blob: 8ac3faea2d2ffa64e6212d9488090b95b35e93fd [file] [log] [blame]
/*
*
* sep_driver.c - Security Processor Driver main group of functions
*
* Copyright(c) 2009,2010 Intel Corporation. All rights reserved.
* Contributions(c) 2009,2010 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Mark Allyn mark.a.allyn@intel.com
* Jayant Mangalampalli jayant.mangalampalli@intel.com
*
* CHANGES:
*
* 2009.06.26 Initial publish
* 2010.09.14 Upgrade to Medfield
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/kdev_t.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/poll.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/ioctl.h>
#include <asm/current.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <asm/cacheflush.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/rar_register.h>
#include "sep_driver_hw_defs.h"
#include "sep_driver_config.h"
#include "sep_driver_api.h"
#include "sep_dev.h"
/*----------------------------------------
DEFINES
-----------------------------------------*/
#define SEP_RAR_IO_MEM_REGION_SIZE 0x40000
/*--------------------------------------------
GLOBAL variables
--------------------------------------------*/
/* Keep this a single static object for now to keep the conversion easy */
static struct sep_device *sep_dev;
/**
* sep_dump_message - dump the message that is pending
* @sep: SEP device
*/
static void sep_dump_message(struct sep_device *sep)
{
int count;
u32 *p = sep->shared_addr;
for (count = 0; count < 12 * 4; count += 4)
dev_dbg(&sep->pdev->dev, "Word %d of the message is %x\n",
count, *p++);
}
/**
* sep_map_and_alloc_shared_area - allocate shared block
* @sep: security processor
* @size: size of shared area
*/
static int sep_map_and_alloc_shared_area(struct sep_device *sep)
{
sep->shared_addr = dma_alloc_coherent(&sep->pdev->dev,
sep->shared_size,
&sep->shared_bus, GFP_KERNEL);
if (!sep->shared_addr) {
dev_warn(&sep->pdev->dev,
"shared memory dma_alloc_coherent failed\n");
return -ENOMEM;
}
dev_dbg(&sep->pdev->dev,
"shared_addr %zx bytes @%p (bus %llx)\n",
sep->shared_size, sep->shared_addr,
(unsigned long long)sep->shared_bus);
return 0;
}
/**
* sep_unmap_and_free_shared_area - free shared block
* @sep: security processor
*/
static void sep_unmap_and_free_shared_area(struct sep_device *sep)
{
dma_free_coherent(&sep->pdev->dev, sep->shared_size,
sep->shared_addr, sep->shared_bus);
}
/**
* sep_shared_bus_to_virt - convert bus/virt addresses
* @sep: pointer to struct sep_device
* @bus_address: address to convert
*
* Returns virtual address inside the shared area according
* to the bus address.
*/
static void *sep_shared_bus_to_virt(struct sep_device *sep,
dma_addr_t bus_address)
{
return sep->shared_addr + (bus_address - sep->shared_bus);
}
/**
* open function for the singleton driver
* @inode_ptr struct inode *
* @file_ptr struct file *
*
* Called when the user opens the singleton device interface
*/
static int sep_singleton_open(struct inode *inode_ptr, struct file *file_ptr)
{
struct sep_device *sep;
/*
* Get the SEP device structure and use it for the
* private_data field in filp for other methods
*/
sep = sep_dev;
file_ptr->private_data = sep;
if (test_and_set_bit(0, &sep->singleton_access_flag))
return -EBUSY;
return 0;
}
/**
* sep_open - device open method
* @inode: inode of SEP device
* @filp: file handle to SEP device
*
* Open method for the SEP device. Called when userspace opens
* the SEP device node.
*
* Returns zero on success otherwise an error code.
*/
static int sep_open(struct inode *inode, struct file *filp)
{
struct sep_device *sep;
/*
* Get the SEP device structure and use it for the
* private_data field in filp for other methods
*/
sep = sep_dev;
filp->private_data = sep;
/* Anyone can open; locking takes place at transaction level */
return 0;
}
/**
* sep_singleton_release - close a SEP singleton device
* @inode: inode of SEP device
* @filp: file handle being closed
*
* Called on the final close of a SEP device. As the open protects against
* multiple simultaenous opens that means this method is called when the
* final reference to the open handle is dropped.
*/
static int sep_singleton_release(struct inode *inode, struct file *filp)
{
struct sep_device *sep = filp->private_data;
clear_bit(0, &sep->singleton_access_flag);
return 0;
}
/**
* sep_request_daemon_open - request daemon open method
* @inode: inode of SEP device
* @filp: file handle to SEP device
*
* Open method for the SEP request daemon. Called when
* request daemon in userspace opens the SEP device node.
*
* Returns zero on success otherwise an error code.
*/
static int sep_request_daemon_open(struct inode *inode, struct file *filp)
{
struct sep_device *sep = sep_dev;
int error = 0;
filp->private_data = sep;
/* There is supposed to be only one request daemon */
if (test_and_set_bit(0, &sep->request_daemon_open))
error = -EBUSY;
return error;
}
/**
* sep_request_daemon_release - close a SEP daemon
* @inode: inode of SEP device
* @filp: file handle being closed
*
* Called on the final close of a SEP daemon.
*/
static int sep_request_daemon_release(struct inode *inode, struct file *filp)
{
struct sep_device *sep = filp->private_data;
dev_dbg(&sep->pdev->dev, "Request daemon release for pid %d\n",
current->pid);
/* Clear the request_daemon_open flag */
clear_bit(0, &sep->request_daemon_open);
return 0;
}
/**
* sep_req_daemon_send_reply_command_handler - poke the SEP
* @sep: struct sep_device *
*
* This function raises interrupt to SEPm that signals that is has a
* new command from HOST
*/
static int sep_req_daemon_send_reply_command_handler(struct sep_device *sep)
{
unsigned long lck_flags;
sep_dump_message(sep);
/* Counters are lockable region */
spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
sep->send_ct++;
sep->reply_ct++;
/* Send the interrupt to SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR2_REG_ADDR, sep->send_ct);
sep->send_ct++;
spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
dev_dbg(&sep->pdev->dev,
"sep_req_daemon_send_reply send_ct %lx reply_ct %lx\n",
sep->send_ct, sep->reply_ct);
return 0;
}
/**
* sep_free_dma_table_data_handler - free DMA table
* @sep: pointere to struct sep_device
*
* Handles the request to free DMA table for synchronic actions
*/
static int sep_free_dma_table_data_handler(struct sep_device *sep)
{
int count;
int dcb_counter;
/* Pointer to the current dma_resource struct */
struct sep_dma_resource *dma;
for (dcb_counter = 0; dcb_counter < sep->nr_dcb_creat; dcb_counter++) {
dma = &sep->dma_res_arr[dcb_counter];
/* Unmap and free input map array */
if (dma->in_map_array) {
for (count = 0; count < dma->in_num_pages; count++) {
dma_unmap_page(&sep->pdev->dev,
dma->in_map_array[count].dma_addr,
dma->in_map_array[count].size,
DMA_TO_DEVICE);
}
kfree(dma->in_map_array);
}
/* Unmap output map array, DON'T free it yet */
if (dma->out_map_array) {
for (count = 0; count < dma->out_num_pages; count++) {
dma_unmap_page(&sep->pdev->dev,
dma->out_map_array[count].dma_addr,
dma->out_map_array[count].size,
DMA_FROM_DEVICE);
}
kfree(dma->out_map_array);
}
/* Free page cache for output */
if (dma->in_page_array) {
for (count = 0; count < dma->in_num_pages; count++) {
flush_dcache_page(dma->in_page_array[count]);
page_cache_release(dma->in_page_array[count]);
}
kfree(dma->in_page_array);
}
if (dma->out_page_array) {
for (count = 0; count < dma->out_num_pages; count++) {
if (!PageReserved(dma->out_page_array[count]))
SetPageDirty(dma->out_page_array[count]);
flush_dcache_page(dma->out_page_array[count]);
page_cache_release(dma->out_page_array[count]);
}
kfree(dma->out_page_array);
}
/* Reset all the values */
dma->in_page_array = NULL;
dma->out_page_array = NULL;
dma->in_num_pages = 0;
dma->out_num_pages = 0;
dma->in_map_array = NULL;
dma->out_map_array = NULL;
dma->in_map_num_entries = 0;
dma->out_map_num_entries = 0;
}
sep->nr_dcb_creat = 0;
sep->num_lli_tables_created = 0;
return 0;
}
/**
* sep_request_daemon_mmap - maps the shared area to user space
* @filp: pointer to struct file
* @vma: pointer to vm_area_struct
*
* Called by the kernel when the daemon attempts an mmap() syscall
* using our handle.
*/
static int sep_request_daemon_mmap(struct file *filp,
struct vm_area_struct *vma)
{
struct sep_device *sep = filp->private_data;
dma_addr_t bus_address;
int error = 0;
if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) {
error = -EINVAL;
goto end_function;
}
/* Get physical address */
bus_address = sep->shared_bus;
if (remap_pfn_range(vma, vma->vm_start, bus_address >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot)) {
dev_warn(&sep->pdev->dev, "remap_page_range failed\n");
error = -EAGAIN;
goto end_function;
}
end_function:
return error;
}
/**
* sep_request_daemon_poll - poll implementation
* @sep: struct sep_device * for current SEP device
* @filp: struct file * for open file
* @wait: poll_table * for poll
*
* Called when our device is part of a poll() or select() syscall
*/
static unsigned int sep_request_daemon_poll(struct file *filp,
poll_table *wait)
{
u32 mask = 0;
/* GPR2 register */
u32 retval2;
unsigned long lck_flags;
struct sep_device *sep = filp->private_data;
poll_wait(filp, &sep->event_request_daemon, wait);
dev_dbg(&sep->pdev->dev, "daemon poll: send_ct is %lx reply ct is %lx\n",
sep->send_ct, sep->reply_ct);
spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
/* Check if the data is ready */
if (sep->send_ct == sep->reply_ct) {
spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
dev_dbg(&sep->pdev->dev,
"daemon poll: data check (GPR2) is %x\n", retval2);
/* Check if PRINT request */
if ((retval2 >> 30) & 0x1) {
dev_dbg(&sep->pdev->dev, "daemon poll: PRINTF request in\n");
mask |= POLLIN;
goto end_function;
}
/* Check if NVS request */
if (retval2 >> 31) {
dev_dbg(&sep->pdev->dev, "daemon poll: NVS request in\n");
mask |= POLLPRI | POLLWRNORM;
}
} else {
spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
dev_dbg(&sep->pdev->dev,
"daemon poll: no reply received; returning 0\n");
mask = 0;
}
end_function:
return mask;
}
/**
* sep_release - close a SEP device
* @inode: inode of SEP device
* @filp: file handle being closed
*
* Called on the final close of a SEP device.
