blob: be42f7aaa37dd899ad32929fe4cc98e3854031dd [file] [log] [blame] [edit]
/*
* Copyright (c) 2007-2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* */
/* Module Name : ctkip.c */
/* */
/* Abstract */
/* This module contains Tx and Rx functions. */
/* */
/* NOTES */
/* None */
/* */
/************************************************************************/
#include "cprecomp.h"
u16_t zgTkipSboxLower[256] =
{
0xA5,0x84,0x99,0x8D,0x0D,0xBD,0xB1,0x54,
0x50,0x03,0xA9,0x7D,0x19,0x62,0xE6,0x9A,
0x45,0x9D,0x40,0x87,0x15,0xEB,0xC9,0x0B,
0xEC,0x67,0xFD,0xEA,0xBF,0xF7,0x96,0x5B,
0xC2,0x1C,0xAE,0x6A,0x5A,0x41,0x02,0x4F,
0x5C,0xF4,0x34,0x08,0x93,0x73,0x53,0x3F,
0x0C,0x52,0x65,0x5E,0x28,0xA1,0x0F,0xB5,
0x09,0x36,0x9B,0x3D,0x26,0x69,0xCD,0x9F,
0x1B,0x9E,0x74,0x2E,0x2D,0xB2,0xEE,0xFB,
0xF6,0x4D,0x61,0xCE,0x7B,0x3E,0x71,0x97,
0xF5,0x68,0x00,0x2C,0x60,0x1F,0xC8,0xED,
0xBE,0x46,0xD9,0x4B,0xDE,0xD4,0xE8,0x4A,
0x6B,0x2A,0xE5,0x16,0xC5,0xD7,0x55,0x94,
0xCF,0x10,0x06,0x81,0xF0,0x44,0xBA,0xE3,
0xF3,0xFE,0xC0,0x8A,0xAD,0xBC,0x48,0x04,
0xDF,0xC1,0x75,0x63,0x30,0x1A,0x0E,0x6D,
0x4C,0x14,0x35,0x2F,0xE1,0xA2,0xCC,0x39,
0x57,0xF2,0x82,0x47,0xAC,0xE7,0x2B,0x95,
0xA0,0x98,0xD1,0x7F,0x66,0x7E,0xAB,0x83,
0xCA,0x29,0xD3,0x3C,0x79,0xE2,0x1D,0x76,
0x3B,0x56,0x4E,0x1E,0xDB,0x0A,0x6C,0xE4,
0x5D,0x6E,0xEF,0xA6,0xA8,0xA4,0x37,0x8B,
0x32,0x43,0x59,0xB7,0x8C,0x64,0xD2,0xE0,
0xB4,0xFA,0x07,0x25,0xAF,0x8E,0xE9,0x18,
0xD5,0x88,0x6F,0x72,0x24,0xF1,0xC7,0x51,
0x23,0x7C,0x9C,0x21,0xDD,0xDC,0x86,0x85,
0x90,0x42,0xC4,0xAA,0xD8,0x05,0x01,0x12,
0xA3,0x5F,0xF9,0xD0,0x91,0x58,0x27,0xB9,
0x38,0x13,0xB3,0x33,0xBB,0x70,0x89,0xA7,
0xB6,0x22,0x92,0x20,0x49,0xFF,0x78,0x7A,
0x8F,0xF8,0x80,0x17,0xDA,0x31,0xC6,0xB8,
0xC3,0xB0,0x77,0x11,0xCB,0xFC,0xD6,0x3A
};
u16_t zgTkipSboxUpper[256] =
{
0xC6,0xF8,0xEE,0xF6,0xFF,0xD6,0xDE,0x91,
0x60,0x02,0xCE,0x56,0xE7,0xB5,0x4D,0xEC,
0x8F,0x1F,0x89,0xFA,0xEF,0xB2,0x8E,0xFB,
0x41,0xB3,0x5F,0x45,0x23,0x53,0xE4,0x9B,
0x75,0xE1,0x3D,0x4C,0x6C,0x7E,0xF5,0x83,
0x68,0x51,0xD1,0xF9,0xE2,0xAB,0x62,0x2A,
0x08,0x95,0x46,0x9D,0x30,0x37,0x0A,0x2F,
0x0E,0x24,0x1B,0xDF,0xCD,0x4E,0x7F,0xEA,
0x12,0x1D,0x58,0x34,0x36,0xDC,0xB4,0x5B,
0xA4,0x76,0xB7,0x7D,0x52,0xDD,0x5E,0x13,
