byte(dev, BRSR, 0x0); // Set BRSR= 1M
write_nic_word(dev, BcnItv, 100);
write_nic_word(dev, AtimWnd, 2);
//PlatformEFIOWrite2Byte(dev, FEMR, 0xFFFF);
PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);
write_nic_byte(dev, WPA_CONFIG, 0);
MacConfig_85BASIC(dev);
// Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko.
// BT_DEMO_BOARD type
PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
//by amy
//#ifdef CONFIG_RTL818X_S
// for jong required
// PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);
//#endif
//by amy
//BT_QA_BOARD
//PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);
//-----------------------------------------------------------------------------
// Set up PHY related.
//-----------------------------------------------------------------------------
// Enable Config3.PARAM_En to revise AnaaParm.
write_nic_byte(dev, CR9346, 0xc0); // enable config register write
//by amy
tmpu8 = read_nic_byte(dev, CONFIG3);
write_nic_byte(dev, CONFIG3, (tmpu8 |CONFIG3_PARM_En) );
//by amy
// Turn on Analog power.
// Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko.
write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
//by amy
write_nic_word(dev, ANAPARAM3, 0x0010);
//by amy
write_nic_byte(dev, CONFIG3, tmpu8);
write_nic_byte(dev, CR9346, 0x00);
//{by amy 080312 for led
// enable EEM0 and EEM1 in 9346CR
btCR9346 = read_nic_byte(dev, CR9346);
write_nic_byte(dev, CR9346, (btCR9346|0xC0) );
// B cut use LED1 to control HW RF on/off
TmpU1b = read_nic_byte(dev, CONFIG5);
TmpU1b = TmpU1b & ~BIT3;
write_nic_byte(dev,CONFIG5, TmpU1b);
// disable EEM0 and EEM1 in 9346CR
btCR9346 &= ~(0xC0);
write_nic_byte(dev, CR9346, btCR9346);
//Enable Led (suggested by Jong)
// B-cut RF Radio on/off 5e[3]=0
btPSR = read_nic_byte(dev, PSR);
write_nic_byte(dev, PSR, (btPSR | BIT3));
//by amy 080312 for led}
// setup initial timing for RFE.
write_nic_word(dev, RFPinsOutput, 0x0480);
SetOutputEnableOfRfPins(dev);
write_nic_word(dev, RFPinsSelect, 0x2488);
// PHY config.
PhyConfig8185(dev);
// We assume RegWirelessMode has already been initialized before,
// however, we has to validate the wireless mode here and provide a reasonble
// initialized value if necessary. 2005.01.13, by rcnjko.
SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if( (ieee->mode != WIRELESS_MODE_B) &&
(ieee->mode != WIRELESS_MODE_G) &&
(ieee->mode != WIRELESS_MODE_A) &&
(ieee->mode != WIRELESS_MODE_AUTO))
{ // It should be one of B, G, A, or AUTO.
bInvalidWirelessMode = 1;
}
else
{ // One of B, G, A, or AUTO.
// Check if the wireless mode is supported by RF.
if( (ieee->mode != WIRELESS_MODE_AUTO) &&
(ieee->mode & SupportedWirelessMode) == 0 )
{
bInvalidWirelessMode = 1;
}
}
if(bInvalidWirelessMode || ieee->mode==WIRELESS_MODE_AUTO)
{ // Auto or other invalid value.
// Assigne a wireless mode to initialize.
if((SupportedWirelessMode & WIRELESS_MODE_A))
{
InitWirelessMode = WIRELESS_MODE_A;
}
else if((SupportedWirelessMode & WIRELESS_MODE_G))
{
InitWirelessMode = WIRELESS_MODE_G;
}
else if((SupportedWirelessMode & WIRELESS_MODE_B))
{
InitWirelessMode = WIRELESS_MODE_B;
}
else
{
DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
SupportedWirelessMode);
InitWirelessMode = WIRELESS_MODE_B;
}
// Initialize RegWirelessMode if it is not a valid one.
if(bInvalidWirelessMode)
{
ieee->mode = (WIRELESS_MODE)InitWirelessMode;
}
}
else
{ // One of B, G, A.