*/
static int sep_release(struct inode *inode, struct file *filp)
{
struct sep_device *sep = filp->private_data;
dev_dbg(&sep->pdev->dev, "Release for pid %d\n", current->pid);
mutex_lock(&sep->sep_mutex);
/* Is this the process that has a transaction open?
* If so, lets reset pid_doing_transaction to 0 and
* clear the in use flags, and then wake up sep_event
* so that other processes can do transactions
*/
if (sep->pid_doing_transaction == current->pid) {
clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags);
clear_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags);
sep_free_dma_table_data_handler(sep);
wake_up(&sep->event);
sep->pid_doing_transaction = 0;
}
mutex_unlock(&sep->sep_mutex);
return 0;
}
/**
* sep_mmap - maps the shared area to user space
* @filp: pointer to struct file
* @vma: pointer to vm_area_struct
*
* Called on an mmap of our space via the normal SEP device
*/
static int sep_mmap(struct file *filp, struct vm_area_struct *vma)
{
dma_addr_t bus_addr;
struct sep_device *sep = filp->private_data;
unsigned long error = 0;
/* Set the transaction busy (own the device) */
wait_event_interruptible(sep->event,
test_and_set_bit(SEP_MMAP_LOCK_BIT,
&sep->in_use_flags) == 0);
if (signal_pending(current)) {
error = -EINTR;
goto end_function_with_error;
}
/*
* The pid_doing_transaction indicates that this process
* now owns the facilities to performa a transaction with
* the SEP. While this process is performing a transaction,
* no other process who has the SEP device open can perform
* any transactions. This method allows more than one process
* to have the device open at any given time, which provides
* finer granularity for device utilization by multiple
* processes.
*/
mutex_lock(&sep->sep_mutex);
sep->pid_doing_transaction = current->pid;
mutex_unlock(&sep->sep_mutex);
/* Zero the pools and the number of data pool alocation pointers */
sep->data_pool_bytes_allocated = 0;
sep->num_of_data_allocations = 0;
/*
* Check that the size of the mapped range is as the size of the message
* shared area
*/
if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) {
error = -EINVAL;
goto end_function_with_error;
}
dev_dbg(&sep->pdev->dev, "shared_addr is %p\n", sep->shared_addr);
/* Get bus address */
bus_addr = sep->shared_bus;
if (remap_pfn_range(vma, vma->vm_start, bus_addr >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot)) {
dev_warn(&sep->pdev->dev, "remap_page_range failed\n");
error = -EAGAIN;
goto end_function_with_error;
}
goto end_function;
end_function_with_error:
/* Clear the bit */
clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags);
mutex_lock(&sep->sep_mutex);
sep->pid_doing_transaction = 0;
mutex_unlock(&sep->sep_mutex);
/* Raise event for stuck contextes */
wake_up(&sep->event);
end_function:
return error;
}
/**
* sep_poll - poll handler
* @filp: pointer to struct file
* @wait: pointer to poll_table
*
* Called by the OS when the kernel is asked to do a poll on
* a SEP file handle.
*/
static unsigned int sep_poll(struct file *filp, poll_table *wait)
{
u32 mask = 0;
u32 retval = 0;
u32 retval2 = 0;
unsigned long lck_flags;
struct sep_device *sep = filp->private_data;
/* Am I the process that owns the transaction? */
mutex_lock(&sep->sep_mutex);
if (current->pid != sep->pid_doing_transaction) {
dev_dbg(&sep->pdev->dev, "poll; wrong pid\n");
mask = POLLERR;
mutex_unlock(&sep->sep_mutex);
goto end_function;
}
mutex_unlock(&sep->sep_mutex);
/* Check if send command or send_reply were activated previously */
if (!test_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags)) {
mask = POLLERR;
goto end_function;
}
/* Add the event to the polling wait table */
dev_dbg(&sep->pdev->dev, "poll: calling wait sep_event\n");
poll_wait(filp, &sep->event, wait);
dev_dbg(&sep->pdev->dev, "poll: send_ct is %lx reply ct is %lx\n",
sep->send_ct, sep->reply_ct);
/* Check if error occurred during poll */
retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
if (retval2 != 0x0) {
dev_warn(&sep->pdev->dev, "poll; poll error %x\n", retval2);
mask |= POLLERR;
goto end_function;
}
spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
if (sep->send_ct == sep->reply_ct) {
spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
dev_dbg(&sep->pdev->dev, "poll: data ready check (GPR2) %x\n",
retval);
/* Check if printf request */
if ((retval >> 30) & 0x1) {
dev_dbg(&sep->pdev->dev, "poll: SEP printf request\n");
wake_up(&sep->event_request_daemon);
goto end_function;
}
/* Check if the this is SEP reply or request */
if (retval >> 31) {
dev_dbg(&sep->pdev->dev, "poll: SEP request\n");
wake_up(&sep->event_request_daemon);
} else {
dev_dbg(&sep->pdev->dev, "poll: normal return\n");
/* In case it is again by send_reply_comand */
clear_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags);
sep_dump_message(sep);
dev_dbg(&sep->pdev->dev,
"poll; SEP reply POLLIN | POLLRDNORM\n");
mask |= POLLIN | POLLRDNORM;
}
} else {
spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
dev_dbg(&sep->pdev->dev,
"poll; no reply received; returning mask of 0\n");
mask = 0;
}
end_function:
return mask;
}
/**
* sep_time_address - address in SEP memory of time
* @sep: SEP device we want the address from
*
* Return the address of the two dwords in memory used for time
* setting.
*/
static u32 *sep_time_address(struct sep_device *sep)
{
return sep->shared_addr + SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES;
}
/**
* sep_set_time - set the SEP time
* @sep: the SEP we are setting the time for
*
* Calculates time and sets it at the predefined address.
* Called with the SEP mutex held.
*/
static unsigned long sep_set_time(struct sep_device *sep)
{
struct timeval time;
u32 *time_addr; /* Address of time as seen by the kernel */
do_gettimeofday(&time);
/* Set value in the SYSTEM MEMORY offset */
time_addr = sep_time_address(sep);
time_addr[0] = SEP_TIME_VAL_TOKEN;
time_addr[1] = time.tv_sec;
dev_dbg(&sep->pdev->dev, "time.tv_sec is %lu\n", time.tv_sec);
dev_dbg(&sep->pdev->dev, "time_addr is %p\n", time_addr);
dev_dbg(&sep->pdev->dev, "sep->shared_addr is %p\n", sep->shared_addr);
return time.tv_sec;
}
/**
* sep_set_caller_id_handler - insert caller id entry
* @sep: SEP device
* @arg: pointer to struct caller_id_struct
*
* Inserts the data into the caller id table. Note that this function
* falls under the ioctl lock
*/
static int sep_set_caller_id_handler(struct sep_device *sep, unsigned long arg)
{
void __user *hash;
int error = 0;
int i;
struct caller_id_struct command_args;
for (i = 0; i < SEP_CALLER_ID_TABLE_NUM_ENTRIES; i++) {
if (sep->caller_id_table[i].pid == 0)
break;
}
if (i == SEP_CALLER_ID_TABLE_NUM_ENTRIES) {
dev_dbg(&sep->pdev->dev, "no more caller id entries left\n");
dev_dbg(&sep->pdev->dev, "maximum number is %d\n",
SEP_CALLER_ID_TABLE_NUM_ENTRIES);
error = -EUSERS;
goto end_function;
}
/* Copy the data */
if (copy_from_user(&command_args, (void __user *)arg,
sizeof(command_args))) {
error = -EFAULT;
goto end_function;
}
hash = (void __user *)(unsigned long)command_args.callerIdAddress;
if (!command_args.pid || !command_args.callerIdSizeInBytes) {
error = -EINVAL;
goto end_function;
}
dev_dbg(&sep->pdev->dev, "pid is %x\n", command_args.pid);
dev_dbg(&sep->pdev->dev, "callerIdSizeInBytes is %x\n",
command_args.callerIdSizeInBytes);
if (command_args.callerIdSizeInBytes >
SEP_CALLER_ID_HASH_SIZE_IN_BYTES) {
error = -EMSGSIZE;
goto end_function;
}
sep->caller_id_table[i].pid = command_args.pid;
if (copy_from_user(sep->caller_id_table[i].callerIdHash,
hash, command_args.callerIdSizeInBytes))
error = -EFAULT;
end_function:
return error;
}
/**
* sep_set_current_caller_id - set the caller id
* @sep: pointer to struct_sep_device
*
* Set the caller ID (if it exists) to the SEP. Note that this
* function falls under the ioctl lock
*/
static int sep_set_current_caller_id(struct sep_device *sep)
{
int i;
u32 *hash_buf_ptr;
/* Zero the previous value */
memset(sep->shared_addr + SEP_CALLER_ID_OFFSET_BYTES,
0, SEP_CALLER_ID_HASH_SIZE_IN_BYTES);
for (i = 0; i < SEP_CALLER_ID_TABLE_NUM_ENTRIES; i++) {
if (sep->caller_id_table[i].pid == current->pid) {
dev_dbg(&sep->pdev->dev, "Caller Id found\n");
memcpy(sep->shared_addr + SEP_CALLER_ID_OFFSET_BYTES,
(void *)(sep->caller_id_table[i].callerIdHash),
SEP_CALLER_ID_HASH_SIZE_IN_BYTES);
break;
}
}
/* Ensure data is in little endian */
hash_buf_ptr = (u32 *)sep->shared_addr +
SEP_CALLER_ID_OFFSET_BYTES;
for (i = 0; i < SEP_CALLER_ID_HASH_SIZE_IN_WORDS; i++)
hash_buf_ptr[i] = cpu_to_le32(hash_buf_ptr[i]);
return 0;
}
/**
* sep_send_command_handler - kick off a command
* @sep: SEP being signalled
*
* This function raises interrupt to SEP that signals that is has a new
* command from the host
*
* Note that this function does fall under the ioctl lock
*/
static int sep_send_command_handler(struct sep_device *sep)
{
unsigned long lck_flags;
int error = 0;
if (test_and_set_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags)) {
error = -EPROTO;
goto end_function;
}
sep_set_time(sep);
sep_set_current_caller_id(sep);
sep_dump_message(sep);
/* Update counter */
spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
sep->send_ct++;
spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
dev_dbg(&sep->pdev->dev,
"sep_send_command_handler send_ct %lx reply_ct %lx\n",
sep->send_ct, sep->reply_ct);
/* Send interrupt to SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2);
end_function:
return error;
}
/**
* sep_allocate_data_pool_memory_handler -allocate pool memory
* @sep: pointer to struct sep_device
* @arg: pointer to struct alloc_struct
*
* This function handles the allocate data pool memory request
* This function returns calculates the bus address of the
* allocated memory, and the offset of this area from the mapped address.