0xA6,0xB9,0x00,0xC1,0x40,0xE3,0x79,0xB6,
0xD4,0x8D,0x67,0x72,0x94,0x98,0xB0,0x85,
0xBB,0xC5,0x4F,0xED,0x86,0x9A,0x66,0x11,
0x8A,0xE9,0x04,0xFE,0xA0,0x78,0x25,0x4B,
0xA2,0x5D,0x80,0x05,0x3F,0x21,0x70,0xF1,
0x63,0x77,0xAF,0x42,0x20,0xE5,0xFD,0xBF,
0x81,0x18,0x26,0xC3,0xBE,0x35,0x88,0x2E,
0x93,0x55,0xFC,0x7A,0xC8,0xBA,0x32,0xE6,
0xC0,0x19,0x9E,0xA3,0x44,0x54,0x3B,0x0B,
0x8C,0xC7,0x6B,0x28,0xA7,0xBC,0x16,0xAD,
0xDB,0x64,0x74,0x14,0x92,0x0C,0x48,0xB8,
0x9F,0xBD,0x43,0xC4,0x39,0x31,0xD3,0xF2,
0xD5,0x8B,0x6E,0xDA,0x01,0xB1,0x9C,0x49,
0xD8,0xAC,0xF3,0xCF,0xCA,0xF4,0x47,0x10,
0x6F,0xF0,0x4A,0x5C,0x38,0x57,0x73,0x97,
0xCB,0xA1,0xE8,0x3E,0x96,0x61,0x0D,0x0F,
0xE0,0x7C,0x71,0xCC,0x90,0x06,0xF7,0x1C,
0xC2,0x6A,0xAE,0x69,0x17,0x99,0x3A,0x27,
0xD9,0xEB,0x2B,0x22,0xD2,0xA9,0x07,0x33,
0x2D,0x3C,0x15,0xC9,0x87,0xAA,0x50,0xA5,
0x03,0x59,0x09,0x1A,0x65,0xD7,0x84,0xD0,
0x82,0x29,0x5A,0x1E,0x7B,0xA8,0x6D,0x2C
};
u16_t zfrotr1(u16_t a)
// rotate right by 1 bit.
{
u16_t b;
if (a & 0x01)
{
b = (a >> 1) | 0x8000;
}
else
{
b = (a >> 1) & 0x7fff;
}
return b;
}
/*************************************************************/
/* zfTkipSbox() */
/* Returns a 16 bit value from a 64K entry table. The Table */
/* is synthesized from two 256 entry byte wide tables. */
/*************************************************************/
u16_t zfTkipSbox(u16_t index)
{
u16_t low;
u16_t high;
u16_t left, right;
low = (index & 0xFF);
high = ((index >> 8) & 0xFF);
left = zgTkipSboxLower[low] + (zgTkipSboxUpper[low] << 8 );
right = zgTkipSboxUpper[high] + (zgTkipSboxLower[high] << 8 );
return (left ^ right);
}
u8_t zfTkipPhase1KeyMix(u32_t iv32, struct zsTkipSeed* pSeed)
{
u16_t tsc0;
u16_t tsc1;
u16_t i, j;
#if 0
/* Need not proceed this function with the same iv32 */
if ( iv32 == pSeed->iv32 )
{
return 1;
}
#endif
tsc0 = (u16_t) ((iv32 >> 16) & 0xffff); /* msb */
tsc1 = (u16_t) (iv32 & 0xffff);
/* Phase 1, step 1 */
pSeed->ttak[0] = tsc1;
pSeed->ttak[1] = tsc0;
pSeed->ttak[2] = (u16_t) (pSeed->ta[0] + (pSeed->ta[1] <<8));
pSeed->ttak[3] = (u16_t) (pSeed->ta[2] + (pSeed->ta[3] <<8));
pSeed->ttak[4] = (u16_t) (pSeed->ta[4] + (pSeed->ta[5] <<8));
/* Phase 1, step 2 */
for (i=0; i<8; i++)
{