InitWirelessMode = ieee->mode;
}
//by amy for power save
// printk("initialize ENABLE_IPS\n");
priv->eRFPowerState = eRfOff;
priv->RfOffReason = 0;
{
// u32 tmp2;
// u32 tmp = jiffies;
MgntActSet_RF_State(dev, eRfOn, 0);
// tmp2 = jiffies;
// printk("rf on cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);
}
// DrvIFIndicateCurrentPhyStatus(priv);
//
// If inactive power mode is enabled, disable rf while in disconnected state.
// 2007.07.16, by shien chang.
//
if (priv->bInactivePs)
{
// u32 tmp2;
// u32 tmp = jiffies;
MgntActSet_RF_State(dev,eRfOff, RF_CHANGE_BY_IPS);
// tmp2 = jiffies;
// printk("rf off cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);
}
// IPSEnter(dev);
//by amy for power save
#ifdef TODO
// Turn off RF if necessary. 2005.08.23, by rcnjko.
// We shall turn off RF after setting CMDR, otherwise,
// RF will be turnned on after we enable MAC Tx/Rx.
if(Adapter->MgntInfo.RegRfOff == TRUE)
{
SetRFPowerState8185(Adapter, RF_OFF);
}
else
{
SetRFPowerState8185(Adapter, RF_ON);
}
#endif
/* //these is equal with above TODO.
write_nic_byte(dev, CR9346, 0xc0); // enable config register write
write_nic_byte(dev, CONFIG3, read_nic_byte(dev, CONFIG3) | CONFIG3_PARM_En);
RF_WriteReg(dev, 0x4, 0x9FF);
write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
write_nic_byte(dev, CONFIG3, (read_nic_byte(dev, CONFIG3)&(~CONFIG3_PARM_En)));
write_nic_byte(dev, CR9346, 0x00);
*/
ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));
//-----------------------------------------------------------------------------
rtl8185b_irq_enable(dev);
netif_start_queue(dev);
}
void rtl8185b_rx_enable(struct net_device *dev)
{
u8 cmd;
//u32 rxconf;
/* for now we accept data, management & ctl frame*/
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
if (dev->flags & IFF_PROMISC) DMESG ("NIC in promisc mode");
if(priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
dev->flags & IFF_PROMISC){
priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
}
/*if(priv->ieee80211->iw_mode == IW_MODE_MASTER){
rxconf = rxconf | (1<<ACCEPT_ALLMAC_FRAME_SHIFT);
rxconf = rxconf | (1<<RX_CHECK_BSSID_SHIFT);
}*/
if(priv->ieee80211->iw_mode == IW_MODE_MONITOR){
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
}
if( priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;
write_nic_dword(dev, RCR, priv->ReceiveConfig);
fix_rx_fifo(dev);
#ifdef DEBUG_RX
DMESG("rxconf: %x %x",priv->ReceiveConfig ,read_nic_dword(dev,RCR));
#endif
cmd=read_nic_byte(dev,CMD);
write_nic_byte(dev,CMD,cmd | (1<<CMD_RX_ENABLE_SHIFT));
}
void rtl8185b_tx_enable(struct net_device *dev)
{
u8 cmd;
//u8 tx_agc_ctl;
u8 byte;
//u32 txconf;
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
write_nic_dword(dev, TCR, priv->TransmitConfig);
byte = read_nic_byte(dev, MSR);
byte |= MSR_LINK_ENEDCA;
write_nic_byte(dev, MSR, byte);
fix_tx_fifo(dev);
#ifdef DEBUG_TX
DMESG("txconf: %x %x",priv->TransmitConfig,read_nic_dword(dev,TCR));
#endif
cmd=read_nic_byte(dev,CMD);
write_nic_byte(dev,CMD,cmd | (1<<CMD_TX_ENABLE_SHIFT));
//write_nic_dword(dev,TX_CONF,txconf);
/*
rtl8180_set_mode(dev,EPROM_CMD_CONFIG);
write_nic_byte(dev, TX_DMA_POLLING, priv->dma_poll_mask);
rtl8180_set_mode(dev,EPROM_CMD_NORMAL);
*/
}