* Therefore, the FVOs in user space can calculate the exact virtual
* address of this allocated memory
*/
static int sep_allocate_data_pool_memory_handler(struct sep_device *sep,
unsigned long arg)
{
int error = 0;
struct alloc_struct command_args;
/* Holds the allocated buffer address in the system memory pool */
u32 *token_addr;
if (copy_from_user(&command_args, (void __user *)arg,
sizeof(struct alloc_struct))) {
error = -EFAULT;
goto end_function;
}
/* Allocate memory */
if ((sep->data_pool_bytes_allocated + command_args.num_bytes) >
SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) {
error = -ENOMEM;
goto end_function;
}
dev_dbg(&sep->pdev->dev,
"data pool bytes_allocated: %x\n", (int)sep->data_pool_bytes_allocated);
dev_dbg(&sep->pdev->dev,
"offset: %x\n", SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES);
/* Set the virtual and bus address */
command_args.offset = SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES +
sep->data_pool_bytes_allocated;
/* Place in the shared area that is known by the SEP */
token_addr = (u32 *)(sep->shared_addr +
SEP_DRIVER_DATA_POOL_ALLOCATION_OFFSET_IN_BYTES +
(sep->num_of_data_allocations)*2*sizeof(u32));
token_addr[0] = SEP_DATA_POOL_POINTERS_VAL_TOKEN;
token_addr[1] = (u32)sep->shared_bus +
SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES +
sep->data_pool_bytes_allocated;
/* Write the memory back to the user space */
error = copy_to_user((void *)arg, (void *)&command_args,
sizeof(struct alloc_struct));
if (error) {
error = -EFAULT;
goto end_function;
}
/* Update the allocation */
sep->data_pool_bytes_allocated += command_args.num_bytes;
sep->num_of_data_allocations += 1;
end_function:
return error;
}
/**
* sep_lock_kernel_pages - map kernel pages for DMA
* @sep: pointer to struct sep_device
* @kernel_virt_addr: address of data buffer in kernel
* @data_size: size of data
* @lli_array_ptr: lli array
* @in_out_flag: input into device or output from device
*
* This function locks all the physical pages of the kernel virtual buffer
* and construct a basic lli array, where each entry holds the physical
* page address and the size that application data holds in this page
* This function is used only during kernel crypto mod calls from within
* the kernel (when ioctl is not used)
*/
static int sep_lock_kernel_pages(struct sep_device *sep,
unsigned long kernel_virt_addr,
u32 data_size,
struct sep_lli_entry **lli_array_ptr,
int in_out_flag)
{
int error = 0;
/* Array of lli */
struct sep_lli_entry *lli_array;
/* Map array */
struct sep_dma_map *map_array;
dev_dbg(&sep->pdev->dev, "lock kernel pages kernel_virt_addr is %08lx\n",
(unsigned long)kernel_virt_addr);
dev_dbg(&sep->pdev->dev, "data_size is %x\n", data_size);
lli_array = kmalloc(sizeof(struct sep_lli_entry), GFP_ATOMIC);
if (!lli_array) {
error = -ENOMEM;
goto end_function;
}
map_array = kmalloc(sizeof(struct sep_dma_map), GFP_ATOMIC);
if (!map_array) {
error = -ENOMEM;
goto end_function_with_error;
}
map_array[0].dma_addr =
dma_map_single(&sep->pdev->dev, (void *)kernel_virt_addr,
data_size, DMA_BIDIRECTIONAL);
map_array[0].size = data_size;
/*
* Set the start address of the first page - app data may start not at
* the beginning of the page
*/
lli_array[0].bus_address = (u32)map_array[0].dma_addr;
lli_array[0].block_size = map_array[0].size;
dev_dbg(&sep->pdev->dev,
"lli_array[0].bus_address is %08lx, lli_array[0].block_size is %x\n",
(unsigned long)lli_array[0].bus_address,
lli_array[0].block_size);
/* Set the output parameters */
if (in_out_flag == SEP_DRIVER_IN_FLAG) {
*lli_array_ptr = lli_array;
sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = 1;
sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL;
sep->dma_res_arr[sep->nr_dcb_creat].in_map_array = map_array;
sep->dma_res_arr[sep->nr_dcb_creat].in_map_num_entries = 1;
} else {
*lli_array_ptr = lli_array;
sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages = 1;
sep->dma_res_arr[sep->nr_dcb_creat].out_page_array = NULL;
sep->dma_res_arr[sep->nr_dcb_creat].out_map_array = map_array;
sep->dma_res_arr[sep->nr_dcb_creat].out_map_num_entries = 1;
}
goto end_function;
end_function_with_error:
kfree(lli_array);
end_function:
return error;
}
/**
* sep_lock_user_pages - lock and map user pages for DMA
* @sep: pointer to struct sep_device
* @app_virt_addr: user memory data buffer
* @data_size: size of data buffer
* @lli_array_ptr: lli array
* @in_out_flag: input or output to device
*
* This function locks all the physical pages of the application
* virtual buffer and construct a basic lli array, where each entry
* holds the physical page address and the size that application
* data holds in this physical pages
*/
static int sep_lock_user_pages(struct sep_device *sep,
u32 app_virt_addr,
u32 data_size,
struct sep_lli_entry **lli_array_ptr,
int in_out_flag)
{
int error = 0;
u32 count;
int result;
/* The the page of the end address of the user space buffer */
u32 end_page;
/* The page of the start address of the user space buffer */
u32 start_page;
/* The range in pages */
u32 num_pages;
/* Array of pointers to page */
struct page **page_array;
/* Array of lli */
struct sep_lli_entry *lli_array;
/* Map array */
struct sep_dma_map *map_array;
/* Direction of the DMA mapping for locked pages */
enum dma_data_direction dir;
/* Set start and end pages and num pages */
end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = app_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
dev_dbg(&sep->pdev->dev, "lock user pages app_virt_addr is %x\n", app_virt_addr);
dev_dbg(&sep->pdev->dev, "data_size is %x\n", data_size);
dev_dbg(&sep->pdev->dev, "start_page is %x\n", start_page);
dev_dbg(&sep->pdev->dev, "end_page is %x\n", end_page);
dev_dbg(&sep->pdev->dev, "num_pages is %x\n", num_pages);
/* Allocate array of pages structure pointers */
page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC);
if (!page_array) {
error = -ENOMEM;
goto end_function;
}
map_array = kmalloc(sizeof(struct sep_dma_map) * num_pages, GFP_ATOMIC);
if (!map_array) {
dev_warn(&sep->pdev->dev, "kmalloc for map_array failed\n");
error = -ENOMEM;
goto end_function_with_error1;
}
lli_array = kmalloc(sizeof(struct sep_lli_entry) * num_pages,
GFP_ATOMIC);
if (!lli_array) {
dev_warn(&sep->pdev->dev, "kmalloc for lli_array failed\n");
error = -ENOMEM;
goto end_function_with_error2;
}
/* Convert the application virtual address into a set of physical */
down_read(&current->mm->mmap_sem);
result = get_user_pages(current, current->mm, app_virt_addr,
num_pages,
((in_out_flag == SEP_DRIVER_IN_FLAG) ? 0 : 1),
0, page_array, NULL);
up_read(&current->mm->mmap_sem);
/* Check the number of pages locked - if not all then exit with error */
if (result != num_pages) {
dev_warn(&sep->pdev->dev,
"not all pages locked by get_user_pages\n");
error = -ENOMEM;
goto end_function_with_error3;
}
dev_dbg(&sep->pdev->dev, "get_user_pages succeeded\n");
/* Set direction */
if (in_out_flag == SEP_DRIVER_IN_FLAG)
dir = DMA_TO_DEVICE;
else
dir = DMA_FROM_DEVICE;
/*
* Fill the array using page array data and
* map the pages - this action will also flush the cache as needed
*/
for (count = 0; count < num_pages; count++) {
/* Fill the map array */
map_array[count].dma_addr =
dma_map_page(&sep->pdev->dev, page_array[count],
0, PAGE_SIZE, /*dir*/DMA_BIDIRECTIONAL);
map_array[count].size = PAGE_SIZE;
/* Fill the lli array entry */
lli_array[count].bus_address = (u32)map_array[count].dma_addr;
lli_array[count].block_size = PAGE_SIZE;
dev_warn(&sep->pdev->dev, "lli_array[%x].bus_address is %08lx, lli_array[%x].block_size is %x\n",
count, (unsigned long)lli_array[count].bus_address,
count, lli_array[count].block_size);
}
/* Check the offset for the first page */
lli_array[0].bus_address =
lli_array[0].bus_address + (app_virt_addr & (~PAGE_MASK));
/* Check that not all the data is in the first page only */
if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size =
PAGE_SIZE - (app_virt_addr & (~PAGE_MASK));
dev_dbg(&sep->pdev->dev,
"lli_array[0].bus_address is %08lx, lli_array[0].block_size is %x\n",
(unsigned long)lli_array[count].bus_address,
lli_array[count].block_size);
/* Check the size of the last page */
if (num_pages > 1) {
lli_array[num_pages - 1].block_size =
(app_virt_addr + data_size) & (~PAGE_MASK);
if (lli_array[num_pages - 1].block_size == 0)
lli_array[num_pages - 1].block_size = PAGE_SIZE;
dev_warn(&sep->pdev->dev,
"lli_array[%x].bus_address is "
"%08lx, lli_array[%x].block_size is %x\n",
num_pages - 1,
(unsigned long)lli_array[num_pages - 1].bus_address,
num_pages - 1,
lli_array[num_pages - 1].block_size);
}
/* Set output params according to the in_out flag */
if (in_out_flag == SEP_DRIVER_IN_FLAG) {
*lli_array_ptr = lli_array;
sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = num_pages;
sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = page_array;
sep->dma_res_arr[sep->nr_dcb_creat].in_map_array = map_array;
sep->dma_res_arr[sep->nr_dcb_creat].in_map_num_entries =
num_pages;
} else {
*lli_array_ptr = lli_array;
sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages = num_pages;
sep->dma_res_arr[sep->nr_dcb_creat].out_page_array =
page_array;
sep->dma_res_arr[sep->nr_dcb_creat].out_map_array = map_array;
sep->dma_res_arr[sep->nr_dcb_creat].out_map_num_entries =
num_pages;
}
goto end_function;
end_function_with_error3:
/* Free lli array */
kfree(lli_array);
end_function_with_error2:
kfree(map_array);
end_function_with_error1:
/* Free page array */
kfree(page_array);
end_function:
return error;
}
/**
* u32 sep_calculate_lli_table_max_size - size the LLI table
* @sep: pointer to struct sep_device
* @lli_in_array_ptr
* @num_array_entries
* @last_table_flag
*
* This function calculates the size of data that can be inserted into
* the lli table from this array, such that either the table is full
* (all entries are entered), or there are no more entries in the
* lli array
*/
static u32 sep_calculate_lli_table_max_size(struct sep_device *sep,
struct sep_lli_entry *lli_in_array_ptr,
u32 num_array_entries,
u32 *last_table_flag)
{
u32 counter;
/* Table data size */
u32 table_data_size = 0;
/* Data size for the next table */
u32 next_table_data_size;
*last_table_flag = 0;
/*
* Calculate the data in the out lli table till we fill the whole
* table or till the data has ended
*/
for (counter = 0;
(counter < (SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP - 1)) &&
(counter < num_array_entries); counter++)
table_data_size += lli_in_array_ptr[counter].block_size;
/*
* Check if we reached the last entry,
* meaning this ia the last table to build,
* and no need to check the block alignment
*/
if (counter == num_array_entries) {
/* Set the last table flag */
*last_table_flag = 1;
goto end_function;
}
/*
* Calculate the data size of the next table.
