blob: fd347ff34d071dc14972faaa2d3e89ef9260475c [file] [log] [blame]
/*
* nozomi.c -- HSDPA driver Broadband Wireless Data Card - Globe Trotter
*
* Written by: Ulf Jakobsson,
* Jan Ã…kerfeldt,
* Stefan Thomasson,
*
* Maintained by: Paul Hardwick (p.hardwick@option.com)
*
* Patches:
* Locking code changes for Vodafone by Sphere Systems Ltd,
* Andrew Bird (ajb@spheresystems.co.uk )
* & Phil Sanderson
*
* Source has been ported from an implementation made by Filip Aben @ Option
*
* --------------------------------------------------------------------------
*
* Copyright (c) 2005,2006 Option Wireless Sweden AB
* Copyright (c) 2006 Sphere Systems Ltd
* Copyright (c) 2006 Option Wireless n/v
* All rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* --------------------------------------------------------------------------
*/
/* Enable this to have a lot of debug printouts */
#define DEBUG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/sched.h>
#include <linux/serial.h>
#include <linux/interrupt.h>
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/kfifo.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <linux/delay.h>
#define VERSION_STRING DRIVER_DESC " 2.1d"
/* Macros definitions */
/* Default debug printout level */
#define NOZOMI_DEBUG_LEVEL 0x00
#define P_BUF_SIZE 128
#define NFO(_err_flag_, args...) \
do { \
char tmp[P_BUF_SIZE]; \
snprintf(tmp, sizeof(tmp), ##args); \
printk(_err_flag_ "[%d] %s(): %s\n", __LINE__, \
__func__, tmp); \
} while (0)
#define DBG1(args...) D_(0x01, ##args)
#define DBG2(args...) D_(0x02, ##args)
#define DBG3(args...) D_(0x04, ##args)
#define DBG4(args...) D_(0x08, ##args)
#define DBG5(args...) D_(0x10, ##args)
#define DBG6(args...) D_(0x20, ##args)
#define DBG7(args...) D_(0x40, ##args)
#define DBG8(args...) D_(0x80, ##args)
#ifdef DEBUG
/* Do we need this settable at runtime? */
static int debug = NOZOMI_DEBUG_LEVEL;
#define D(lvl, args...) do \
{if (lvl & debug) NFO(KERN_DEBUG, ##args); } \
while (0)
#define D_(lvl, args...) D(lvl, ##args)
/* These printouts are always printed */
#else
static int debug;
#define D_(lvl, args...)
#endif
/* TODO: rewrite to optimize macros... */
#define TMP_BUF_MAX 256
#define DUMP(buf__,len__) \
do { \
char tbuf[TMP_BUF_MAX] = {0};\
if (len__ > 1) {\
snprintf(tbuf, len__ > TMP_BUF_MAX ? TMP_BUF_MAX : len__, "%s", buf__);\
if (tbuf[len__-2] == '\r') {\
tbuf[len__-2] = 'r';\
} \
DBG1("SENDING: '%s' (%d+n)", tbuf, len__);\
} else {\
DBG1("SENDING: '%s' (%d)", tbuf, len__);\
} \
} while (0)
/* Defines */
#define NOZOMI_NAME "nozomi"
#define NOZOMI_NAME_TTY "nozomi_tty"
#define DRIVER_DESC "Nozomi driver"
#define NTTY_TTY_MAXMINORS 256
#define NTTY_FIFO_BUFFER_SIZE 8192
/* Must be power of 2 */
#define FIFO_BUFFER_SIZE_UL 8192
/* Size of tmp send buffer to card */
#define SEND_BUF_MAX 1024
#define RECEIVE_BUF_MAX 4
#define R_IIR 0x0000 /* Interrupt Identity Register */
#define R_FCR 0x0000 /* Flow Control Register */
#define R_IER 0x0004 /* Interrupt Enable Register */
#define CONFIG_MAGIC 0xEFEFFEFE
#define TOGGLE_VALID 0x0000
/* Definition of interrupt tokens */
#define MDM_DL1 0x0001
#define MDM_UL1 0x0002
