blob: 7c544f7c74c4f07ad735ce35b92a58b28a426d37 [file] [log] [blame]
/*
* Sample driver for HardMAC IEEE 802.15.4 devices
*
* Copyright (C) 2009 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Written by:
* Dmitry Eremin-Solenikov <dmitry.baryshkov@siemens.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <net/af_ieee802154.h>
#include <net/ieee802154_netdev.h>
#include <net/ieee802154.h>
#include <net/nl802154.h>
#include <net/wpan-phy.h>
struct wpan_phy *net_to_phy(struct net_device *dev)
{
return container_of(dev->dev.parent, struct wpan_phy, dev);
}
/**
* fake_get_pan_id - Retrieve the PAN ID of the device.
* @dev: The network device to retrieve the PAN of.
*
* Return the ID of the PAN from the PIB.
*/
static u16 fake_get_pan_id(struct net_device *dev)
{
BUG_ON(dev->type != ARPHRD_IEEE802154);
return 0xeba1;
}
/**
* fake_get_short_addr - Retrieve the short address of the device.
* @dev: The network device to retrieve the short address of.
*
* Returns the IEEE 802.15.4 short-form address cached for this
* device. If the device has not yet had a short address assigned
* then this should return 0xFFFF to indicate a lack of association.
*/
static u16 fake_get_short_addr(struct net_device *dev)
{
BUG_ON(dev->type != ARPHRD_IEEE802154);
return 0x1;
}
/**
* fake_get_dsn - Retrieve the DSN of the device.
* @dev: The network device to retrieve the DSN for.
*
* Returns the IEEE 802.15.4 DSN for the network device.
* The DSN is the sequence number which will be added to each
* packet or MAC command frame by the MAC during transmission.
*
* DSN means 'Data Sequence Number'.
*
* Note: This is in section 7.2.1.2 of the IEEE 802.15.4-2006
* document.
*/
static u8 fake_get_dsn(struct net_device *dev)
{
BUG_ON(dev->type != ARPHRD_IEEE802154);
return 0x00; /* DSN are implemented in HW, so return just 0 */
}
/**
* fake_get_bsn - Retrieve the BSN of the device.
* @dev: The network device to retrieve the BSN for.
*
* Returns the IEEE 802.15.4 BSN for the network device.
* The BSN is the sequence number which will be added to each
* beacon frame sent by the MAC.
*
* BSN means 'Beacon Sequence Number'.
*
* Note: This is in section 7.2.1.2 of the IEEE 802.15.4-2006
* document.
*/
static u8 fake_get_bsn(struct net_device *dev)
{
BUG_ON(dev->type != ARPHRD_IEEE802154);
return 0x00; /* BSN are implemented in HW, so return just 0 */
}
/**
* fake_assoc_req - Make an association request to the HW.
* @dev: The network device which we are associating to a network.
* @addr: The coordinator with which we wish to associate.
* @channel: The channel on which to associate.
* @cap: The capability information field to use in the association.
*
* Start an association with a coordinator. The coordinator's address
* and PAN ID can be found in @addr.
*
* Note: This is in section 7.3.1 and 7.5.3.1 of the IEEE
* 802.15.4-2006 document.
*/
static int fake_assoc_req(struct net_device *dev,
struct ieee802154_addr *addr, u8 channel, u8 page, u8 cap)
{
struct wpan_phy *phy = net_to_phy(dev);
mutex_lock(&phy->pib_lock);
phy->current_channel = channel;
phy->current_page = page;
mutex_unlock(&phy->pib_lock);
/* We simply emulate it here */
return ieee802154_nl_assoc_confirm(dev, fake_get_short_addr(dev),
IEEE802154_SUCCESS);
}
/**
* fake_assoc_resp - Send an association response to a device.
* @dev: The network device on which to send the response.
* @addr: The address of the device to respond to.
* @short_addr: The assigned short address for the device (if any).
* @status: The result of the association request.
*
* Queue the association response of the coordinator to another
* device's attempt to associate with the network which we
* coordinate. This is then added to the indirect-send queue to be
* transmitted to the end device when it polls for data.