* Stop if no entries left or if data size is more the DMA restriction
*/
next_table_data_size = 0;
for (; counter < num_array_entries; counter++) {
next_table_data_size += lli_in_array_ptr[counter].block_size;
if (next_table_data_size >= SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE)
break;
}
/*
* Check if the next table data size is less then DMA rstriction.
* if it is - recalculate the current table size, so that the next
* table data size will be adaquete for DMA
*/
if (next_table_data_size &&
next_table_data_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE)
table_data_size -= (SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE -
next_table_data_size);
end_function:
return table_data_size;
}
/**
* sep_build_lli_table - build an lli array for the given table
* @sep: pointer to struct sep_device
* @lli_array_ptr: pointer to lli array
* @lli_table_ptr: pointer to lli table
* @num_processed_entries_ptr: pointer to number of entries
* @num_table_entries_ptr: pointer to number of tables
* @table_data_size: total data size
*
* Builds ant lli table from the lli_array according to
* the given size of data
*/
static void sep_build_lli_table(struct sep_device *sep,
struct sep_lli_entry *lli_array_ptr,
struct sep_lli_entry *lli_table_ptr,
u32 *num_processed_entries_ptr,
u32 *num_table_entries_ptr,
u32 table_data_size)
{
/* Current table data size */
u32 curr_table_data_size;
/* Counter of lli array entry */
u32 array_counter;
/* Init currrent table data size and lli array entry counter */
curr_table_data_size = 0;
array_counter = 0;
*num_table_entries_ptr = 1;
dev_dbg(&sep->pdev->dev, "build lli table table_data_size is %x\n", table_data_size);
/* Fill the table till table size reaches the needed amount */
while (curr_table_data_size < table_data_size) {
/* Update the number of entries in table */
(*num_table_entries_ptr)++;
lli_table_ptr->bus_address =
cpu_to_le32(lli_array_ptr[array_counter].bus_address);
lli_table_ptr->block_size =
cpu_to_le32(lli_array_ptr[array_counter].block_size);
curr_table_data_size += lli_array_ptr[array_counter].block_size;
dev_dbg(&sep->pdev->dev, "lli_table_ptr is %p\n",
lli_table_ptr);
dev_dbg(&sep->pdev->dev, "lli_table_ptr->bus_address is %08lx\n",
(unsigned long)lli_table_ptr->bus_address);
dev_dbg(&sep->pdev->dev, "lli_table_ptr->block_size is %x\n",
lli_table_ptr->block_size);
/* Check for overflow of the table data */
if (curr_table_data_size > table_data_size) {
dev_dbg(&sep->pdev->dev,
"curr_table_data_size too large\n");
/* Update the size of block in the table */
lli_table_ptr->block_size -=
cpu_to_le32((curr_table_data_size - table_data_size));
/* Update the physical address in the lli array */
lli_array_ptr[array_counter].bus_address +=
cpu_to_le32(lli_table_ptr->block_size);
/* Update the block size left in the lli array */
lli_array_ptr[array_counter].block_size =
(curr_table_data_size - table_data_size);
} else
/* Advance to the next entry in the lli_array */
array_counter++;
dev_dbg(&sep->pdev->dev,
"lli_table_ptr->bus_address is %08lx\n",
(unsigned long)lli_table_ptr->bus_address);
dev_dbg(&sep->pdev->dev,
"lli_table_ptr->block_size is %x\n",
lli_table_ptr->block_size);
/* Move to the next entry in table */
lli_table_ptr++;
}
/* Set the info entry to default */
lli_table_ptr->bus_address = 0xffffffff;
lli_table_ptr->block_size = 0;
/* Set the output parameter */
*num_processed_entries_ptr += array_counter;
}
/**
* sep_shared_area_virt_to_bus - map shared area to bus address
* @sep: pointer to struct sep_device
* @virt_address: virtual address to convert
*
* This functions returns the physical address inside shared area according
* to the virtual address. It can be either on the externa RAM device
* (ioremapped), or on the system RAM
* This implementation is for the external RAM
*/
static dma_addr_t sep_shared_area_virt_to_bus(struct sep_device *sep,
void *virt_address)
{
dev_dbg(&sep->pdev->dev, "sh virt to phys v %p\n", virt_address);
dev_dbg(&sep->pdev->dev, "sh virt to phys p %08lx\n",
(unsigned long)
sep->shared_bus + (virt_address - sep->shared_addr));
return sep->shared_bus + (size_t)(virt_address - sep->shared_addr);
}
/**
* sep_shared_area_bus_to_virt - map shared area bus address to kernel
* @sep: pointer to struct sep_device
* @bus_address: bus address to convert
*
* This functions returns the virtual address inside shared area
* according to the physical address. It can be either on the
* externa RAM device (ioremapped), or on the system RAM
* This implementation is for the external RAM
*/
static void *sep_shared_area_bus_to_virt(struct sep_device *sep,
dma_addr_t bus_address)
{
dev_dbg(&sep->pdev->dev, "shared bus to virt b=%lx v=%lx\n",
(unsigned long)bus_address, (unsigned long)(sep->shared_addr +
(size_t)(bus_address - sep->shared_bus)));
return sep->shared_addr + (size_t)(bus_address - sep->shared_bus);
}
/**
* sep_debug_print_lli_tables - dump LLI table
* @sep: pointer to struct sep_device
* @lli_table_ptr: pointer to sep_lli_entry
* @num_table_entries: number of entries
* @table_data_size: total data size
*
* Walk the the list of the print created tables and print all the data
*/
static void sep_debug_print_lli_tables(struct sep_device *sep,
struct sep_lli_entry *lli_table_ptr,
unsigned long num_table_entries,
unsigned long table_data_size)
{
unsigned long table_count = 1;
unsigned long entries_count = 0;
dev_dbg(&sep->pdev->dev, "sep_debug_print_lli_tables start\n");
while ((unsigned long) lli_table_ptr->bus_address != 0xffffffff) {
dev_dbg(&sep->pdev->dev,
"lli table %08lx, table_data_size is %lu\n",
table_count, table_data_size);
dev_dbg(&sep->pdev->dev, "num_table_entries is %lu\n",
num_table_entries);
/* Print entries of the table (without info entry) */
for (entries_count = 0; entries_count < num_table_entries;
entries_count++, lli_table_ptr++) {
dev_dbg(&sep->pdev->dev,
"lli_table_ptr address is %08lx\n",
(unsigned long) lli_table_ptr);
dev_dbg(&sep->pdev->dev,
"phys address is %08lx block size is %x\n",
(unsigned long)lli_table_ptr->bus_address,
lli_table_ptr->block_size);
}
/* Point to the info entry */
lli_table_ptr--;
dev_dbg(&sep->pdev->dev,
"phys lli_table_ptr->block_size is %x\n",
lli_table_ptr->block_size);
dev_dbg(&sep->pdev->dev,
"phys lli_table_ptr->physical_address is %08lu\n",
(unsigned long)lli_table_ptr->bus_address);
table_data_size = lli_table_ptr->block_size & 0xffffff;
num_table_entries = (lli_table_ptr->block_size >> 24) & 0xff;
dev_dbg(&sep->pdev->dev,
"phys table_data_size is %lu num_table_entries is"
" %lu bus_address is%lu\n", table_data_size,
num_table_entries, (unsigned long)lli_table_ptr->bus_address);
if ((unsigned long)lli_table_ptr->bus_address != 0xffffffff)
lli_table_ptr = (struct sep_lli_entry *)
sep_shared_bus_to_virt(sep,
(unsigned long)lli_table_ptr->bus_address);
table_count++;
}
dev_dbg(&sep->pdev->dev, "sep_debug_print_lli_tables end\n");
}
/**
* sep_prepare_empty_lli_table - create a blank LLI table
* @sep: pointer to struct sep_device
* @lli_table_addr_ptr: pointer to lli table
* @num_entries_ptr: pointer to number of entries
* @table_data_size_ptr: point to table data size
*
* This function creates empty lli tables when there is no data
*/
static void sep_prepare_empty_lli_table(struct sep_device *sep,
dma_addr_t *lli_table_addr_ptr,
u32 *num_entries_ptr,
u32 *table_data_size_ptr)
{
struct sep_lli_entry *lli_table_ptr;
/* Find the area for new table */
lli_table_ptr =
(struct sep_lli_entry *)(sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
sep->num_lli_tables_created * sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
lli_table_ptr->bus_address = 0;
lli_table_ptr->block_size = 0;
lli_table_ptr++;
lli_table_ptr->bus_address = 0xFFFFFFFF;
lli_table_ptr->block_size = 0;
/* Set the output parameter value */
*lli_table_addr_ptr = sep->shared_bus +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
sep->num_lli_tables_created *
sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* Set the num of entries and table data size for empty table */
*num_entries_ptr = 2;
*table_data_size_ptr = 0;
/* Update the number of created tables */
sep->num_lli_tables_created++;
}
/**
* sep_prepare_input_dma_table - prepare input DMA mappings
* @sep: pointer to struct sep_device
* @data_size:
* @block_size:
* @lli_table_ptr:
* @num_entries_ptr:
* @table_data_size_ptr:
* @is_kva: set for kernel data (kernel cryptio call)
*
* This function prepares only input DMA table for synhronic symmetric
* operations (HASH)
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
static int sep_prepare_input_dma_table(struct sep_device *sep,
unsigned long app_virt_addr,
u32 data_size,
u32 block_size,
dma_addr_t *lli_table_ptr,
u32 *num_entries_ptr,
u32 *table_data_size_ptr,
bool is_kva)
{
int error = 0;
/* Pointer to the info entry of the table - the last entry */
struct sep_lli_entry *info_entry_ptr;
/* Array of pointers to page */
struct sep_lli_entry *lli_array_ptr;
/* Points to the first entry to be processed in the lli_in_array */
u32 current_entry = 0;
/* Num entries in the virtual buffer */
u32 sep_lli_entries = 0;
/* Lli table pointer */
struct sep_lli_entry *in_lli_table_ptr;
/* The total data in one table */
u32 table_data_size = 0;
/* Flag for last table */
u32 last_table_flag = 0;
/* Number of entries in lli table */
u32 num_entries_in_table = 0;
/* Next table address */
void *lli_table_alloc_addr = 0;
dev_dbg(&sep->pdev->dev, "prepare intput dma table data_size is %x\n", data_size);
dev_dbg(&sep->pdev->dev, "block_size is %x\n", block_size);
/* Initialize the pages pointers */
sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL;
sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = 0;
/* Set the kernel address for first table to be allocated */
