blob: 10e21db57ac3d87143ad6dbb2f3a8ed16e8dcd15 [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
*------------------------------------------------------------------------------
*
* et1310_rx.c - Routines used to perform data reception
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include "et131x_version.h"
#include "et131x_defs.h"
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include "et1310_phy.h"
#include "et1310_pm.h"
#include "et1310_jagcore.h"
#include "et131x_adapter.h"
#include "et131x_initpci.h"
#include "et1310_rx.h"
void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd);
/**
* et131x_rx_dma_memory_alloc
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success and errno on failure (as defined in errno.h)
*
* Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
* and the Packet Status Ring.
*/
int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
{
uint32_t OuterLoop, InnerLoop;
uint32_t bufsize;
uint32_t pktStatRingSize, FBRChunkSize;
RX_RING_t *rx_ring;
/* Setup some convenience pointers */
rx_ring = (RX_RING_t *) &adapter->RxRing;
/* Alloc memory for the lookup table */
#ifdef USE_FBR0
rx_ring->Fbr[0] = kmalloc(sizeof(FBRLOOKUPTABLE), GFP_KERNEL);
#endif
rx_ring->Fbr[1] = kmalloc(sizeof(FBRLOOKUPTABLE), GFP_KERNEL);
/* The first thing we will do is configure the sizes of the buffer
* rings. These will change based on jumbo packet support. Larger
* jumbo packets increases the size of each entry in FBR0, and the
* number of entries in FBR0, while at the same time decreasing the
* number of entries in FBR1.
*
* FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
* entries are huge in order to accomodate a "jumbo" frame, then it
* will have less entries. Conversely, FBR1 will now be relied upon
* to carry more "normal" frames, thus it's entry size also increases
* and the number of entries goes up too (since it now carries
* "small" + "regular" packets.
*
* In this scheme, we try to maintain 512 entries between the two
* rings. Also, FBR1 remains a constant size - when it's size doubles
* the number of entries halves. FBR0 increases in size, however.
*/
if (adapter->RegistryJumboPacket < 2048) {
#ifdef USE_FBR0
rx_ring->Fbr0BufferSize = 256;
rx_ring->Fbr0NumEntries = 512;
#endif
rx_ring->Fbr1BufferSize = 2048;
rx_ring->Fbr1NumEntries = 512;
} else if (adapter->RegistryJumboPacket < 4096) {
#ifdef USE_FBR0
rx_ring->Fbr0BufferSize = 512;
rx_ring->Fbr0NumEntries = 1024;
#endif
rx_ring->Fbr1BufferSize = 4096;
rx_ring->Fbr1NumEntries = 512;
} else {
#ifdef USE_FBR0
rx_ring->Fbr0BufferSize = 1024;
rx_ring->Fbr0NumEntries = 768;
#endif
rx_ring->Fbr1BufferSize = 16384;
rx_ring->Fbr1NumEntries = 128;
}
#ifdef USE_FBR0
adapter->RxRing.PsrNumEntries = adapter->RxRing.Fbr0NumEntries +
adapter->RxRing.Fbr1NumEntries;
#else
adapter->RxRing.PsrNumEntries = adapter->RxRing.Fbr1NumEntries;
#endif
/* Allocate an area of memory for Free Buffer Ring 1 */
bufsize = (sizeof(FBR_DESC_t) * rx_ring->Fbr1NumEntries) + 0xfff;
rx_ring->pFbr1RingVa = pci_alloc_consistent(adapter->pdev,
bufsize,
&rx_ring->pFbr1RingPa);
if (!rx_ring->pFbr1RingVa) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Free Buffer Ring 1\n");
return -ENOMEM;
}
/* Save physical address
*
* NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here
* before storing the adjusted address.
*/
rx_ring->Fbr1Realpa = rx_ring->pFbr1RingPa;
/* Align Free Buffer Ring 1 on a 4K boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->Fbr1Realpa,
&rx_ring->Fbr1offset, 0x0FFF);
rx_ring->pFbr1RingVa = (void *)((uint8_t *) rx_ring->pFbr1RingVa +
rx_ring->Fbr1offset);
#ifdef USE_FBR0
/* Allocate an area of memory for Free Buffer Ring 0 */
bufsize = (sizeof(FBR_DESC_t) * rx_ring->Fbr0NumEntries) + 0xfff;
rx_ring->pFbr0RingVa = pci_alloc_consistent(adapter->pdev,
bufsize,
&rx_ring->pFbr0RingPa);
if (!rx_ring->pFbr0RingVa) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Free Buffer Ring 0\n");
return -ENOMEM;
}
/* Save physical address
*
* NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here before
* storing the adjusted address.
*/
rx_ring->Fbr0Realpa = rx_ring->pFbr0RingPa;
/* Align Free Buffer Ring 0 on a 4K boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->Fbr0Realpa,
&rx_ring->Fbr0offset, 0x0FFF);
rx_ring->pFbr0RingVa = (void *)((uint8_t *) rx_ring->pFbr0RingVa +
rx_ring->Fbr0offset);
#endif
for (OuterLoop = 0; OuterLoop < (rx_ring->Fbr1NumEntries / FBR_CHUNKS);
OuterLoop++) {
uint64_t Fbr1Offset;
uint64_t Fbr1TempPa;
uint32_t Fbr1Align;
/* This code allocates an area of memory big enough for N
* free buffers + (buffer_size - 1) so that the buffers can
* be aligned on 4k boundaries. If each buffer were aligned
* to a buffer_size boundary, the effect would be to double
* the size of FBR0. By allocating N buffers at once, we
* reduce this overhead.