#define MDM_DL2 0x0004
#define MDM_UL2 0x0008
#define DIAG_DL1 0x0010
#define DIAG_DL2 0x0020
#define DIAG_UL 0x0040
#define APP1_DL 0x0080
#define APP1_UL 0x0100
#define APP2_DL 0x0200
#define APP2_UL 0x0400
#define CTRL_DL 0x0800
#define CTRL_UL 0x1000
#define RESET 0x8000
#define MDM_DL (MDM_DL1 | MDM_DL2)
#define MDM_UL (MDM_UL1 | MDM_UL2)
#define DIAG_DL (DIAG_DL1 | DIAG_DL2)
/* modem signal definition */
#define CTRL_DSR 0x0001
#define CTRL_DCD 0x0002
#define CTRL_RI 0x0004
#define CTRL_CTS 0x0008
#define CTRL_DTR 0x0001
#define CTRL_RTS 0x0002
#define MAX_PORT 4
#define NOZOMI_MAX_PORTS 5
#define NOZOMI_MAX_CARDS (NTTY_TTY_MAXMINORS / MAX_PORT)
/* Type definitions */
/*
* There are two types of nozomi cards,
* one with 2048 memory and with 8192 memory
*/
enum card_type {
F32_2 = 2048, /* 512 bytes downlink + uplink * 2 -> 2048 */
F32_8 = 8192, /* 3072 bytes downl. + 1024 bytes uplink * 2 -> 8192 */
};
/* Initialization states a card can be in */
enum card_state {
NOZOMI_STATE_UKNOWN = 0,
NOZOMI_STATE_ENABLED = 1, /* pci device enabled */
NOZOMI_STATE_ALLOCATED = 2, /* config setup done */
NOZOMI_STATE_READY = 3, /* flowcontrols received */
};
/* Two different toggle channels exist */
enum channel_type {
CH_A = 0,
CH_B = 1,
};
/* Port definition for the card regarding flow control */
enum ctrl_port_type {
CTRL_CMD = 0,
CTRL_MDM = 1,
CTRL_DIAG = 2,
CTRL_APP1 = 3,
CTRL_APP2 = 4,
CTRL_ERROR = -1,
};
/* Ports that the nozomi has */
enum port_type {
PORT_MDM = 0,
PORT_DIAG = 1,
PORT_APP1 = 2,
PORT_APP2 = 3,
PORT_CTRL = 4,
PORT_ERROR = -1,
};
#ifdef __BIG_ENDIAN
/* Big endian */
struct toggles {
unsigned int enabled:5; /*
* Toggle fields are valid if enabled is 0,
* else A-channels must always be used.
*/
unsigned int diag_dl:1;
unsigned int mdm_dl:1;
unsigned int mdm_ul:1;
} __attribute__ ((packed));
/* Configuration table to read at startup of card */
/* Is for now only needed during initialization phase */
struct config_table {
u32 signature;
u16 product_information;
u16 version;
u8 pad3[3];
struct toggles toggle;
u8 pad1[4];
u16 dl_mdm_len1; /*
* If this is 64, it can hold
* 60 bytes + 4 that is length field
*/
u16 dl_start;
u16 dl_diag_len1;
u16 dl_mdm_len2; /*
* If this is 64, it can hold
* 60 bytes + 4 that is length field
*/
u16 dl_app1_len;
u16 dl_diag_len2;
u16 dl_ctrl_len;
u16 dl_app2_len;
u8 pad2[16];
u16 ul_mdm_len1;
u16 ul_start;
u16 ul_diag_len;
u16 ul_mdm_len2;
u16 ul_app1_len;
u16 ul_app2_len;
u16 ul_ctrl_len;
} __attribute__ ((packed));
/* This stores all control downlink flags */
struct ctrl_dl {
u8 port;
unsigned int reserved:4;
unsigned int CTS:1;
unsigned int RI:1;
unsigned int DCD:1;
unsigned int DSR:1;
} __attribute__ ((packed));
/* This stores all control uplink flags */
struct ctrl_ul {
u8 port;
unsigned int reserved:6;
unsigned int RTS:1;
unsigned int DTR:1;
} __attribute__ ((packed));
#else
/* Little endian */
/* This represents the toggle information */
struct toggles {
unsigned int mdm_ul:1;
unsigned int mdm_dl:1;
unsigned int diag_dl:1;
unsigned int enabled:5; /*
* Toggle fields are valid if enabled is 0,
* else A-channels must always be used.