lli_table_alloc_addr = (void *)(sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
sep->num_lli_tables_created * sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
if (data_size == 0) {
/* Special case - create meptu table - 2 entries, zero data */
sep_prepare_empty_lli_table(sep, lli_table_ptr,
num_entries_ptr, table_data_size_ptr);
goto update_dcb_counter;
}
/* Check if the pages are in Kernel Virtual Address layout */
if (is_kva == true)
/* Lock the pages in the kernel */
error = sep_lock_kernel_pages(sep, app_virt_addr,
data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG);
else
/*
* Lock the pages of the user buffer
* and translate them to pages
*/
error = sep_lock_user_pages(sep, app_virt_addr,
data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG);
if (error)
goto end_function;
dev_dbg(&sep->pdev->dev, "output sep_in_num_pages is %x\n",
sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages);
current_entry = 0;
info_entry_ptr = NULL;
sep_lli_entries = sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages;
/* Loop till all the entries in in array are not processed */
while (current_entry < sep_lli_entries) {
/* Set the new input and output tables */
in_lli_table_ptr =
(struct sep_lli_entry *)lli_table_alloc_addr;
lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
if (lli_table_alloc_addr >
((void *)sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) {
error = -ENOMEM;
goto end_function_error;
}
/* Update the number of created tables */
sep->num_lli_tables_created++;
/* Calculate the maximum size of data for input table */
table_data_size = sep_calculate_lli_table_max_size(sep,
&lli_array_ptr[current_entry],
(sep_lli_entries - current_entry),
&last_table_flag);
/*
* If this is not the last table -
* then align it to the block size
*/
if (!last_table_flag)
table_data_size =
(table_data_size / block_size) * block_size;
dev_dbg(&sep->pdev->dev, "output table_data_size is %x\n",
table_data_size);
/* Construct input lli table */
sep_build_lli_table(sep, &lli_array_ptr[current_entry],
in_lli_table_ptr,
&current_entry, &num_entries_in_table, table_data_size);
if (info_entry_ptr == NULL) {
/* Set the output parameters to physical addresses */
*lli_table_ptr = sep_shared_area_virt_to_bus(sep,
in_lli_table_ptr);
*num_entries_ptr = num_entries_in_table;
*table_data_size_ptr = table_data_size;
dev_dbg(&sep->pdev->dev,
"output lli_table_in_ptr is %08lx\n",
(unsigned long)*lli_table_ptr);
} else {
/* Update the info entry of the previous in table */
info_entry_ptr->bus_address =
sep_shared_area_virt_to_bus(sep,
in_lli_table_ptr);
info_entry_ptr->block_size =
((num_entries_in_table) << 24) |
(table_data_size);
}
/* Save the pointer to the info entry of the current tables */
info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
}
/* Print input tables */
sep_debug_print_lli_tables(sep, (struct sep_lli_entry *)
sep_shared_area_bus_to_virt(sep, *lli_table_ptr),
*num_entries_ptr, *table_data_size_ptr);
/* The array of the pages */
kfree(lli_array_ptr);
update_dcb_counter:
/* Update DCB counter */
sep->nr_dcb_creat++;
goto end_function;
end_function_error:
/* Free all the allocated resources */
kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_map_array);
kfree(lli_array_ptr);
kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_page_array);
end_function:
return error;
}
/**
* sep_construct_dma_tables_from_lli - prepare AES/DES mappings
* @sep: pointer to struct sep_device
* @lli_in_array:
* @sep_in_lli_entries:
* @lli_out_array:
* @sep_out_lli_entries
* @block_size
* @lli_table_in_ptr
* @lli_table_out_ptr
* @in_num_entries_ptr
* @out_num_entries_ptr
* @table_data_size_ptr
*
* This function creates the input and output DMA tables for
* symmetric operations (AES/DES) according to the block
* size from LLI arays
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
static int sep_construct_dma_tables_from_lli(
struct sep_device *sep,
struct sep_lli_entry *lli_in_array,
u32 sep_in_lli_entries,
struct sep_lli_entry *lli_out_array,
u32 sep_out_lli_entries,
u32 block_size,
dma_addr_t *lli_table_in_ptr,
dma_addr_t *lli_table_out_ptr,
u32 *in_num_entries_ptr,
u32 *out_num_entries_ptr,
u32 *table_data_size_ptr)
{
/* Points to the area where next lli table can be allocated */
void *lli_table_alloc_addr = 0;
/* Input lli table */
struct sep_lli_entry *in_lli_table_ptr = NULL;
/* Output lli table */
struct sep_lli_entry *out_lli_table_ptr = NULL;
/* Pointer to the info entry of the table - the last entry */
struct sep_lli_entry *info_in_entry_ptr = NULL;
/* Pointer to the info entry of the table - the last entry */
struct sep_lli_entry *info_out_entry_ptr = NULL;
/* Points to the first entry to be processed in the lli_in_array */
u32 current_in_entry = 0;
/* Points to the first entry to be processed in the lli_out_array */
u32 current_out_entry = 0;
/* Max size of the input table */
u32 in_table_data_size = 0;
/* Max size of the output table */
u32 out_table_data_size = 0;
/* Flag te signifies if this is the last tables build */
u32 last_table_flag = 0;
/* The data size that should be in table */
u32 table_data_size = 0;
/* Number of etnries in the input table */
u32 num_entries_in_table = 0;
/* Number of etnries in the output table */
u32 num_entries_out_table = 0;
/* Initiate to point after the message area */
lli_table_alloc_addr = (void *)(sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
(sep->num_lli_tables_created *
(sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP)));
/* Loop till all the entries in in array are not processed */
while (current_in_entry < sep_in_lli_entries) {
/* Set the new input and output tables */
in_lli_table_ptr =
(struct sep_lli_entry *)lli_table_alloc_addr;
lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* Set the first output tables */
out_lli_table_ptr =
(struct sep_lli_entry *)lli_table_alloc_addr;
/* Check if the DMA table area limit was overrun */
if ((lli_table_alloc_addr + sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP) >
((void *)sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) {
dev_warn(&sep->pdev->dev, "dma table limit overrun\n");
return -ENOMEM;
}
/* Update the number of the lli tables created */
sep->num_lli_tables_created += 2;
lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* Calculate the maximum size of data for input table */
in_table_data_size =
sep_calculate_lli_table_max_size(sep,
&lli_in_array[current_in_entry],
(sep_in_lli_entries - current_in_entry),
&last_table_flag);
/* Calculate the maximum size of data for output table */
out_table_data_size =
sep_calculate_lli_table_max_size(sep,
&lli_out_array[current_out_entry],
(sep_out_lli_entries - current_out_entry),
&last_table_flag);
dev_dbg(&sep->pdev->dev,
"construct tables from lli in_table_data_size is %x\n",
in_table_data_size);
dev_dbg(&sep->pdev->dev,
"construct tables from lli out_table_data_size is %x\n",
out_table_data_size);
table_data_size = in_table_data_size;
if (!last_table_flag) {
/*
* If this is not the last table,
* then must check where the data is smallest
* and then align it to the block size
*/
if (table_data_size > out_table_data_size)
table_data_size = out_table_data_size;
/*
* Now calculate the table size so that
* it will be module block size
*/
table_data_size = (table_data_size / block_size) *
block_size;
}
/* Construct input lli table */
sep_build_lli_table(sep, &lli_in_array[current_in_entry],
in_lli_table_ptr,
&current_in_entry,
&num_entries_in_table,
table_data_size);
/* Construct output lli table */
sep_build_lli_table(sep, &lli_out_array[current_out_entry],
out_lli_table_ptr,
&current_out_entry,
&num_entries_out_table,
table_data_size);
/* If info entry is null - this is the first table built */
if (info_in_entry_ptr == NULL) {
/* Set the output parameters to physical addresses */
*lli_table_in_ptr =
sep_shared_area_virt_to_bus(sep, in_lli_table_ptr);
*in_num_entries_ptr = num_entries_in_table;
*lli_table_out_ptr =
sep_shared_area_virt_to_bus(sep,
out_lli_table_ptr);
*out_num_entries_ptr = num_entries_out_table;
*table_data_size_ptr = table_data_size;
dev_dbg(&sep->pdev->dev,
"output lli_table_in_ptr is %08lx\n",
(unsigned long)*lli_table_in_ptr);
dev_dbg(&sep->pdev->dev,
"output lli_table_out_ptr is %08lx\n",
(unsigned long)*lli_table_out_ptr);
} else {
/* Update the info entry of the previous in table */
info_in_entry_ptr->bus_address =
sep_shared_area_virt_to_bus(sep,
in_lli_table_ptr);
info_in_entry_ptr->block_size =
((num_entries_in_table) << 24) |
(table_data_size);
/* Update the info entry of the previous in table */
info_out_entry_ptr->bus_address =
sep_shared_area_virt_to_bus(sep,
out_lli_table_ptr);
info_out_entry_ptr->block_size =
((num_entries_out_table) << 24) |
(table_data_size);
dev_dbg(&sep->pdev->dev,
"output lli_table_in_ptr:%08lx %08x\n",
(unsigned long)info_in_entry_ptr->bus_address,
info_in_entry_ptr->block_size);
dev_dbg(&sep->pdev->dev,
"output lli_table_out_ptr:%08lx %08x\n",
(unsigned long)info_out_entry_ptr->bus_address,
info_out_entry_ptr->block_size);
}
/* Save the pointer to the info entry of the current tables */
info_in_entry_ptr = in_lli_table_ptr +
num_entries_in_table - 1;
info_out_entry_ptr = out_lli_table_ptr +
num_entries_out_table - 1;
dev_dbg(&sep->pdev->dev,
"output num_entries_out_table is %x\n",
(u32)num_entries_out_table);
dev_dbg(&sep->pdev->dev,
"output info_in_entry_ptr is %lx\n",
(unsigned long)info_in_entry_ptr);
dev_dbg(&sep->pdev->dev,
"output info_out_entry_ptr is %lx\n",
(unsigned long)info_out_entry_ptr);
}
/* Print input tables */
sep_debug_print_lli_tables(sep,
(struct sep_lli_entry *)
sep_shared_area_bus_to_virt(sep, *lli_table_in_ptr),
*in_num_entries_ptr,