*/
if (rx_ring->Fbr1BufferSize > 4096)
Fbr1Align = 4096;
else
Fbr1Align = rx_ring->Fbr1BufferSize;
FBRChunkSize =
(FBR_CHUNKS * rx_ring->Fbr1BufferSize) + Fbr1Align - 1;
rx_ring->Fbr1MemVa[OuterLoop] =
pci_alloc_consistent(adapter->pdev, FBRChunkSize,
&rx_ring->Fbr1MemPa[OuterLoop]);
if (!rx_ring->Fbr1MemVa[OuterLoop]) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
return -ENOMEM;
}
/* See NOTE in "Save Physical Address" comment above */
Fbr1TempPa = rx_ring->Fbr1MemPa[OuterLoop];
et131x_align_allocated_memory(adapter,
&Fbr1TempPa,
&Fbr1Offset, (Fbr1Align - 1));
for (InnerLoop = 0; InnerLoop < FBR_CHUNKS; InnerLoop++) {
uint32_t index = (OuterLoop * FBR_CHUNKS) + InnerLoop;
/* Save the Virtual address of this index for quick
* access later
*/
rx_ring->Fbr[1]->Va[index] =
(uint8_t *) rx_ring->Fbr1MemVa[OuterLoop] +
(InnerLoop * rx_ring->Fbr1BufferSize) + Fbr1Offset;
/* now store the physical address in the descriptor
* so the device can access it
*/
rx_ring->Fbr[1]->PAHigh[index] =
(uint32_t) (Fbr1TempPa >> 32);
rx_ring->Fbr[1]->PALow[index] = (uint32_t) Fbr1TempPa;
Fbr1TempPa += rx_ring->Fbr1BufferSize;
rx_ring->Fbr[1]->Buffer1[index] =
rx_ring->Fbr[1]->Va[index];
rx_ring->Fbr[1]->Buffer2[index] =
rx_ring->Fbr[1]->Va[index] - 4;
}
}
#ifdef USE_FBR0
/* Same for FBR0 (if in use) */
for (OuterLoop = 0; OuterLoop < (rx_ring->Fbr0NumEntries / FBR_CHUNKS);
OuterLoop++) {
uint64_t Fbr0Offset;
uint64_t Fbr0TempPa;
FBRChunkSize = ((FBR_CHUNKS + 1) * rx_ring->Fbr0BufferSize) - 1;
rx_ring->Fbr0MemVa[OuterLoop] =
pci_alloc_consistent(adapter->pdev, FBRChunkSize,
&rx_ring->Fbr0MemPa[OuterLoop]);
if (!rx_ring->Fbr0MemVa[OuterLoop]) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
return -ENOMEM;
}
/* See NOTE in "Save Physical Address" comment above */
Fbr0TempPa = rx_ring->Fbr0MemPa[OuterLoop];
et131x_align_allocated_memory(adapter,
&Fbr0TempPa,
&Fbr0Offset,
rx_ring->Fbr0BufferSize - 1);
for (InnerLoop = 0; InnerLoop < FBR_CHUNKS; InnerLoop++) {
uint32_t index = (OuterLoop * FBR_CHUNKS) + InnerLoop;
rx_ring->Fbr[0]->Va[index] =
(uint8_t *) rx_ring->Fbr0MemVa[OuterLoop] +
(InnerLoop * rx_ring->Fbr0BufferSize) + Fbr0Offset;
rx_ring->Fbr[0]->PAHigh[index] =
(uint32_t) (Fbr0TempPa >> 32);
rx_ring->Fbr[0]->PALow[index] = (uint32_t) Fbr0TempPa;
Fbr0TempPa += rx_ring->Fbr0BufferSize;
rx_ring->Fbr[0]->Buffer1[index] =
rx_ring->Fbr[0]->Va[index];
rx_ring->Fbr[0]->Buffer2[index] =
rx_ring->Fbr[0]->Va[index] - 4;
}
}
#endif
/* Allocate an area of memory for FIFO of Packet Status ring entries */
pktStatRingSize =
sizeof(PKT_STAT_DESC_t) * adapter->RxRing.PsrNumEntries;
rx_ring->pPSRingVa = pci_alloc_consistent(adapter->pdev,
pktStatRingSize + 0x0fff,
&rx_ring->pPSRingPa);
if (!rx_ring->pPSRingVa) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Packet Status Ring\n");
return -ENOMEM;
}
/* Save physical address
*
* NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here before
* storing the adjusted address.