j = 2*(i & 1);
pSeed->ttak[0] =(pSeed->ttak[0] + zfTkipSbox(pSeed->ttak[4]
^ ZM_BYTE_TO_WORD(pSeed->tk[1+j], pSeed->tk[j])))
& 0xffff;
pSeed->ttak[1] =(pSeed->ttak[1] + zfTkipSbox(pSeed->ttak[0]
^ ZM_BYTE_TO_WORD(pSeed->tk[5+j], pSeed->tk[4+j] )))
& 0xffff;
pSeed->ttak[2] =(pSeed->ttak[2] + zfTkipSbox(pSeed->ttak[1]
^ ZM_BYTE_TO_WORD(pSeed->tk[9+j], pSeed->tk[8+j] )))
& 0xffff;
pSeed->ttak[3] =(pSeed->ttak[3] + zfTkipSbox(pSeed->ttak[2]
^ ZM_BYTE_TO_WORD(pSeed->tk[13+j], pSeed->tk[12+j])))
& 0xffff;
pSeed->ttak[4] =(pSeed->ttak[4] + zfTkipSbox(pSeed->ttak[3]
^ ZM_BYTE_TO_WORD(pSeed->tk[1+j], pSeed->tk[j] )))
& 0xffff;
pSeed->ttak[4] =(pSeed->ttak[4] + i) & 0xffff;
}
if ( iv32 == (pSeed->iv32+1) )
{
pSeed->iv32tmp = iv32;
return 1;
}
return 0;
}
u8_t zfTkipPhase2KeyMix(u16_t iv16, struct zsTkipSeed* pSeed)
{
u16_t tsc2;
tsc2 = iv16;
/* Phase 2, Step 1 */
pSeed->ppk[0] = pSeed->ttak[0];
pSeed->ppk[1] = pSeed->ttak[1];
pSeed->ppk[2] = pSeed->ttak[2];
pSeed->ppk[3] = pSeed->ttak[3];
pSeed->ppk[4] = pSeed->ttak[4];
pSeed->ppk[5] = (pSeed->ttak[4] + tsc2) & 0xffff;
/* Phase2, Step 2 */
pSeed->ppk[0] = pSeed->ppk[0]
+ zfTkipSbox(pSeed->ppk[5] ^ ZM_BYTE_TO_WORD(pSeed->tk[1],pSeed->tk[0]));
pSeed->ppk[1] = pSeed->ppk[1]
+ zfTkipSbox(pSeed->ppk[0] ^ ZM_BYTE_TO_WORD(pSeed->tk[3],pSeed->tk[2]));
pSeed->ppk[2] = pSeed->ppk[2]
+ zfTkipSbox(pSeed->ppk[1] ^ ZM_BYTE_TO_WORD(pSeed->tk[5],pSeed->tk[4]));
pSeed->ppk[3] = pSeed->ppk[3]
+ zfTkipSbox(pSeed->ppk[2] ^ ZM_BYTE_TO_WORD(pSeed->tk[7],pSeed->tk[6]));
pSeed->ppk[4] = pSeed->ppk[4]
+ zfTkipSbox(pSeed->ppk[3] ^ ZM_BYTE_TO_WORD(pSeed->tk[9],pSeed->tk[8]));
pSeed->ppk[5] = pSeed->ppk[5]
+ zfTkipSbox(pSeed->ppk[4] ^ ZM_BYTE_TO_WORD(pSeed->tk[11],pSeed->tk[10]));
pSeed->ppk[0] = pSeed->ppk[0]
+ zfrotr1(pSeed->ppk[5] ^ ZM_BYTE_TO_WORD(pSeed->tk[13],pSeed->tk[12]));
pSeed->ppk[1] = pSeed->ppk[1]
+ zfrotr1(pSeed->ppk[0] ^ ZM_BYTE_TO_WORD(pSeed->tk[15],pSeed->tk[14]));
pSeed->ppk[2] = pSeed->ppk[2] + zfrotr1(pSeed->ppk[1]);
pSeed->ppk[3] = pSeed->ppk[3] + zfrotr1(pSeed->ppk[2]);
pSeed->ppk[4] = pSeed->ppk[4] + zfrotr1(pSeed->ppk[3]);
pSeed->ppk[5] = pSeed->ppk[5] + zfrotr1(pSeed->ppk[4]);
if (iv16 == 0)
{