*table_data_size_ptr);
/* Print output tables */
sep_debug_print_lli_tables(sep,
(struct sep_lli_entry *)
sep_shared_area_bus_to_virt(sep, *lli_table_out_ptr),
*out_num_entries_ptr,
*table_data_size_ptr);
return 0;
}
/**
* sep_prepare_input_output_dma_table - prepare DMA I/O table
* @app_virt_in_addr:
* @app_virt_out_addr:
* @data_size:
* @block_size:
* @lli_table_in_ptr:
* @lli_table_out_ptr:
* @in_num_entries_ptr:
* @out_num_entries_ptr:
* @table_data_size_ptr:
* @is_kva: set for kernel data; used only for kernel crypto module
*
* This function builds input and output DMA tables for synhronic
* symmetric operations (AES, DES, HASH). It also checks that each table
* is of the modular block size
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
static int sep_prepare_input_output_dma_table(struct sep_device *sep,
unsigned long app_virt_in_addr,
unsigned long app_virt_out_addr,
u32 data_size,
u32 block_size,
dma_addr_t *lli_table_in_ptr,
dma_addr_t *lli_table_out_ptr,
u32 *in_num_entries_ptr,
u32 *out_num_entries_ptr,
u32 *table_data_size_ptr,
bool is_kva)
{
int error = 0;
/* Array of pointers of page */
struct sep_lli_entry *lli_in_array;
/* Array of pointers of page */
struct sep_lli_entry *lli_out_array;
if (data_size == 0) {
/* Prepare empty table for input and output */
sep_prepare_empty_lli_table(sep, lli_table_in_ptr,
in_num_entries_ptr, table_data_size_ptr);
sep_prepare_empty_lli_table(sep, lli_table_out_ptr,
out_num_entries_ptr, table_data_size_ptr);
goto update_dcb_counter;
}
/* Initialize the pages pointers */
sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL;
sep->dma_res_arr[sep->nr_dcb_creat].out_page_array = NULL;
/* Lock the pages of the buffer and translate them to pages */
if (is_kva == true) {
error = sep_lock_kernel_pages(sep, app_virt_in_addr,
data_size, &lli_in_array, SEP_DRIVER_IN_FLAG);
if (error) {
dev_warn(&sep->pdev->dev,
"lock kernel for in failed\n");
goto end_function;
}
error = sep_lock_kernel_pages(sep, app_virt_out_addr,
data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG);
if (error) {
dev_warn(&sep->pdev->dev,
"lock kernel for out failed\n");
goto end_function;
}
}
else {
error = sep_lock_user_pages(sep, app_virt_in_addr,
data_size, &lli_in_array, SEP_DRIVER_IN_FLAG);
if (error) {
dev_warn(&sep->pdev->dev,
"sep_lock_user_pages for input virtual buffer failed\n");
goto end_function;
}
error = sep_lock_user_pages(sep, app_virt_out_addr,
data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG);
if (error) {
dev_warn(&sep->pdev->dev,
"sep_lock_user_pages for output virtual buffer failed\n");
goto end_function_free_lli_in;
}
}
dev_dbg(&sep->pdev->dev, "prep input output dma table sep_in_num_pages is %x\n",
sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages);
dev_dbg(&sep->pdev->dev, "sep_out_num_pages is %x\n",
sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages);
dev_dbg(&sep->pdev->dev, "SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP is %x\n",
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
/* Call the function that creates table from the lli arrays */
error = sep_construct_dma_tables_from_lli(sep, lli_in_array,
sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages,
lli_out_array,
sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages,
block_size, lli_table_in_ptr, lli_table_out_ptr,
in_num_entries_ptr, out_num_entries_ptr, table_data_size_ptr);
if (error) {
dev_warn(&sep->pdev->dev,
"sep_construct_dma_tables_from_lli failed\n");
goto end_function_with_error;
}
kfree(lli_out_array);
kfree(lli_in_array);
update_dcb_counter:
/* Update DCB counter */
sep->nr_dcb_creat++;
goto end_function;
end_function_with_error:
kfree(sep->dma_res_arr[sep->nr_dcb_creat].out_map_array);
kfree(sep->dma_res_arr[sep->nr_dcb_creat].out_page_array);
kfree(lli_out_array);
end_function_free_lli_in:
kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_map_array);
kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_page_array);
kfree(lli_in_array);
end_function:
return error;
}
/**
* sep_prepare_input_output_dma_table_in_dcb - prepare control blocks
* @app_in_address: unsigned long; for data buffer in (user space)
* @app_out_address: unsigned long; for data buffer out (user space)
* @data_in_size: u32; for size of data
* @block_size: u32; for block size
* @tail_block_size: u32; for size of tail block
* @isapplet: bool; to indicate external app
* @is_kva: bool; kernel buffer; only used for kernel crypto module
*
* This function prepares the linked DMA tables and puts the
* address for the linked list of tables inta a DCB (data control
* block) the address of which is known by the SEP hardware
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
static int sep_prepare_input_output_dma_table_in_dcb(struct sep_device *sep,
unsigned long app_in_address,
unsigned long app_out_address,
u32 data_in_size,
u32 block_size,
u32 tail_block_size,
bool isapplet,
bool is_kva)
{
int error = 0;
/* Size of tail */
u32 tail_size = 0;
/* Address of the created DCB table */
struct sep_dcblock *dcb_table_ptr = NULL;
/* The physical address of the first input DMA table */
dma_addr_t in_first_mlli_address = 0;
/* Number of entries in the first input DMA table */
u32 in_first_num_entries = 0;
/* The physical address of the first output DMA table */
dma_addr_t out_first_mlli_address = 0;
/* Number of entries in the first output DMA table */
u32 out_first_num_entries = 0;
/* Data in the first input/output table */
u32 first_data_size = 0;
if (sep->nr_dcb_creat == SEP_MAX_NUM_SYNC_DMA_OPS) {
/* No more DCBs to allocate */
dev_warn(&sep->pdev->dev, "no more DCBs available\n");
error = -ENOSPC;
goto end_function;
}
/* Allocate new DCB */
dcb_table_ptr = (struct sep_dcblock *)(sep->shared_addr +
SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES +
(sep->nr_dcb_creat * sizeof(struct sep_dcblock)));
/* Set the default values in the DCB */
dcb_table_ptr->input_mlli_address = 0;
dcb_table_ptr->input_mlli_num_entries = 0;
dcb_table_ptr->input_mlli_data_size = 0;
dcb_table_ptr->output_mlli_address = 0;
dcb_table_ptr->output_mlli_num_entries = 0;
dcb_table_ptr->output_mlli_data_size = 0;
dcb_table_ptr->tail_data_size = 0;
dcb_table_ptr->out_vr_tail_pt = 0;
if (isapplet == true) {
/* Check if there is enough data for DMA operation */
if (data_in_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE) {
if (is_kva == true) {
memcpy(dcb_table_ptr->tail_data,
(void *)app_in_address, data_in_size);
} else {
if (copy_from_user(dcb_table_ptr->tail_data,
(void __user *)app_in_address,
data_in_size)) {
error = -EFAULT;
goto end_function;
}
}
dcb_table_ptr->tail_data_size = data_in_size;
/* Set the output user-space address for mem2mem op */
if (app_out_address)
dcb_table_ptr->out_vr_tail_pt =
(aligned_u64)app_out_address;
/*
* Update both data length parameters in order to avoid
* second data copy and allow building of empty mlli
* tables
*/
tail_size = 0x0;
data_in_size = 0x0;
} else {
if (!app_out_address) {
tail_size = data_in_size % block_size;
if (!tail_size) {
if (tail_block_size == block_size)
tail_size = block_size;
}
} else {
tail_size = 0;
}
}
if (tail_size) {
if (is_kva == true) {
memcpy(dcb_table_ptr->tail_data,
(void *)(app_in_address + data_in_size -
tail_size), tail_size);
} else {
/* We have tail data - copy it to DCB */
if (copy_from_user(dcb_table_ptr->tail_data,
(void *)(app_in_address +
data_in_size - tail_size), tail_size)) {
error = -EFAULT;
goto end_function;
}
}
if (app_out_address)
/*
* Calculate the output address
* according to tail data size
*/
dcb_table_ptr->out_vr_tail_pt =
(aligned_u64)app_out_address + data_in_size
- tail_size;
/* Save the real tail data size */
dcb_table_ptr->tail_data_size = tail_size;
/*
* Update the data size without the tail
* data size AKA data for the dma
*/
data_in_size = (data_in_size - tail_size);
}
}
/* Check if we need to build only input table or input/output */
if (app_out_address) {
/* Prepare input/output tables */
error = sep_prepare_input_output_dma_table(sep,
app_in_address,
app_out_address,
data_in_size,
block_size,
&in_first_mlli_address,
&out_first_mlli_address,
&in_first_num_entries,
&out_first_num_entries,
&first_data_size,
is_kva);
} else {
/* Prepare input tables */
error = sep_prepare_input_dma_table(sep,
app_in_address,
data_in_size,
block_size,
&in_first_mlli_address,
&in_first_num_entries,
&first_data_size,
is_kva);
}
if (error) {
dev_warn(&sep->pdev->dev, "prepare DMA table call failed from prepare DCB call\n");
goto end_function;
}
/* Set the DCB values */
dcb_table_ptr->input_mlli_address = in_first_mlli_address;
dcb_table_ptr->input_mlli_num_entries = in_first_num_entries;
dcb_table_ptr->input_mlli_data_size = first_data_size;
dcb_table_ptr->output_mlli_address = out_first_mlli_address;
dcb_table_ptr->output_mlli_num_entries = out_first_num_entries;
dcb_table_ptr->output_mlli_data_size = first_data_size;
end_function:
return error;
}
/**
* sep_free_dma_tables_and_dcb - free DMA tables and DCBs
* @sep: pointer to struct sep_device
* @isapplet: indicates external application (used for kernel access)
* @is_kva: indicates kernel addresses (only used for kernel crypto)
*
* This function frees the DMA tables and DCB
*/
static int sep_free_dma_tables_and_dcb(struct sep_device *sep, bool isapplet,
bool is_kva)
{
int i = 0;
int error = 0;
int error_temp = 0;
struct sep_dcblock *dcb_table_ptr;
unsigned long pt_hold;
void *tail_pt;
if (isapplet == true) {
/* Set pointer to first DCB table */
dcb_table_ptr = (struct sep_dcblock *)
(sep->shared_addr +
SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES);
/* Go over each DCB and see if tail pointer must be updated */
for (i = 0; i < sep->nr_dcb_creat; i++, dcb_table_ptr++) {