*/
rx_ring->pPSRingRealPa = rx_ring->pPSRingPa;
/* Align Packet Status Ring on a 4K boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->pPSRingRealPa,
&rx_ring->pPSRingOffset, 0x0FFF);
rx_ring->pPSRingVa = (void *)((uint8_t *) rx_ring->pPSRingVa +
rx_ring->pPSRingOffset);
/* Allocate an area of memory for writeback of status information */
rx_ring->pRxStatusVa = pci_alloc_consistent(adapter->pdev,
sizeof(RX_STATUS_BLOCK_t) +
0x7, &rx_ring->pRxStatusPa);
if (!rx_ring->pRxStatusVa) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Status Block\n");
return -ENOMEM;
}
/* Save physical address */
rx_ring->RxStatusRealPA = rx_ring->pRxStatusPa;
/* Align write back on an 8 byte boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->RxStatusRealPA,
&rx_ring->RxStatusOffset, 0x07);
rx_ring->pRxStatusVa = (void *)((uint8_t *) rx_ring->pRxStatusVa +
rx_ring->RxStatusOffset);
rx_ring->NumRfd = NIC_DEFAULT_NUM_RFD;
/* Recv
* pci_pool_create initializes a lookaside list. After successful
* creation, nonpaged fixed-size blocks can be allocated from and
* freed to the lookaside list.
* RFDs will be allocated from this pool.
*/
rx_ring->RecvLookaside = kmem_cache_create(adapter->netdev->name,
sizeof(MP_RFD),
0,
SLAB_CACHE_DMA |
SLAB_HWCACHE_ALIGN,
NULL);
adapter->Flags |= fMP_ADAPTER_RECV_LOOKASIDE;
/* The RFDs are going to be put on lists later on, so initialize the
* lists now.
*/
INIT_LIST_HEAD(&rx_ring->RecvList);
INIT_LIST_HEAD(&rx_ring->RecvPendingList);
return 0;
}
/**
* et131x_rx_dma_memory_free - Free all memory allocated within this module.
* @adapter: pointer to our private adapter structure
*/
void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
{
uint32_t index;
uint32_t bufsize;
uint32_t pktStatRingSize;
PMP_RFD pMpRfd;
RX_RING_t *rx_ring;
/* Setup some convenience pointers */
rx_ring = (RX_RING_t *) &adapter->RxRing;
/* Free RFDs and associated packet descriptors */
WARN_ON(rx_ring->nReadyRecv != rx_ring->NumRfd);
while (!list_empty(&rx_ring->RecvList)) {
pMpRfd = (MP_RFD *) list_entry(rx_ring->RecvList.next,
MP_RFD, list_node);
list_del(&pMpRfd->list_node);
et131x_rfd_resources_free(adapter, pMpRfd);
}
while (!list_empty(&rx_ring->RecvPendingList)) {
pMpRfd = (MP_RFD *) list_entry(rx_ring->RecvPendingList.next,
MP_RFD, list_node);
list_del(&pMpRfd->list_node);
et131x_rfd_resources_free(adapter, pMpRfd);
}
/* Free Free Buffer Ring 1 */
if (rx_ring->pFbr1RingVa) {
/* First the packet memory */
for (index = 0; index <
(rx_ring->Fbr1NumEntries / FBR_CHUNKS); index++) {
if (rx_ring->Fbr1MemVa[index]) {
uint32_t Fbr1Align;
if (rx_ring->Fbr1BufferSize > 4096)
Fbr1Align = 4096;
else
Fbr1Align = rx_ring->Fbr1BufferSize;
bufsize =
(rx_ring->Fbr1BufferSize * FBR_CHUNKS) +
Fbr1Align - 1;
pci_free_consistent(adapter->pdev,
bufsize,
rx_ring->Fbr1MemVa[index],
rx_ring->Fbr1MemPa[index]);
rx_ring->Fbr1MemVa[index] = NULL;
}
}
/* Now the FIFO itself */
rx_ring->pFbr1RingVa = (void *)((uint8_t *)
rx_ring->pFbr1RingVa - rx_ring->Fbr1offset);
bufsize =
(sizeof(FBR_DESC_t) * rx_ring->Fbr1NumEntries) + 0xfff;
pci_free_consistent(adapter->pdev,
bufsize,
rx_ring->pFbr1RingVa, rx_ring->pFbr1RingPa);
rx_ring->pFbr1RingVa = NULL;
}
#ifdef USE_FBR0
/* Now the same for Free Buffer Ring 0 */
if (rx_ring->pFbr0RingVa) {
/* First the packet memory */
for (index = 0; index <
(rx_ring->Fbr0NumEntries / FBR_CHUNKS); index++) {
if (rx_ring->Fbr0MemVa[index]) {
bufsize =
(rx_ring->Fbr0BufferSize *
(FBR_CHUNKS + 1)) - 1;
pci_free_consistent(adapter->pdev,
bufsize,
rx_ring->Fbr0MemVa[index],
rx_ring->Fbr0MemPa[index]);
rx_ring->Fbr0MemVa[index] = NULL;
}
}
/* Now the FIFO itself */
rx_ring->pFbr0RingVa = (void *)((uint8_t *)
rx_ring->pFbr0RingVa - rx_ring->Fbr0offset);
bufsize =
(sizeof(FBR_DESC_t) * rx_ring->Fbr0NumEntries) + 0xfff;