*
* Note: This is in section 7.3.2 and 7.5.3.1 of the IEEE
* 802.15.4-2006 document.
*/
static int fake_assoc_resp(struct net_device *dev,
struct ieee802154_addr *addr, u16 short_addr, u8 status)
{
return 0;
}
/**
* fake_disassoc_req - Disassociate a device from a network.
* @dev: The network device on which we're disassociating a device.
* @addr: The device to disassociate from the network.
* @reason: The reason to give to the device for being disassociated.
*
* This sends a disassociation notification to the device being
* disassociated from the network.
*
* Note: This is in section 7.5.3.2 of the IEEE 802.15.4-2006
* document, with the reason described in 7.3.3.2.
*/
static int fake_disassoc_req(struct net_device *dev,
struct ieee802154_addr *addr, u8 reason)
{
return ieee802154_nl_disassoc_confirm(dev, IEEE802154_SUCCESS);
}
/**
* fake_start_req - Start an IEEE 802.15.4 PAN.
* @dev: The network device on which to start the PAN.
* @addr: The coordinator address to use when starting the PAN.
* @channel: The channel on which to start the PAN.
* @bcn_ord: Beacon order.
* @sf_ord: Superframe order.
* @pan_coord: Whether or not we are the PAN coordinator or just
* requesting a realignment perhaps?
* @blx: Battery Life Extension feature bitfield.
* @coord_realign: Something to realign something else.
*
* If pan_coord is non-zero then this starts a network with the
* provided parameters, otherwise it attempts a coordinator
* realignment of the stated network instead.
*
* Note: This is in section 7.5.2.3 of the IEEE 802.15.4-2006
* document, with 7.3.8 describing coordinator realignment.
*/
static int fake_start_req(struct net_device *dev, struct ieee802154_addr *addr,
u8 channel, u8 page,
u8 bcn_ord, u8 sf_ord, u8 pan_coord, u8 blx,
u8 coord_realign)
{
struct wpan_phy *phy = net_to_phy(dev);
mutex_lock(&phy->pib_lock);
phy->current_channel = channel;
phy->current_page = page;
mutex_unlock(&phy->pib_lock);
/* We don't emulate beacons here at all, so START should fail */
ieee802154_nl_start_confirm(dev, IEEE802154_INVALID_PARAMETER);
return 0;
}
/**
* fake_scan_req - Start a channel scan.
* @dev: The network device on which to perform a channel scan.
* @type: The type of scan to perform.
* @channels: The channel bitmask to scan.
* @duration: How long to spend on each channel.
*
* This starts either a passive (energy) scan or an active (PAN) scan
* on the channels indicated in the @channels bitmask. The duration of
* the scan is measured in terms of superframe duration. Specifically,
* the scan will spend aBaseSuperFrameDuration * ((2^n) + 1) on each
* channel.
*
* Note: This is in section 7.5.2.1 of the IEEE 802.15.4-2006 document.
*/
static int fake_scan_req(struct net_device *dev, u8 type, u32 channels,
u8 page, u8 duration)
{
u8 edl[27] = {};
return ieee802154_nl_scan_confirm(dev, IEEE802154_SUCCESS, type,
channels, page,
type == IEEE802154_MAC_SCAN_ED ? edl : NULL);
}
static struct ieee802154_mlme_ops fake_mlme = {
.assoc_req = fake_assoc_req,
.assoc_resp = fake_assoc_resp,
.disassoc_req = fake_disassoc_req,
.start_req = fake_start_req,
.scan_req = fake_scan_req,
.get_pan_id = fake_get_pan_id,
.get_short_addr = fake_get_short_addr,
.get_dsn = fake_get_dsn,
.get_bsn = fake_get_bsn,
};
static int ieee802154_fake_open(struct net_device *dev)
{
netif_start_queue(dev);
return 0;
}
static int ieee802154_fake_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static netdev_tx_t ieee802154_fake_xmit(struct sk_buff *skb,