if (dcb_table_ptr->out_vr_tail_pt) {
pt_hold = (unsigned long)dcb_table_ptr->out_vr_tail_pt;
tail_pt = (void *)pt_hold;
if (is_kva == true) {
memcpy(tail_pt,
dcb_table_ptr->tail_data,
dcb_table_ptr->tail_data_size);
} else {
error_temp = copy_to_user(
tail_pt,
dcb_table_ptr->tail_data,
dcb_table_ptr->tail_data_size);
}
if (error_temp) {
/* Release the DMA resource */
error = -EFAULT;
break;
}
}
}
}
/* Free the output pages, if any */
sep_free_dma_table_data_handler(sep);
return error;
}
/**
* sep_get_static_pool_addr_handler - get static pool address
* @sep: pointer to struct sep_device
*
* This function sets the bus and virtual addresses of the static pool
*/
static int sep_get_static_pool_addr_handler(struct sep_device *sep)
{
u32 *static_pool_addr = NULL;
static_pool_addr = (u32 *)(sep->shared_addr +
SEP_DRIVER_SYSTEM_RAR_MEMORY_OFFSET_IN_BYTES);
static_pool_addr[0] = SEP_STATIC_POOL_VAL_TOKEN;
static_pool_addr[1] = (u32)sep->shared_bus +
SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES;
dev_dbg(&sep->pdev->dev, "static pool segment: physical %x\n",
(u32)static_pool_addr[1]);
return 0;
}
/**
* sep_end_transaction_handler - end transaction
* @sep: pointer to struct sep_device
*
* This API handles the end transaction request
*/
static int sep_end_transaction_handler(struct sep_device *sep)
{
/* Clear the data pool pointers Token */
memset((void *)(sep->shared_addr +
SEP_DRIVER_DATA_POOL_ALLOCATION_OFFSET_IN_BYTES),
0, sep->num_of_data_allocations*2*sizeof(u32));
/* Check that all the DMA resources were freed */
sep_free_dma_table_data_handler(sep);
clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags);
/*
* We are now through with the transaction. Let's
* allow other processes who have the device open
* to perform transactions
*/
mutex_lock(&sep->sep_mutex);
sep->pid_doing_transaction = 0;
mutex_unlock(&sep->sep_mutex);
/* Raise event for stuck contextes */
wake_up(&sep->event);
return 0;
}
/**
* sep_prepare_dcb_handler - prepare a control block
* @sep: pointer to struct sep_device
* @arg: pointer to user parameters
*
* This function will retrieve the RAR buffer physical addresses, type
* & size corresponding to the RAR handles provided in the buffers vector.
*/
static int sep_prepare_dcb_handler(struct sep_device *sep, unsigned long arg)
{
int error;
/* Command arguments */
struct build_dcb_struct command_args;
/* Get the command arguments */
if (copy_from_user(&command_args, (void __user *)arg,
sizeof(struct build_dcb_struct))) {
error = -EFAULT;
goto end_function;
}
dev_dbg(&sep->pdev->dev, "prep dcb handler app_in_address is %08llx\n",
command_args.app_in_address);
dev_dbg(&sep->pdev->dev, "app_out_address is %08llx\n",
command_args.app_out_address);
dev_dbg(&sep->pdev->dev, "data_size is %x\n",
command_args.data_in_size);
dev_dbg(&sep->pdev->dev, "block_size is %x\n",
command_args.block_size);
dev_dbg(&sep->pdev->dev, "tail block_size is %x\n",
command_args.tail_block_size);
error = sep_prepare_input_output_dma_table_in_dcb(sep,
(unsigned long)command_args.app_in_address,
(unsigned long)command_args.app_out_address,
command_args.data_in_size, command_args.block_size,
command_args.tail_block_size, true, false);
end_function:
return error;
}
/**
* sep_free_dcb_handler - free control block resources
* @sep: pointer to struct sep_device
*
* This function frees the DCB resources and updates the needed
* user-space buffers.
*/
static int sep_free_dcb_handler(struct sep_device *sep)
{
return sep_free_dma_tables_and_dcb(sep, false, false);
}
/**
* sep_rar_prepare_output_msg_handler - prepare an output message
* @sep: pointer to struct sep_device
* @arg: pointer to user parameters
*
* This function will retrieve the RAR buffer physical addresses, type
* & size corresponding to the RAR handles provided in the buffers vector.
*/
static int sep_rar_prepare_output_msg_handler(struct sep_device *sep,
unsigned long arg)
{
int error = 0;
/* Command args */
struct rar_hndl_to_bus_struct command_args;
/* Bus address */
dma_addr_t rar_bus = 0;
/* Holds the RAR address in the system memory offset */
u32 *rar_addr;
/* Copy the data */
if (copy_from_user(&command_args, (void __user *)arg,
sizeof(command_args))) {
error = -EFAULT;
goto end_function;
}
/* Call to translation function only if user handle is not NULL */
if (command_args.rar_handle)
return -EOPNOTSUPP;
dev_dbg(&sep->pdev->dev, "rar msg; rar_addr_bus = %x\n", (u32)rar_bus);
/* Set value in the SYSTEM MEMORY offset */
rar_addr = (u32 *)(sep->shared_addr +
SEP_DRIVER_SYSTEM_RAR_MEMORY_OFFSET_IN_BYTES);
/* Copy the physical address to the System Area for the SEP */
rar_addr[0] = SEP_RAR_VAL_TOKEN;
rar_addr[1] = rar_bus;
end_function:
return error;
}
/**
* sep_ioctl - ioctl api
* @filp: pointer to struct file
* @cmd: command
* @arg: pointer to argument structure
*
* Implement the ioctl methods available on the SEP device.
*/
static long sep_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int error = 0;
struct sep_device *sep = filp->private_data;
/* Make sure we own this device */
mutex_lock(&sep->sep_mutex);
if ((current->pid != sep->pid_doing_transaction) &&
(sep->pid_doing_transaction != 0)) {
dev_dbg(&sep->pdev->dev, "ioctl pid is not owner\n");
error = -EACCES;
}
mutex_unlock(&sep->sep_mutex);
if (error)
return error;
if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
return -ENOTTY;
/* Lock to prevent the daemon to interfere with operation */
mutex_lock(&sep->ioctl_mutex);
switch (cmd) {
case SEP_IOCSENDSEPCOMMAND:
/* Send command to SEP */
error = sep_send_command_handler(sep);
break;
case SEP_IOCALLOCDATAPOLL:
/* Allocate data pool */
error = sep_allocate_data_pool_memory_handler(sep, arg);
break;
case SEP_IOCGETSTATICPOOLADDR:
/* Inform the SEP the bus address of the static pool */
error = sep_get_static_pool_addr_handler(sep);
break;
case SEP_IOCENDTRANSACTION:
error = sep_end_transaction_handler(sep);
break;
case SEP_IOCRARPREPAREMESSAGE:
error = sep_rar_prepare_output_msg_handler(sep, arg);
break;
case SEP_IOCPREPAREDCB:
error = sep_prepare_dcb_handler(sep, arg);
break;
case SEP_IOCFREEDCB:
error = sep_free_dcb_handler(sep);
break;
default:
error = -ENOTTY;
break;
}
mutex_unlock(&sep->ioctl_mutex);
return error;
}
/**
* sep_singleton_ioctl - ioctl api for singleton interface
* @filp: pointer to struct file
* @cmd: command
* @arg: pointer to argument structure
*
* Implement the additional ioctls for the singleton device
*/
static long sep_singleton_ioctl(struct file *filp, u32 cmd, unsigned long arg)
{
long error = 0;
struct sep_device *sep = filp->private_data;
/* Check that the command is for the SEP device */
if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
return -ENOTTY;
/* Make sure we own this device */
mutex_lock(&sep->sep_mutex);
if ((current->pid != sep->pid_doing_transaction) &&
(sep->pid_doing_transaction != 0)) {
dev_dbg(&sep->pdev->dev, "singleton ioctl pid is not owner\n");
mutex_unlock(&sep->sep_mutex);
return -EACCES;
}
mutex_unlock(&sep->sep_mutex);
switch (cmd) {
case SEP_IOCTLSETCALLERID:
mutex_lock(&sep->ioctl_mutex);
error = sep_set_caller_id_handler(sep, arg);
mutex_unlock(&sep->ioctl_mutex);
break;
default:
error = sep_ioctl(filp, cmd, arg);
break;
}
return error;
}
/**
* sep_request_daemon_ioctl - ioctl for daemon
* @filp: pointer to struct file
* @cmd: command
* @arg: pointer to argument structure
*
* Called by the request daemon to perform ioctls on the daemon device
*/
static long sep_request_daemon_ioctl(struct file *filp, u32 cmd,
unsigned long arg)
{
long error;
struct sep_device *sep = filp->private_data;
/* Check that the command is for SEP device */
if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
return -ENOTTY;
/* Only one process can access ioctl at any given time */
mutex_lock(&sep->ioctl_mutex);
switch (cmd) {
case SEP_IOCSENDSEPRPLYCOMMAND:
/* Send reply command to SEP */
error = sep_req_daemon_send_reply_command_handler(sep);
break;
case SEP_IOCENDTRANSACTION:
/*
* End req daemon transaction, do nothing
* will be removed upon update in middleware
* API library
*/
error = 0;
break;
default:
error = -ENOTTY;
}
mutex_unlock(&sep->ioctl_mutex);
return error;
}
/**
* sep_inthandler - interrupt handler
* @irq: interrupt
* @dev_id: device id
*/
static irqreturn_t sep_inthandler(int irq, void *dev_id)
{
irqreturn_t int_error = IRQ_HANDLED;
unsigned long lck_flags;
u32 reg_val, reg_val2 = 0;
struct sep_device *sep = dev_id;
/* Read the IRR register to check if this is SEP interrupt */
reg_val = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR);
if (reg_val & (0x1 << 13)) {
/* Lock and update the counter of reply messages */
spin_lock_irqsave(&sep->snd_rply_lck, lck_flags);
sep->reply_ct++;
spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags);
dev_dbg(&sep->pdev->dev, "sep int: send_ct %lx reply_ct %lx\n",
sep->send_ct, sep->reply_ct);
/* Is this printf or daemon request? */
reg_val2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
dev_dbg(&sep->pdev->dev,
"SEP Interrupt - reg2 is %08x\n", reg_val2);
if ((reg_val2 >> 30) & 0x1) {
dev_dbg(&sep->pdev->dev, "int: printf request\n");
wake_up(&sep->event_request_daemon);
} else if (reg_val2 >> 31) {
dev_dbg(&sep->pdev->dev, "int: daemon request\n");
wake_up(&sep->event_request_daemon);
} else {
dev_dbg(&sep->pdev->dev, "int: SEP reply\n");
wake_up(&sep->event);
}
} else {
dev_dbg(&sep->pdev->dev, "int: not SEP interrupt\n");
int_error = IRQ_NONE;
}
if (int_error == IRQ_HANDLED)
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, reg_val);
return int_error;
}
/**
* sep_reconfig_shared_area - reconfigure shared area
* @sep: pointer to struct sep_device
*
* Reconfig the shared area between HOST and SEP - needed in case
* the DX_CC_Init function was called before OS loading.