*/
} __attribute__ ((packed));
/* Configuration table to read at startup of card */
struct config_table {
u32 signature;
u16 version;
u16 product_information;
struct toggles toggle;
u8 pad1[7];
u16 dl_start;
u16 dl_mdm_len1; /*
* If this is 64, it can hold
* 60 bytes + 4 that is length field
*/
u16 dl_mdm_len2;
u16 dl_diag_len1;
u16 dl_diag_len2;
u16 dl_app1_len;
u16 dl_app2_len;
u16 dl_ctrl_len;
u8 pad2[16];
u16 ul_start;
u16 ul_mdm_len2;
u16 ul_mdm_len1;
u16 ul_diag_len;
u16 ul_app1_len;
u16 ul_app2_len;
u16 ul_ctrl_len;
} __attribute__ ((packed));
/* This stores all control downlink flags */
struct ctrl_dl {
unsigned int DSR:1;
unsigned int DCD:1;
unsigned int RI:1;
unsigned int CTS:1;
unsigned int reserverd:4;
u8 port;
} __attribute__ ((packed));
/* This stores all control uplink flags */
struct ctrl_ul {
unsigned int DTR:1;
unsigned int RTS:1;
unsigned int reserved:6;
u8 port;
} __attribute__ ((packed));
#endif
/* This holds all information that is needed regarding a port */
struct port {
struct tty_port port;
u8 update_flow_control;
struct ctrl_ul ctrl_ul;
struct ctrl_dl ctrl_dl;
struct kfifo fifo_ul;
void __iomem *dl_addr[2];
u32 dl_size[2];
u8 toggle_dl;
void __iomem *ul_addr[2];
u32 ul_size[2];
u8 toggle_ul;
u16 token_dl;
wait_queue_head_t tty_wait;
struct async_icount tty_icount;
struct nozomi *dc;
};
/* Private data one for each card in the system */
struct nozomi {
void __iomem *base_addr;
unsigned long flip;
/* Pointers to registers */
void __iomem *reg_iir;
void __iomem *reg_fcr;
void __iomem *reg_ier;
u16 last_ier;
enum card_type card_type;
struct config_table config_table; /* Configuration table */
struct pci_dev *pdev;
struct port port[NOZOMI_MAX_PORTS];
u8 *send_buf;
spinlock_t spin_mutex; /* secures access to registers and tty */
unsigned int index_start;
enum card_state state;
u32 open_ttys;
};
/* This is a data packet that is read or written to/from card */
struct buffer {
u32 size; /* size is the length of the data buffer */
u8 *data;
} __attribute__ ((packed));
/* Global variables */
static const struct pci_device_id nozomi_pci_tbl[] __devinitconst = {
{PCI_DEVICE(0x1931, 0x000c)}, /* Nozomi HSDPA */
{},
};
MODULE_DEVICE_TABLE(pci, nozomi_pci_tbl);
static struct nozomi *ndevs[NOZOMI_MAX_CARDS];
static struct tty_driver *ntty_driver;
static const struct tty_port_operations noz_tty_port_ops;
/*
* find card by tty_index
*/
static inline struct nozomi *get_dc_by_tty(const struct tty_struct *tty)
{
return tty ? ndevs[tty->index / MAX_PORT] : NULL;
}
static inline struct port *get_port_by_tty(const struct tty_struct *tty)
{
struct nozomi *ndev = get_dc_by_tty(tty);
return ndev ? &ndev->port[tty->index % MAX_PORT] : NULL;
}
/*
* TODO:
* -Optimize
* -Rewrite cleaner
*/
static void read_mem32(u32 *buf, const void __iomem *mem_addr_start,
u32 size_bytes)
{
u32 i = 0;
const u32 __iomem *ptr = mem_addr_start;
u16 *buf16;
if (unlikely(!ptr || !buf))
goto out;
/* shortcut for extremely often used cases */
switch (size_bytes) {
case 2: /* 2 bytes */
buf16 = (u16 *) buf;
*buf16 = __le16_to_cpu(readw(ptr));
goto out;
break;
case 4: /* 4 bytes */
*(buf) = __le32_to_cpu(readl(ptr));
goto out;
break;
}
while (i < size_bytes) {
if (size_bytes - i == 2) {
/* Handle 2 bytes in the end */
buf16 = (u16 *) buf;
*(buf16) = __le16_to_cpu(readw(ptr));
i += 2;
} else {
/* Read 4 bytes */
*(buf) = __le32_to_cpu(readl(ptr));
i += 4;
}
buf++;
ptr++;
}
out:
return;
}
/*
* TODO:
* -Optimize
* -Rewrite cleaner
*/
static u32 write_mem32(void __iomem *mem_addr_start, const u32 *buf,
u32 size_bytes)
{
u32 i = 0;
u32 __iomem *ptr = mem_addr_start;
const u16 *buf16;
if (unlikely(!ptr || !buf))
return 0;
/* shortcut for extremely often used cases */
switch (size_bytes) {
case 2: /* 2 bytes */
buf16 = (const u16 *)buf;
writew(__cpu_to_le16(*buf16), ptr);
return 2;
break;
case 1: /*
* also needs to write 4 bytes in this case
* so falling through..