if (pSeed->iv16 == 0xffff)
{
pSeed->iv16tmp=0;
return 1;
}
else
return 0;
}
else if (iv16 == (pSeed->iv16+1))
{
pSeed->iv16tmp = iv16;
return 1;
}
else
return 0;
}
void zfTkipInit(u8_t* key, u8_t* ta, struct zsTkipSeed* pSeed, u8_t* initIv)
{
u16_t iv16;
u32_t iv32;
u16_t i;
/* clear memory */
zfZeroMemory((u8_t*) pSeed, sizeof(struct zsTkipSeed));
/* set key to seed */
zfMemoryCopy(pSeed->ta, ta, 6);
zfMemoryCopy(pSeed->tk, key, 16);
iv16 = *initIv++;
iv16 += *initIv<<8;
initIv++;
iv32=0;
for(i=0; i<4; i++) // initiv is little endian
{
iv32 += *initIv<<(i*8);
*initIv++;
}
pSeed->iv32 = iv32+1; // Force Recalculating on Tkip Phase1
zfTkipPhase1KeyMix(iv32, pSeed);
pSeed->iv16 = iv16;
pSeed->iv32 = iv32;
}
u32_t zfGetU32t(u8_t* p)
{
u32_t res=0;
u16_t i;
for( i=0; i<4; i++ )
{
res |= (*p++) << (8*i);
}
return res;
}
void zfPutU32t(u8_t* p, u32_t value)
{
u16_t i;
for(i=0; i<4; i++)
{
*p++ = (u8_t) (value & 0xff);
value >>= 8;
}
}
void zfMicClear(struct zsMicVar* pMic)
{
pMic->left = pMic->k0;
pMic->right = pMic->k1;
pMic->nBytes = 0;
pMic->m = 0;
}
void zfMicSetKey(u8_t* key, struct zsMicVar* pMic)
{
pMic->k0 = zfGetU32t(key);
pMic->k1 = zfGetU32t(key+4);
zfMicClear(pMic);
}
void zfMicAppendByte(u8_t b, struct zsMicVar* pMic)
{
// Append the byte to our word-sized buffer
pMic->m |= b << (8* pMic->nBytes);
pMic->nBytes++;
// Process the word if it is full.
if ( pMic->nBytes >= 4 )
{
pMic->left ^= pMic->m;
pMic->right ^= ZM_ROL32(pMic->left, 17 );
pMic->left += pMic->right;
pMic->right ^= ((pMic->left & 0xff00ff00) >> 8) |
((pMic->left & 0x00ff00ff) << 8);
pMic->left += pMic->right;
pMic->right ^= ZM_ROL32( pMic->left, 3 );
pMic->left += pMic->right;
pMic->right ^= ZM_ROR32( pMic->left, 2 );
pMic->left += pMic->right;
// Clear the buffer
pMic->m = 0;
pMic->nBytes = 0;
}
}
void zfMicGetMic(u8_t* dst, struct zsMicVar* pMic)
{
// Append the minimum padding
zfMicAppendByte(0x5a, pMic);
zfMicAppendByte(0, pMic);
zfMicAppendByte(0, pMic);
zfMicAppendByte(0, pMic);
zfMicAppendByte(0, pMic);
// and then zeroes until the length is a multiple of 4
while( pMic->nBytes != 0 )
{
zfMicAppendByte(0, pMic);
}
// The appendByte function has already computed the result.