pci_free_consistent(adapter->pdev,
bufsize,
rx_ring->pFbr0RingVa, rx_ring->pFbr0RingPa);
rx_ring->pFbr0RingVa = NULL;
}
#endif
/* Free Packet Status Ring */
if (rx_ring->pPSRingVa) {
rx_ring->pPSRingVa = (void *)((uint8_t *) rx_ring->pPSRingVa -
rx_ring->pPSRingOffset);
pktStatRingSize =
sizeof(PKT_STAT_DESC_t) * adapter->RxRing.PsrNumEntries;
pci_free_consistent(adapter->pdev,
pktStatRingSize + 0x0fff,
rx_ring->pPSRingVa, rx_ring->pPSRingPa);
rx_ring->pPSRingVa = NULL;
}
/* Free area of memory for the writeback of status information */
if (rx_ring->pRxStatusVa) {
rx_ring->pRxStatusVa = (void *)((uint8_t *)
rx_ring->pRxStatusVa - rx_ring->RxStatusOffset);
pci_free_consistent(adapter->pdev,
sizeof(RX_STATUS_BLOCK_t) + 0x7,
rx_ring->pRxStatusVa, rx_ring->pRxStatusPa);
rx_ring->pRxStatusVa = NULL;
}
/* Free receive buffer pool */
/* Free receive packet pool */
/* Destroy the lookaside (RFD) pool */
if (adapter->Flags & fMP_ADAPTER_RECV_LOOKASIDE) {
kmem_cache_destroy(rx_ring->RecvLookaside);
adapter->Flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
}
/* Free the FBR Lookup Table */
#ifdef USE_FBR0
kfree(rx_ring->Fbr[0]);
#endif
kfree(rx_ring->Fbr[1]);
/* Reset Counters */
rx_ring->nReadyRecv = 0;
}
/**
* et131x_init_recv - Initialize receive data structures.
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success and errno on failure (as defined in errno.h)
*/
int et131x_init_recv(struct et131x_adapter *adapter)
{
int status = -ENOMEM;
PMP_RFD pMpRfd = NULL;
uint32_t RfdCount;
uint32_t TotalNumRfd = 0;
RX_RING_t *rx_ring = NULL;
/* Setup some convenience pointers */
rx_ring = (RX_RING_t *) &adapter->RxRing;
/* Setup each RFD */
for (RfdCount = 0; RfdCount < rx_ring->NumRfd; RfdCount++) {
pMpRfd = (MP_RFD *) kmem_cache_alloc(rx_ring->RecvLookaside,
GFP_ATOMIC | GFP_DMA);
if (!pMpRfd) {
dev_err(&adapter->pdev->dev,
"Couldn't alloc RFD out of kmem_cache\n");
status = -ENOMEM;
continue;
}
status = et131x_rfd_resources_alloc(adapter, pMpRfd);
if (status != 0) {
dev_err(&adapter->pdev->dev,
"Couldn't alloc packet for RFD\n");
kmem_cache_free(rx_ring->RecvLookaside, pMpRfd);
continue;
}
/* Add this RFD to the RecvList */
list_add_tail(&pMpRfd->list_node, &rx_ring->RecvList);
/* Increment both the available RFD's, and the total RFD's. */
rx_ring->nReadyRecv++;
TotalNumRfd++;
}
if (TotalNumRfd > NIC_MIN_NUM_RFD)
status = 0;
rx_ring->NumRfd = TotalNumRfd;
if (status != 0) {
kmem_cache_free(rx_ring->RecvLookaside, pMpRfd);
dev_err(&adapter->pdev->dev,
"Allocation problems in et131x_init_recv\n");
}
return status;
}
/**
* et131x_rfd_resources_alloc
* @adapter: pointer to our private adapter structure
* @pMpRfd: pointer to a RFD
*
* Returns 0 on success and errno on failure (as defined in errno.h)
*/
int et131x_rfd_resources_alloc(struct et131x_adapter *adapter, MP_RFD *pMpRfd)
{
pMpRfd->Packet = NULL;
return 0;
}
/**
* et131x_rfd_resources_free - Free the packet allocated for the given RFD
* @adapter: pointer to our private adapter structure
* @pMpRfd: pointer to a RFD
*/
void et131x_rfd_resources_free(struct et131x_adapter *adapter, MP_RFD *pMpRfd)
{
pMpRfd->Packet = NULL;
kmem_cache_free(adapter->RxRing.RecvLookaside, pMpRfd);
}
/**
* ConfigRxDmaRegs - Start of Rx_DMA init sequence
* @etdev: pointer to our adapter structure
*/
void ConfigRxDmaRegs(struct et131x_adapter *etdev)
{
struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
struct _rx_ring_t *pRxLocal = &etdev->RxRing;
PFBR_DESC_t fbr_entry;
uint32_t entry;
RXDMA_PSR_NUM_DES_t psr_num_des;
unsigned long flags;
/* Halt RXDMA to perform the reconfigure. */
et131x_rx_dma_disable(etdev);
/* Load the completion writeback physical address
*
* NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here
* before storing the adjusted address.