struct net_device *dev)
{
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* FIXME: do hardware work here ... */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int ieee802154_fake_ioctl(struct net_device *dev, struct ifreq *ifr,
int cmd)
{
struct sockaddr_ieee802154 *sa =
(struct sockaddr_ieee802154 *)&ifr->ifr_addr;
u16 pan_id, short_addr;
switch (cmd) {
case SIOCGIFADDR:
/* FIXME: fixed here, get from device IRL */
pan_id = fake_get_pan_id(dev);
short_addr = fake_get_short_addr(dev);
if (pan_id == IEEE802154_PANID_BROADCAST ||
short_addr == IEEE802154_ADDR_BROADCAST)
return -EADDRNOTAVAIL;
sa->family = AF_IEEE802154;
sa->addr.addr_type = IEEE802154_ADDR_SHORT;
sa->addr.pan_id = pan_id;
sa->addr.short_addr = short_addr;
return 0;
}
return -ENOIOCTLCMD;
}
static int ieee802154_fake_mac_addr(struct net_device *dev, void *p)
{
return -EBUSY; /* HW address is built into the device */
}
static const struct net_device_ops fake_ops = {
.ndo_open = ieee802154_fake_open,
.ndo_stop = ieee802154_fake_close,
.ndo_start_xmit = ieee802154_fake_xmit,
.ndo_do_ioctl = ieee802154_fake_ioctl,
.ndo_set_mac_address = ieee802154_fake_mac_addr,
};
static void ieee802154_fake_destruct(struct net_device *dev)
{
struct wpan_phy *phy = net_to_phy(dev);
wpan_phy_unregister(phy);
free_netdev(dev);
wpan_phy_free(phy);
}
static void ieee802154_fake_setup(struct net_device *dev)
{
dev->addr_len = IEEE802154_ADDR_LEN;
memset(dev->broadcast, 0xff, IEEE802154_ADDR_LEN);
dev->features = NETIF_F_NO_CSUM;
dev->needed_tailroom = 2; /* FCS */
dev->mtu = 127;
dev->tx_queue_len = 10;
dev->type = ARPHRD_IEEE802154;
dev->flags = IFF_NOARP | IFF_BROADCAST;
dev->watchdog_timeo = 0;
dev->destructor = ieee802154_fake_destruct;
}
static int __devinit ieee802154fake_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct wpan_phy *phy = wpan_phy_alloc(0);
int err;
if (!phy)
return -ENOMEM;
dev = alloc_netdev(0, "hardwpan%d", ieee802154_fake_setup);
if (!dev) {
wpan_phy_free(phy);
return -ENOMEM;
}
phy->dev.platform_data = dev;
memcpy(dev->dev_addr, "\xba\xbe\xca\xfe\xde\xad\xbe\xef",
dev->addr_len);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
phy->channels_supported = (1 << 27) - 1;
phy->transmit_power = 0xbf;
dev->netdev_ops = &fake_ops;
dev->ml_priv = &fake_mlme;
/*
* If the name is a format string the caller wants us to do a
* name allocation.
*/
if (strchr(dev->name, '%')) {
err = dev_alloc_name(dev, dev->name);
if (err < 0)
goto out;
}
SET_NETDEV_DEV(dev, &phy->dev);
platform_set_drvdata(pdev, dev);
err = wpan_phy_register(&pdev->dev, phy);
if (err)
goto out;
err = register_netdev(dev);
if (err < 0)
goto out;
dev_info(&pdev->dev, "Added ieee802154 HardMAC hardware\n");
return 0;
out:
unregister_netdev(dev);
return err;
}
static int __devexit ieee802154fake_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
return 0;
}
static struct platform_device *ieee802154fake_dev;
static struct platform_driver ieee802154fake_driver = {
.probe = ieee802154fake_probe,
.remove = __devexit_p(ieee802154fake_remove),
.driver = {
.name = "ieee802154hardmac",
.owner = THIS_MODULE,
},
};
static __init int fake_init(void)
{
ieee802154fake_dev = platform_device_register_simple(
"ieee802154hardmac", -1, NULL, 0);
return platform_driver_register(&ieee802154fake_driver);
}
static __exit void fake_exit(void)
{
platform_driver_unregister(&ieee802154fake_driver);
platform_device_unregister(ieee802154fake_dev);
}
module_init(fake_init);
module_exit(fake_exit);
MODULE_LICENSE("GPL");