zfPutU32t(dst, pMic->left);
zfPutU32t(dst+4, pMic->right);
// Reset to the empty message.
zfMicClear(pMic);
}
u8_t zfMicRxVerify(zdev_t* dev, zbuf_t* buf)
{
struct zsMicVar* pMicKey;
struct zsMicVar MyMicKey;
u8_t mic[8];
u8_t da[6];
u8_t sa[6];
u8_t bValue;
u16_t i, payloadOffset, tailOffset;
zmw_get_wlan_dev(dev);
/* need not check MIC if pMicKEy is equal to NULL */
if ( wd->wlanMode == ZM_MODE_AP )
{
pMicKey = zfApGetRxMicKey(dev, buf);
if ( pMicKey != NULL )
{
zfCopyFromRxBuffer(dev, buf, sa, ZM_WLAN_HEADER_A2_OFFSET, 6);
zfCopyFromRxBuffer(dev, buf, da, ZM_WLAN_HEADER_A3_OFFSET, 6);
}
else
{
return ZM_MIC_SUCCESS;
}
}
else if ( wd->wlanMode == ZM_MODE_INFRASTRUCTURE )
{
pMicKey = zfStaGetRxMicKey(dev, buf);
if ( pMicKey != NULL )
{
zfCopyFromRxBuffer(dev, buf, sa, ZM_WLAN_HEADER_A3_OFFSET, 6);
zfCopyFromRxBuffer(dev, buf, da, ZM_WLAN_HEADER_A1_OFFSET, 6);
}
else
{
return ZM_MIC_SUCCESS;
}
}
else
{
return ZM_MIC_SUCCESS;
}
MyMicKey.k0=pMicKey->k0;
MyMicKey.k1=pMicKey->k1;
pMicKey = &MyMicKey;
zfMicClear(pMicKey);
tailOffset = zfwBufGetSize(dev, buf);
tailOffset -= 8;
/* append DA */
for(i=0; i<6; i++)
{
zfMicAppendByte(da[i], pMicKey);
}
/* append SA */
for(i=0; i<6; i++)
{
zfMicAppendByte(sa[i], pMicKey);
}
/* append for alignment */
if ((zmw_rx_buf_readb(dev, buf, 0) & 0x80) != 0)
zfMicAppendByte(zmw_rx_buf_readb(dev, buf,24)&0x7, pMicKey);
else
zfMicAppendByte(0, pMicKey);
zfMicAppendByte(0, pMicKey);
zfMicAppendByte(0, pMicKey);
zfMicAppendByte(0, pMicKey);
/* append payload */
payloadOffset = ZM_SIZE_OF_WLAN_DATA_HEADER +
ZM_SIZE_OF_IV +
ZM_SIZE_OF_EXT_IV;
if ((zmw_rx_buf_readb(dev, buf, 0) & 0x80) != 0)
{
/* Qos Packet, Plcpheader + 2 */
if (wd->wlanMode == ZM_MODE_AP)
{
/* TODO : Rx Qos element offset in software MIC check */
}
else if (wd->wlanMode == ZM_MODE_INFRASTRUCTURE)
{
if (wd->sta.wmeConnected != 0)
{
payloadOffset += 2;
}
}
}
for(i=payloadOffset; i<tailOffset; i++)
{
bValue = zmw_rx_buf_readb(dev, buf, i);
zfMicAppendByte(bValue, pMicKey);
}
zfMicGetMic(mic, pMicKey);
if ( !zfRxBufferEqualToStr(dev, buf, mic, tailOffset, 8) )
{
return ZM_MIC_FAILURE;
}
return ZM_MIC_SUCCESS;
}
void zfTkipGetseeds(u16_t iv16, u8_t *RC4Key, struct zsTkipSeed *Seed)
{
RC4Key[0] = ZM_HI8(iv16);
RC4Key[1] = (ZM_HI8(iv16) | 0x20) & 0x7f;