*/
writel((uint32_t) (pRxLocal->RxStatusRealPA >> 32),
&rx_dma->dma_wb_base_hi);
writel((uint32_t) pRxLocal->RxStatusRealPA, &rx_dma->dma_wb_base_lo);
memset(pRxLocal->pRxStatusVa, 0, sizeof(RX_STATUS_BLOCK_t));
/* Set the address and parameters of the packet status ring into the
* 1310's registers
*/
writel((uint32_t) (pRxLocal->pPSRingRealPa >> 32),
&rx_dma->psr_base_hi);
writel((uint32_t) pRxLocal->pPSRingRealPa, &rx_dma->psr_base_lo);
writel(pRxLocal->PsrNumEntries - 1, &rx_dma->psr_num_des.value);
writel(0, &rx_dma->psr_full_offset.value);
psr_num_des.value = readl(&rx_dma->psr_num_des.value);
writel((psr_num_des.bits.psr_ndes * LO_MARK_PERCENT_FOR_PSR) / 100,
&rx_dma->psr_min_des.value);
spin_lock_irqsave(&etdev->RcvLock, flags);
/* These local variables track the PSR in the adapter structure */
pRxLocal->local_psr_full.bits.psr_full = 0;
pRxLocal->local_psr_full.bits.psr_full_wrap = 0;
/* Now's the best time to initialize FBR1 contents */
fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr1RingVa;
for (entry = 0; entry < pRxLocal->Fbr1NumEntries; entry++) {
fbr_entry->addr_hi = pRxLocal->Fbr[1]->PAHigh[entry];
fbr_entry->addr_lo = pRxLocal->Fbr[1]->PALow[entry];
fbr_entry->word2.bits.bi = entry;
fbr_entry++;
}
/* Set the address and parameters of Free buffer ring 1 (and 0 if
* required) into the 1310's registers
*/
writel((uint32_t) (pRxLocal->Fbr1Realpa >> 32), &rx_dma->fbr1_base_hi);
writel((uint32_t) pRxLocal->Fbr1Realpa, &rx_dma->fbr1_base_lo);
writel(pRxLocal->Fbr1NumEntries - 1, &rx_dma->fbr1_num_des.value);
writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
/* This variable tracks the free buffer ring 1 full position, so it
* has to match the above.
*/
pRxLocal->local_Fbr1_full = ET_DMA10_WRAP;
writel(((pRxLocal->Fbr1NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&rx_dma->fbr1_min_des.value);
#ifdef USE_FBR0
/* Now's the best time to initialize FBR0 contents */
fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr0RingVa;
for (entry = 0; entry < pRxLocal->Fbr0NumEntries; entry++) {
fbr_entry->addr_hi = pRxLocal->Fbr[0]->PAHigh[entry];
fbr_entry->addr_lo = pRxLocal->Fbr[0]->PALow[entry];
fbr_entry->word2.bits.bi = entry;
fbr_entry++;
}
writel((uint32_t) (pRxLocal->Fbr0Realpa >> 32), &rx_dma->fbr0_base_hi);
writel((uint32_t) pRxLocal->Fbr0Realpa, &rx_dma->fbr0_base_lo);
writel(pRxLocal->Fbr0NumEntries - 1, &rx_dma->fbr0_num_des.value);
writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
/* This variable tracks the free buffer ring 0 full position, so it
* has to match the above.
*/
pRxLocal->local_Fbr0_full = ET_DMA10_WRAP;
writel(((pRxLocal->Fbr0NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&rx_dma->fbr0_min_des.value);
#endif
/* Program the number of packets we will receive before generating an
* interrupt.
* For version B silicon, this value gets updated once autoneg is
*complete.
*/
writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done.value);
/* The "time_done" is not working correctly to coalesce interrupts
* after a given time period, but rather is giving us an interrupt
* regardless of whether we have received packets.
* This value gets updated once autoneg is complete.
*/
writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time.value);
spin_unlock_irqrestore(&etdev->RcvLock, flags);
}
/**
* SetRxDmaTimer - Set the heartbeat timer according to line rate.