*/
case 4: /* 4 bytes */
writel(__cpu_to_le32(*buf), ptr);
return 4;
break;
}
while (i < size_bytes) {
if (size_bytes - i == 2) {
/* 2 bytes */
buf16 = (const u16 *)buf;
writew(__cpu_to_le16(*buf16), ptr);
i += 2;
} else {
/* 4 bytes */
writel(__cpu_to_le32(*buf), ptr);
i += 4;
}
buf++;
ptr++;
}
return i;
}
/* Setup pointers to different channels and also setup buffer sizes. */
static void setup_memory(struct nozomi *dc)
{
void __iomem *offset = dc->base_addr + dc->config_table.dl_start;
/* The length reported is including the length field of 4 bytes,
* hence subtract with 4.
*/
const u16 buff_offset = 4;
/* Modem port dl configuration */
dc->port[PORT_MDM].dl_addr[CH_A] = offset;
dc->port[PORT_MDM].dl_addr[CH_B] =
(offset += dc->config_table.dl_mdm_len1);
dc->port[PORT_MDM].dl_size[CH_A] =
dc->config_table.dl_mdm_len1 - buff_offset;
dc->port[PORT_MDM].dl_size[CH_B] =
dc->config_table.dl_mdm_len2 - buff_offset;
/* Diag port dl configuration */
dc->port[PORT_DIAG].dl_addr[CH_A] =
(offset += dc->config_table.dl_mdm_len2);
dc->port[PORT_DIAG].dl_size[CH_A] =
dc->config_table.dl_diag_len1 - buff_offset;
dc->port[PORT_DIAG].dl_addr[CH_B] =
(offset += dc->config_table.dl_diag_len1);
dc->port[PORT_DIAG].dl_size[CH_B] =
dc->config_table.dl_diag_len2 - buff_offset;
/* App1 port dl configuration */
dc->port[PORT_APP1].dl_addr[CH_A] =
(offset += dc->config_table.dl_diag_len2);
dc->port[PORT_APP1].dl_size[CH_A] =
dc->config_table.dl_app1_len - buff_offset;
/* App2 port dl configuration */
dc->port[PORT_APP2].dl_addr[CH_A] =
(offset += dc->config_table.dl_app1_len);
dc->port[PORT_APP2].dl_size[CH_A] =
dc->config_table.dl_app2_len - buff_offset;
/* Ctrl dl configuration */
dc->port[PORT_CTRL].dl_addr[CH_A] =
(offset += dc->config_table.dl_app2_len);
dc->port[PORT_CTRL].dl_size[CH_A] =
dc->config_table.dl_ctrl_len - buff_offset;
offset = dc->base_addr + dc->config_table.ul_start;
/* Modem Port ul configuration */
dc->port[PORT_MDM].ul_addr[CH_A] = offset;
dc->port[PORT_MDM].ul_size[CH_A] =
dc->config_table.ul_mdm_len1 - buff_offset;
dc->port[PORT_MDM].ul_addr[CH_B] =
(offset += dc->config_table.ul_mdm_len1);
dc->port[PORT_MDM].ul_size[CH_B] =
dc->config_table.ul_mdm_len2 - buff_offset;
/* Diag port ul configuration */
dc->port[PORT_DIAG].ul_addr[CH_A] =
(offset += dc->config_table.ul_mdm_len2);
dc->port[PORT_DIAG].ul_size[CH_A] =
dc->config_table.ul_diag_len - buff_offset;
/* App1 port ul configuration */
dc->port[PORT_APP1].ul_addr[CH_A] =
(offset += dc->config_table.ul_diag_len);
dc->port[PORT_APP1].ul_size[CH_A] =
dc->config_table.ul_app1_len - buff_offset;
/* App2 port ul configuration */
dc->port[PORT_APP2].ul_addr[CH_A] =
(offset += dc->config_table.ul_app1_len);
dc->port[PORT_APP2].ul_size[CH_A] =
dc->config_table.ul_app2_len - buff_offset;
/* Ctrl ul configuration */
dc->port[PORT_CTRL].ul_addr[CH_A] =
(offset += dc->config_table.ul_app2_len);
dc->port[PORT_CTRL].ul_size[CH_A] =
dc->config_table.ul_ctrl_len - buff_offset;
}
/* Dump config table under initalization phase */
#ifdef DEBUG
static void dump_table(const struct nozomi *dc)
{
DBG3("signature: 0x%08X", dc->config_table.signature);