*/
static int sep_reconfig_shared_area(struct sep_device *sep)
{
int ret_val;
/* use to limit waiting for SEP */
unsigned long end_time;
/* Send the new SHARED MESSAGE AREA to the SEP */
dev_dbg(&sep->pdev->dev, "reconfig shared; sending %08llx to sep\n",
(unsigned long long)sep->shared_bus);
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR1_REG_ADDR, sep->shared_bus);
/* Poll for SEP response */
ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);
end_time = jiffies + (WAIT_TIME * HZ);
while ((time_before(jiffies, end_time)) && (ret_val != 0xffffffff) &&
(ret_val != sep->shared_bus))
ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);
/* Check the return value (register) */
if (ret_val != sep->shared_bus) {
dev_warn(&sep->pdev->dev, "could not reconfig shared area\n");
dev_warn(&sep->pdev->dev, "result was %x\n", ret_val);
ret_val = -ENOMEM;
} else
ret_val = 0;
dev_dbg(&sep->pdev->dev, "reconfig shared area end\n");
return ret_val;
}
/* File operation for singleton SEP operations */
static const struct file_operations singleton_file_operations = {
.owner = THIS_MODULE,
.unlocked_ioctl = sep_singleton_ioctl,
.poll = sep_poll,
.open = sep_singleton_open,
.release = sep_singleton_release,
.mmap = sep_mmap,
};
/* File operation for daemon operations */
static const struct file_operations daemon_file_operations = {
.owner = THIS_MODULE,
.unlocked_ioctl = sep_request_daemon_ioctl,
.poll = sep_request_daemon_poll,
.open = sep_request_daemon_open,
.release = sep_request_daemon_release,
.mmap = sep_request_daemon_mmap,
};
/* The files operations structure of the driver */
static const struct file_operations sep_file_operations = {
.owner = THIS_MODULE,
.unlocked_ioctl = sep_ioctl,
.poll = sep_poll,
.open = sep_open,
.release = sep_release,
.mmap = sep_mmap,
};
/**
* sep_register_driver_with_fs - register misc devices
* @sep: pointer to struct sep_device
*
* This function registers the driver with the file system
*/
static int sep_register_driver_with_fs(struct sep_device *sep)
{
int ret_val;
sep->miscdev_sep.minor = MISC_DYNAMIC_MINOR;
sep->miscdev_sep.name = SEP_DEV_NAME;
sep->miscdev_sep.fops = &sep_file_operations;
sep->miscdev_singleton.minor = MISC_DYNAMIC_MINOR;
sep->miscdev_singleton.name = SEP_DEV_SINGLETON;
sep->miscdev_singleton.fops = &singleton_file_operations;
sep->miscdev_daemon.minor = MISC_DYNAMIC_MINOR;
sep->miscdev_daemon.name = SEP_DEV_DAEMON;
sep->miscdev_daemon.fops = &daemon_file_operations;
ret_val = misc_register(&sep->miscdev_sep);
if (ret_val) {
dev_warn(&sep->pdev->dev, "misc reg fails for SEP %x\n",
ret_val);
return ret_val;
}
ret_val = misc_register(&sep->miscdev_singleton);
if (ret_val) {
dev_warn(&sep->pdev->dev, "misc reg fails for sing %x\n",
ret_val);
misc_deregister(&sep->miscdev_sep);
return ret_val;
}
ret_val = misc_register(&sep->miscdev_daemon);
if (ret_val) {
dev_warn(&sep->pdev->dev, "misc reg fails for dmn %x\n",
ret_val);
misc_deregister(&sep->miscdev_sep);
misc_deregister(&sep->miscdev_singleton);
return ret_val;
}
return ret_val;
}
/**
* sep_probe - probe a matching PCI device
* @pdev: pci_device
* @end: pci_device_id
*
* Attempt to set up and configure a SEP device that has been
* discovered by the PCI layer.
*/
static int __devinit sep_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int error = 0;
struct sep_device *sep;
if (sep_dev != NULL) {
dev_warn(&pdev->dev, "only one SEP supported.\n");
return -EBUSY;
}
/* Enable the device */
error = pci_enable_device(pdev);
if (error) {
dev_warn(&pdev->dev, "error enabling pci device\n");
goto end_function;
}
/* Allocate the sep_device structure for this device */
sep_dev = kzalloc(sizeof(struct sep_device), GFP_ATOMIC);
if (sep_dev == NULL) {
dev_warn(&pdev->dev,
"can't kmalloc the sep_device structure\n");
error = -ENOMEM;
goto end_function_disable_device;
}
/*
* We're going to use another variable for actually
* working with the device; this way, if we have
* multiple devices in the future, it would be easier
* to make appropriate changes
*/
sep = sep_dev;
sep->pdev = pci_dev_get(pdev);
init_waitqueue_head(&sep->event);
init_waitqueue_head(&sep->event_request_daemon);
spin_lock_init(&sep->snd_rply_lck);
mutex_init(&sep->sep_mutex);
mutex_init(&sep->ioctl_mutex);
dev_dbg(&sep->pdev->dev, "sep probe: PCI obtained, device being prepared\n");
dev_dbg(&sep->pdev->dev, "revision is %d\n", sep->pdev->revision);
/* Set up our register area */
sep->reg_physical_addr = pci_resource_start(sep->pdev, 0);
if (!sep->reg_physical_addr) {
dev_warn(&sep->pdev->dev, "Error getting register start\n");
error = -ENODEV;
goto end_function_free_sep_dev;
}
sep->reg_physical_end = pci_resource_end(sep->pdev, 0);
if (!sep->reg_physical_end) {
dev_warn(&sep->pdev->dev, "Error getting register end\n");
error = -ENODEV;
goto end_function_free_sep_dev;
}
sep->reg_addr = ioremap_nocache(sep->reg_physical_addr,
(size_t)(sep->reg_physical_end - sep->reg_physical_addr + 1));
if (!sep->reg_addr) {
dev_warn(&sep->pdev->dev, "Error getting register virtual\n");
error = -ENODEV;
goto end_function_free_sep_dev;
}
dev_dbg(&sep->pdev->dev,
"Register area start %llx end %llx virtual %p\n",
(unsigned long long)sep->reg_physical_addr,
(unsigned long long)sep->reg_physical_end,
sep->reg_addr);
/* Allocate the shared area */
sep->shared_size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES +
SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES +
SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES +
SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES +
SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES;
if (sep_map_and_alloc_shared_area(sep)) {
error = -ENOMEM;
/* Allocation failed */
goto end_function_error;
}
/* Clear ICR register */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);
/* Set the IMR register - open only GPR 2 */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13)));
/* Read send/receive counters from SEP */
sep->reply_ct = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
sep->reply_ct &= 0x3FFFFFFF;
sep->send_ct = sep->reply_ct;
/* Get the interrupt line */
error = request_irq(pdev->irq, sep_inthandler, IRQF_SHARED,
"sep_driver", sep);
if (error)
goto end_function_deallocate_sep_shared_area;
/* The new chip requires a shared area reconfigure */
if (sep->pdev->revision == 4) { /* Only for new chip */
error = sep_reconfig_shared_area(sep);
if (error)
goto end_function_free_irq;
}
/* Finally magic up the device nodes */
/* Register driver with the fs */
error = sep_register_driver_with_fs(sep);
if (error == 0)
/* Success */
return 0;
end_function_free_irq:
free_irq(pdev->irq, sep);
end_function_deallocate_sep_shared_area:
/* De-allocate shared area */
sep_unmap_and_free_shared_area(sep);
end_function_error:
iounmap(sep->reg_addr);
end_function_free_sep_dev:
pci_dev_put(sep_dev->pdev);
kfree(sep_dev);
sep_dev = NULL;
end_function_disable_device:
pci_disable_device(pdev);
end_function:
return error;
}
static void sep_remove(struct pci_dev *pdev)
{
struct sep_device *sep = sep_dev;
/* Unregister from fs */
misc_deregister(&sep->miscdev_sep);
misc_deregister(&sep->miscdev_singleton);
misc_deregister(&sep->miscdev_daemon);
/* Free the irq */
free_irq(sep->pdev->irq, sep);
/* Free the shared area */
sep_unmap_and_free_shared_area(sep_dev);
iounmap((void *) sep_dev->reg_addr);
}
static DEFINE_PCI_DEVICE_TABLE(sep_pci_id_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, MFLD_PCI_DEVICE_ID)},
{0}
};
MODULE_DEVICE_TABLE(pci, sep_pci_id_tbl);
/* Field for registering driver to PCI device */
static struct pci_driver sep_pci_driver = {
.name = "sep_sec_driver",
.id_table = sep_pci_id_tbl,
.probe = sep_probe,
.remove = sep_remove
};
/**
* sep_init - init function
*
* Module load time. Register the PCI device driver.
*/
static int __init sep_init(void)
{
return pci_register_driver(&sep_pci_driver);
}
/**
* sep_exit - called to unload driver
*
* Drop the misc devices then remove and unmap the various resources
* that are not released by the driver remove method.
*/
static void __exit sep_exit(void)
{
pci_unregister_driver(&sep_pci_driver);
}
module_init(sep_init);
module_exit(sep_exit);
MODULE_LICENSE("GPL");