* @etdev: pointer to our adapter structure
*/
void SetRxDmaTimer(struct et131x_adapter *etdev)
{
/* For version B silicon, we do not use the RxDMA timer for 10 and 100
* Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
*/
if ((etdev->linkspeed == TRUEPHY_SPEED_100MBPS) ||
(etdev->linkspeed == TRUEPHY_SPEED_10MBPS)) {
writel(0, &etdev->regs->rxdma.max_pkt_time.value);
writel(1, &etdev->regs->rxdma.num_pkt_done.value);
}
}
/**
* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
* @etdev: pointer to our adapter structure
*/
void et131x_rx_dma_disable(struct et131x_adapter *etdev)
{
RXDMA_CSR_t csr;
/* Setup the receive dma configuration register */
writel(0x00002001, &etdev->regs->rxdma.csr.value);
csr.value = readl(&etdev->regs->rxdma.csr.value);
if (csr.bits.halt_status != 1) {
udelay(5);
csr.value = readl(&etdev->regs->rxdma.csr.value);
if (csr.bits.halt_status != 1)
dev_err(&etdev->pdev->dev,
"RX Dma failed to enter halt state. CSR 0x%08x\n",
csr.value);
}
}
/**
* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
* @etdev: pointer to our adapter structure
*/
void et131x_rx_dma_enable(struct et131x_adapter *etdev)
{
if (etdev->RegistryPhyLoopbk)
/* RxDMA is disabled for loopback operation. */
writel(0x1, &etdev->regs->rxdma.csr.value);
else {
/* Setup the receive dma configuration register for normal operation */
RXDMA_CSR_t csr = { 0 };
csr.bits.fbr1_enable = 1;
if (etdev->RxRing.Fbr1BufferSize == 4096)
csr.bits.fbr1_size = 1;
else if (etdev->RxRing.Fbr1BufferSize == 8192)
csr.bits.fbr1_size = 2;
else if (etdev->RxRing.Fbr1BufferSize == 16384)
csr.bits.fbr1_size = 3;
#ifdef USE_FBR0
csr.bits.fbr0_enable = 1;
if (etdev->RxRing.Fbr0BufferSize == 256)
csr.bits.fbr0_size = 1;
else if (etdev->RxRing.Fbr0BufferSize == 512)
csr.bits.fbr0_size = 2;
else if (etdev->RxRing.Fbr0BufferSize == 1024)
csr.bits.fbr0_size = 3;
#endif
writel(csr.value, &etdev->regs->rxdma.csr.value);
csr.value = readl(&etdev->regs->rxdma.csr.value);
if (csr.bits.halt_status != 0) {
udelay(5);
csr.value = readl(&etdev->regs->rxdma.csr.value);
if (csr.bits.halt_status != 0) {
dev_err(&etdev->pdev->dev,
"RX Dma failed to exit halt state. CSR 0x%08x\n",
csr.value);
}
}
}
}
/**
* nic_rx_pkts - Checks the hardware for available packets
* @etdev: pointer to our adapter
*
* Returns pMpRfd, a pointer to our MPRFD.
*
* Checks the hardware for available packets, using completion ring
* If packets are available, it gets an RFD from the RecvList, attaches
* the packet to it, puts the RFD in the RecvPendList, and also returns
* the pointer to the RFD.
*/
PMP_RFD nic_rx_pkts(struct et131x_adapter *etdev)
{
struct _rx_ring_t *pRxLocal = &etdev->RxRing;
PRX_STATUS_BLOCK_t pRxStatusBlock;
PPKT_STAT_DESC_t pPSREntry;
PMP_RFD pMpRfd;
uint32_t nIndex;
uint8_t *pBufVa;
unsigned long flags;
struct list_head *element;
uint8_t ringIndex;
uint16_t bufferIndex;
uint32_t localLen;
PKT_STAT_DESC_WORD0_t Word0;
/* RX Status block is written by the DMA engine prior to every
* interrupt. It contains the next to be used entry in the Packet
* Status Ring, and also the two Free Buffer rings.
*/
pRxStatusBlock = (PRX_STATUS_BLOCK_t) pRxLocal->pRxStatusVa;
if (pRxStatusBlock->Word1.bits.PSRoffset ==
pRxLocal->local_psr_full.bits.psr_full &&
pRxStatusBlock->Word1.bits.PSRwrap ==
pRxLocal->local_psr_full.bits.psr_full_wrap) {
/* Looks like this ring is not updated yet */
return NULL;
}
/* The packet status ring indicates that data is available. */
pPSREntry = (PPKT_STAT_DESC_t) (pRxLocal->pPSRingVa) +
pRxLocal->local_psr_full.bits.psr_full;
/* Grab any information that is required once the PSR is
* advanced, since we can no longer rely on the memory being
* accurate
*/
localLen = pPSREntry->word1.bits.length;
ringIndex = (uint8_t) pPSREntry->word1.bits.ri;
bufferIndex = (uint16_t) pPSREntry->word1.bits.bi;
Word0 = pPSREntry->word0;
/* Indicate that we have used this PSR entry. */
if (++pRxLocal->local_psr_full.bits.psr_full >
pRxLocal->PsrNumEntries - 1) {
pRxLocal->local_psr_full.bits.psr_full = 0;
pRxLocal->local_psr_full.bits.psr_full_wrap ^= 1;
}
writel(pRxLocal->local_psr_full.value,
&etdev->regs->rxdma.psr_full_offset.value);
#ifndef USE_FBR0
if (ringIndex != 1) {
return NULL;
}
#endif
#ifdef USE_FBR0
if (ringIndex > 1 ||
(ringIndex == 0 &&
bufferIndex > pRxLocal->Fbr0NumEntries - 1) ||
(ringIndex == 1 &&
bufferIndex > pRxLocal->Fbr1NumEntries - 1))
#else
if (ringIndex != 1 ||
bufferIndex > pRxLocal->Fbr1NumEntries - 1)
#endif
{
/* Illegal buffer or ring index cannot be used by S/W*/
dev_err(&etdev->pdev->dev,
"NICRxPkts PSR Entry %d indicates "
"length of %d and/or bad bi(%d)\n",
pRxLocal->local_psr_full.bits.psr_full,
localLen, bufferIndex);
return NULL;
}
/* Get and fill the RFD. */
spin_lock_irqsave(&etdev->RcvLock, flags);
pMpRfd = NULL;
element = pRxLocal->RecvList.next;
pMpRfd = (PMP_RFD) list_entry(element, MP_RFD, list_node);
if (pMpRfd == NULL) {
spin_unlock_irqrestore(&etdev->RcvLock, flags);
return NULL;
}
list_del(&pMpRfd->list_node);
pRxLocal->nReadyRecv--;
spin_unlock_irqrestore(&etdev->RcvLock, flags);
pMpRfd->bufferindex = bufferIndex;
pMpRfd->ringindex = ringIndex;
/* In V1 silicon, there is a bug which screws up filtering of
* runt packets. Therefore runt packet filtering is disabled
* in the MAC and the packets are dropped here. They are
* also counted here.