DBG3("version: 0x%04X", dc->config_table.version);
DBG3("product_information: 0x%04X", \
dc->config_table.product_information);
DBG3("toggle enabled: %d", dc->config_table.toggle.enabled);
DBG3("toggle up_mdm: %d", dc->config_table.toggle.mdm_ul);
DBG3("toggle dl_mdm: %d", dc->config_table.toggle.mdm_dl);
DBG3("toggle dl_dbg: %d", dc->config_table.toggle.diag_dl);
DBG3("dl_start: 0x%04X", dc->config_table.dl_start);
DBG3("dl_mdm_len0: 0x%04X, %d", dc->config_table.dl_mdm_len1,
dc->config_table.dl_mdm_len1);
DBG3("dl_mdm_len1: 0x%04X, %d", dc->config_table.dl_mdm_len2,
dc->config_table.dl_mdm_len2);
DBG3("dl_diag_len0: 0x%04X, %d", dc->config_table.dl_diag_len1,
dc->config_table.dl_diag_len1);
DBG3("dl_diag_len1: 0x%04X, %d", dc->config_table.dl_diag_len2,
dc->config_table.dl_diag_len2);
DBG3("dl_app1_len: 0x%04X, %d", dc->config_table.dl_app1_len,
dc->config_table.dl_app1_len);
DBG3("dl_app2_len: 0x%04X, %d", dc->config_table.dl_app2_len,
dc->config_table.dl_app2_len);
DBG3("dl_ctrl_len: 0x%04X, %d", dc->config_table.dl_ctrl_len,
dc->config_table.dl_ctrl_len);
DBG3("ul_start: 0x%04X, %d", dc->config_table.ul_start,
dc->config_table.ul_start);
DBG3("ul_mdm_len[0]: 0x%04X, %d", dc->config_table.ul_mdm_len1,
dc->config_table.ul_mdm_len1);
DBG3("ul_mdm_len[1]: 0x%04X, %d", dc->config_table.ul_mdm_len2,
dc->config_table.ul_mdm_len2);
DBG3("ul_diag_len: 0x%04X, %d", dc->config_table.ul_diag_len,
dc->config_table.ul_diag_len);
DBG3("ul_app1_len: 0x%04X, %d", dc->config_table.ul_app1_len,
dc->config_table.ul_app1_len);
DBG3("ul_app2_len: 0x%04X, %d", dc->config_table.ul_app2_len,
dc->config_table.ul_app2_len);
DBG3("ul_ctrl_len: 0x%04X, %d", dc->config_table.ul_ctrl_len,
dc->config_table.ul_ctrl_len);
}
#else
static inline void dump_table(const struct nozomi *dc) { }
#endif
/*
* Read configuration table from card under intalization phase
* Returns 1 if ok, else 0
*/
static int nozomi_read_config_table(struct nozomi *dc)
{
read_mem32((u32 *) &dc->config_table, dc->base_addr + 0,
sizeof(struct config_table));
if (dc->config_table.signature != CONFIG_MAGIC) {
dev_err(&dc->pdev->dev, "ConfigTable Bad! 0x%08X != 0x%08X\n",
dc->config_table.signature, CONFIG_MAGIC);
return 0;
}
if ((dc->config_table.version == 0)
|| (dc->config_table.toggle.enabled == TOGGLE_VALID)) {
int i;
DBG1("Second phase, configuring card");
setup_memory(dc);
dc->port[PORT_MDM].toggle_ul = dc->config_table.toggle.mdm_ul;
dc->port[PORT_MDM].toggle_dl = dc->config_table.toggle.mdm_dl;
dc->port[PORT_DIAG].toggle_dl = dc->config_table.toggle.diag_dl;
DBG1("toggle ports: MDM UL:%d MDM DL:%d, DIAG DL:%d",
dc->port[PORT_MDM].toggle_ul,
dc->port[PORT_MDM].toggle_dl, dc->port[PORT_DIAG].toggle_dl);
dump_table(dc);
for (i = PORT_MDM; i < MAX_PORT; i++) {
memset(&dc->port[i].ctrl_dl, 0, sizeof(struct ctrl_dl));
memset(&dc->port[i].ctrl_ul, 0, sizeof(struct ctrl_ul));
}
/* Enable control channel */
dc->last_ier = dc->last_ier | CTRL_DL;
writew(dc->last_ier, dc->reg_ier);
dc->state = NOZOMI_STATE_ALLOCATED;
dev_info(&dc->pdev->dev, "Initialization OK!\n");
return 1;
}
if ((dc->config_table.version > 0)
&& (dc->config_table.toggle.enabled != TOGGLE_VALID)) {