RC4Key[2] = ZM_LO8(iv16);
RC4Key[3] = ((Seed->ppk[5] ^ ZM_BYTE_TO_WORD(Seed->tk[1],Seed->tk[0]))>>1) & 0xff;
RC4Key[4] = Seed->ppk[0] & 0xff;
RC4Key[5] = Seed->ppk[0] >> 8;
RC4Key[6] = Seed->ppk[1] & 0xff;
RC4Key[7] = Seed->ppk[1] >> 8;
RC4Key[8] = Seed->ppk[2] & 0xff;
RC4Key[9] = Seed->ppk[2] >> 8;
RC4Key[10] = Seed->ppk[3] & 0xff;
RC4Key[11] = Seed->ppk[3] >> 8;
RC4Key[12] = Seed->ppk[4] & 0xff;
RC4Key[13] = Seed->ppk[4] >> 8;
RC4Key[14] = Seed->ppk[5] & 0xff;
RC4Key[15] = Seed->ppk[5] >> 8;
}
void zfCalTxMic(zdev_t *dev, zbuf_t *buf, u8_t *snap, u16_t snapLen, u16_t offset, u16_t *da, u16_t *sa, u8_t up, u8_t *mic)
{
struct zsMicVar* pMicKey;
u16_t i;
u16_t len;
u8_t bValue;
u8_t qosType;
u8_t *pDa = (u8_t *)da;
u8_t *pSa = (u8_t *)sa;
zmw_get_wlan_dev(dev);
/* need not check MIC if pMicKEy is equal to NULL */
if ( wd->wlanMode == ZM_MODE_AP )
{
pMicKey = zfApGetTxMicKey(dev, buf, &qosType);
if ( pMicKey == NULL )
return;
}
else if ( wd->wlanMode == ZM_MODE_INFRASTRUCTURE )
{
pMicKey = zfStaGetTxMicKey(dev, buf);
if ( pMicKey == NULL )
{
zm_debug_msg0("pMicKey is NULL");
return;
}
}
else
{
return;
}
zfMicClear(pMicKey);
len = zfwBufGetSize(dev, buf);
/* append DA */
for(i = 0; i < 6; i++)
{
zfMicAppendByte(pDa[i], pMicKey);
}
/* append SA */
for(i = 0; i < 6; i++)
{
zfMicAppendByte(pSa[i], pMicKey);
}
if (up != 0)
zfMicAppendByte((up&0x7), pMicKey);
else
zfMicAppendByte(0, pMicKey);
zfMicAppendByte(0, pMicKey);
zfMicAppendByte(0, pMicKey);
zfMicAppendByte(0, pMicKey);
/* For Snap header */
for(i = 0; i < snapLen; i++)
{
zfMicAppendByte(snap[i], pMicKey);
}
for(i = offset; i < len; i++)
{
bValue = zmw_tx_buf_readb(dev, buf, i);
zfMicAppendByte(bValue, pMicKey);
}
zfMicGetMic(mic, pMicKey);
}
void zfTKIPEncrypt(zdev_t *dev, zbuf_t *buf, u8_t *snap, u16_t snapLen, u16_t offset, u8_t keyLen, u8_t* key, u32_t* icv)
{
u8_t iv[3];
iv[0] = key[0];
iv[1] = key[1];
iv[2] = key[2];
keyLen -= 3;
zfWEPEncrypt(dev, buf, snap, snapLen, offset, keyLen, &key[3], iv);
}
u16_t zfTKIPDecrypt(zdev_t *dev, zbuf_t *buf, u16_t offset, u8_t keyLen, u8_t* key)
{
u16_t ret = ZM_ICV_SUCCESS;
u8_t iv[3];
iv[0] = key[0];
iv[1] = key[1];
iv[2] = key[2];
keyLen -= 3;
ret = zfWEPDecrypt(dev, buf, offset, keyLen, &key[3], iv);
return ret;
}