*/
if (localLen < (NIC_MIN_PACKET_SIZE + 4)) {
etdev->Stats.other_errors++;
localLen = 0;
}
if (localLen) {
if (etdev->ReplicaPhyLoopbk == 1) {
pBufVa = pRxLocal->Fbr[ringIndex]->Va[bufferIndex];
if (memcmp(&pBufVa[6], &etdev->CurrentAddress[0],
ETH_ALEN) == 0) {
if (memcmp(&pBufVa[42], "Replica packet",
ETH_HLEN)) {
etdev->ReplicaPhyLoopbkPF = 1;
}
}
}
/* Determine if this is a multicast packet coming in */
if ((Word0.value & ALCATEL_MULTICAST_PKT) &&
!(Word0.value & ALCATEL_BROADCAST_PKT)) {
/* Promiscuous mode and Multicast mode are
* not mutually exclusive as was first
* thought. I guess Promiscuous is just
* considered a super-set of the other
* filters. Generally filter is 0x2b when in
* promiscuous mode.
*/
if ((etdev->PacketFilter & ET131X_PACKET_TYPE_MULTICAST)
&& !(etdev->PacketFilter & ET131X_PACKET_TYPE_PROMISCUOUS)
&& !(etdev->PacketFilter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
pBufVa = pRxLocal->Fbr[ringIndex]->
Va[bufferIndex];
/* Loop through our list to see if the
* destination address of this packet
* matches one in our list.
*/
for (nIndex = 0;
nIndex < etdev->MCAddressCount;
nIndex++) {
if (pBufVa[0] ==
etdev->MCList[nIndex][0]
&& pBufVa[1] ==
etdev->MCList[nIndex][1]
&& pBufVa[2] ==
etdev->MCList[nIndex][2]
&& pBufVa[3] ==
etdev->MCList[nIndex][3]
&& pBufVa[4] ==
etdev->MCList[nIndex][4]
&& pBufVa[5] ==
etdev->MCList[nIndex][5]) {
break;
}
}
/* If our index is equal to the number
* of Multicast address we have, then
* this means we did not find this
* packet's matching address in our
* list. Set the PacketSize to zero,
* so we free our RFD when we return
* from this function.
*/
if (nIndex == etdev->MCAddressCount)
localLen = 0;
}
if (localLen > 0)
etdev->Stats.multircv++;
} else if (Word0.value & ALCATEL_BROADCAST_PKT)
etdev->Stats.brdcstrcv++;
else
/* Not sure what this counter measures in
* promiscuous mode. Perhaps we should check
* the MAC address to see if it is directed
* to us in promiscuous mode.
*/
etdev->Stats.unircv++;
}
if (localLen > 0) {
struct sk_buff *skb = NULL;
/* pMpRfd->PacketSize = localLen - 4; */
pMpRfd->PacketSize = localLen;
skb = dev_alloc_skb(pMpRfd->PacketSize + 2);
if (!skb) {
dev_err(&etdev->pdev->dev,
"Couldn't alloc an SKB for Rx\n");
return NULL;
}
etdev->net_stats.rx_bytes += pMpRfd->PacketSize;
memcpy(skb_put(skb, pMpRfd->PacketSize),
pRxLocal->Fbr[ringIndex]->Va[bufferIndex],
pMpRfd->PacketSize);
skb->dev = etdev->netdev;
skb->protocol = eth_type_trans(skb, etdev->netdev);
skb->ip_summed = CHECKSUM_NONE;
netif_rx(skb);
} else {
pMpRfd->PacketSize = 0;
}
nic_return_rfd(etdev, pMpRfd);
return pMpRfd;
}
/**
* et131x_reset_recv - Reset the receive list
* @etdev: pointer to our adapter
*
* Assumption, Rcv spinlock has been acquired.
*/
void et131x_reset_recv(struct et131x_adapter *etdev)
{
PMP_RFD pMpRfd;
struct list_head *element;
WARN_ON(list_empty(&etdev->RxRing.RecvList));
/* Take all the RFD's from the pending list, and stick them on the
* RecvList.
*/
while (!list_empty(&etdev->RxRing.RecvPendingList)) {
element = etdev->RxRing.RecvPendingList.next;
pMpRfd = (PMP_RFD) list_entry(element, MP_RFD, list_node);
list_move_tail(&pMpRfd->list_node, &etdev->RxRing.RecvList);
}
}
/**
* et131x_handle_recv_interrupt - Interrupt handler for receive processing
* @etdev: pointer to our adapter
*
* Assumption, Rcv spinlock has been acquired.
*/
void et131x_handle_recv_interrupt(struct et131x_adapter *etdev)
{
PMP_RFD pMpRfd = NULL;
struct sk_buff *PacketArray[NUM_PACKETS_HANDLED];
PMP_RFD RFDFreeArray[NUM_PACKETS_HANDLED];
uint32_t PacketArrayCount = 0;
uint32_t PacketsToHandle;
uint32_t PacketFreeCount = 0;
bool TempUnfinishedRec = false;
PacketsToHandle = NUM_PACKETS_HANDLED;
/* Process up to available RFD's */
while (PacketArrayCount < PacketsToHandle) {
if (list_empty(&etdev->RxRing.RecvList)) {
WARN_ON(etdev->RxRing.nReadyRecv != 0);
TempUnfinishedRec = true;
break;
}
pMpRfd = nic_rx_pkts(etdev);
if (pMpRfd == NULL)
break;
/* Do not receive any packets until a filter has been set.
* Do not receive any packets until we have link.
* If length is zero, return the RFD in order to advance the
* Free buffer ring.
*/
if (!etdev->PacketFilter ||
!(etdev->Flags & fMP_ADAPTER_LINK_DETECTION) ||
pMpRfd->PacketSize == 0) {
continue;
}
/* Increment the number of packets we received */
etdev->Stats.ipackets++;
/* Set the status on the packet, either resources or success */
if (etdev->RxRing.nReadyRecv >= RFD_LOW_WATER_MARK) {
/* Put this RFD on the pending list
*
* NOTE: nic_rx_pkts() above is already returning the
* RFD to the RecvList, so don't additionally do that
* here.
* Besides, we don't really need (at this point) the
* pending list anyway.
*/
} else {
RFDFreeArray[PacketFreeCount] = pMpRfd;
PacketFreeCount++;
dev_warn(&etdev->pdev->dev,
"RFD's are running out\n");
}
PacketArray[PacketArrayCount] = pMpRfd->Packet;
PacketArrayCount++;
}
if ((PacketArrayCount == NUM_PACKETS_HANDLED) || TempUnfinishedRec) {
etdev->RxRing.UnfinishedReceives = true;
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
&etdev->regs->global.watchdog_timer);
} else {
/* Watchdog timer will disable itself if appropriate. */
etdev->RxRing.UnfinishedReceives = false;
}
}
static inline u32 bump_fbr(u32 *fbr, u32 limit)
{
u32 v = *fbr;
v++;
/* This works for all cases where limit < 1024. The 1023 case
works because 1023++ is 1024 which means the if condition is not
taken but the carry of the bit into the wrap bit toggles the wrap
value correctly */
if ((v & ET_DMA10_MASK) > limit) {
v &= ~ET_DMA10_MASK;
v ^= ET_DMA10_WRAP;
}
/* For the 1023 case */
v &= (ET_DMA10_MASK|ET_DMA10_WRAP);
*fbr = v;
return v;
}
/**
* NICReturnRFD - Recycle a RFD and put it back onto the receive list
* @etdev: pointer to our adapter
* @pMpRfd: pointer to the RFD
*/
void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
{
struct _rx_ring_t *rx_local = &etdev->RxRing;
struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
uint16_t bi = pMpRfd->bufferindex;
uint8_t ri = pMpRfd->ringindex;
unsigned long flags;
/* We don't use any of the OOB data besides status. Otherwise, we
* need to clean up OOB data
*/
if (
#ifdef USE_FBR0
(ri == 0 && bi < rx_local->Fbr0NumEntries) ||
#endif
(ri == 1 && bi < rx_local->Fbr1NumEntries)) {
spin_lock_irqsave(&etdev->FbrLock, flags);
if (ri == 1) {
PFBR_DESC_t pNextDesc =
(PFBR_DESC_t) (rx_local->pFbr1RingVa) +
INDEX10(rx_local->local_Fbr1_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed)FBR entry
*/
pNextDesc->addr_hi = rx_local->Fbr[1]->PAHigh[bi];
pNextDesc->addr_lo = rx_local->Fbr[1]->PALow[bi];
pNextDesc->word2.value = bi;
writel(bump_fbr(&rx_local->local_Fbr1_full,
rx_local->Fbr1NumEntries - 1),
&rx_dma->fbr1_full_offset);
}
#ifdef USE_FBR0
else {
PFBR_DESC_t pNextDesc =
(PFBR_DESC_t) rx_local->pFbr0RingVa +
INDEX10(rx_local->local_Fbr0_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed) FBR entry
*/
pNextDesc->addr_hi = rx_local->Fbr[0]->PAHigh[bi];
pNextDesc->addr_lo = rx_local->Fbr[0]->PALow[bi];
pNextDesc->word2.value = bi;
writel(bump_fbr(&rx_local->local_Fbr0_full,
rx_local->Fbr0NumEntries - 1),
&rx_dma->fbr0_full_offset);
}
#endif
spin_unlock_irqrestore(&etdev->FbrLock, flags);
} else {
dev_err(&etdev->pdev->dev,
"NICReturnRFD illegal Buffer Index returned\n");
}
/* The processing on this RFD is done, so put it back on the tail of
* our list
*/
spin_lock_irqsave(&etdev->RcvLock, flags);
list_add_tail(&pMpRfd->list_node, &rx_local->RecvList);
rx_local->nReadyRecv++;
spin_unlock_irqrestore(&etdev->RcvLock, flags);
WARN_ON(rx_local->nReadyRecv > rx_local->NumRfd);
}