u32 offset = 0;
DBG1("First phase: pushing upload buffers, clearing download");
dev_info(&dc->pdev->dev, "Version of card: %d\n",
dc->config_table.version);
/* Here we should disable all I/O over F32. */
setup_memory(dc);
/*
* We should send ALL channel pair tokens back along
* with reset token
*/
/* push upload modem buffers */
write_mem32(dc->port[PORT_MDM].ul_addr[CH_A],
(u32 *) &offset, 4);
write_mem32(dc->port[PORT_MDM].ul_addr[CH_B],
(u32 *) &offset, 4);
writew(MDM_UL | DIAG_DL | MDM_DL, dc->reg_fcr);
DBG1("First phase done");
}
return 1;
}
/* Enable uplink interrupts */
static void enable_transmit_ul(enum port_type port, struct nozomi *dc)
{
static const u16 mask[] = {MDM_UL, DIAG_UL, APP1_UL, APP2_UL, CTRL_UL};
if (port < NOZOMI_MAX_PORTS) {
dc->last_ier |= mask[port];
writew(dc->last_ier, dc->reg_ier);
} else {
dev_err(&dc->pdev->dev, "Called with wrong port?\n");
}
}
/* Disable uplink interrupts */
static void disable_transmit_ul(enum port_type port, struct nozomi *dc)
{
static const u16 mask[] =
{~MDM_UL, ~DIAG_UL, ~APP1_UL, ~APP2_UL, ~CTRL_UL};
if (port < NOZOMI_MAX_PORTS) {
dc->last_ier &= mask[port];
writew(dc->last_ier, dc->reg_ier);
} else {
dev_err(&dc->pdev->dev, "Called with wrong port?\n");
}
}
/* Enable downlink interrupts */
static void enable_transmit_dl(enum port_type port, struct nozomi *dc)
{
static const u16 mask[] = {MDM_DL, DIAG_DL, APP1_DL, APP2_DL, CTRL_DL};
if (port < NOZOMI_MAX_PORTS) {
dc->last_ier |= mask[port];
writew(dc->last_ier, dc->reg_ier);
} else {
dev_err(&dc->pdev->dev, "Called with wrong port?\n");
}
}
/* Disable downlink interrupts */
static void disable_transmit_dl(enum port_type port, struct nozomi *dc)
{
static const u16 mask[] =
{~MDM_DL, ~DIAG_DL, ~APP1_DL, ~APP2_DL, ~CTRL_DL};
if (port < NOZOMI_MAX_PORTS) {
dc->last_ier &= mask[port];
writew(dc->last_ier, dc->reg_ier);
} else {
dev_err(&dc->pdev->dev, "Called with wrong port?\n");
}
}
/*
* Return 1 - send buffer to card and ack.
* Return 0 - don't ack, don't send buffer to card.
*/
static int send_data(enum port_type index, struct nozomi *dc)
{
u32 size = 0;
struct port *port = &dc->port[index];
const u8 toggle = port->toggle_ul;
void __iomem *addr = port->ul_addr[toggle];
const u32 ul_size = port->ul_size[toggle];
struct tty_struct *tty = tty_port_tty_get(&port->port);
/* Get data from tty and place in buf for now */
size = kfifo_out(&port->fifo_ul, dc->send_buf,
ul_size < SEND_BUF_MAX ? ul_size : SEND_BUF_MAX);
if (size == 0) {
DBG4("No more data to send, disable link:");
tty_kref_put(tty);
return 0;
}
/* DUMP(buf, size); */
/* Write length + data */
write_mem32(addr, (u32 *) &size, 4);
write_mem32(addr + 4, (u32 *) dc->send_buf, size);
if (tty)
tty_wakeup(tty);
tty_kref_put(tty);
return 1;
}
/* If all data has been read, return 1, else 0 */
static int receive_data(enum port_type index, struct nozomi *dc)
{
u8 buf[RECEIVE_BUF_MAX] = { 0 };
int size;
u32 offset = 4;
struct port *port = &dc->port[index];
void __iomem *addr = port->dl_addr[port->toggle_dl];
struct tty_struct *tty = tty_port_tty_get(&port->port);
int i, ret;
if (unlikely(!tty)) {
DBG1("tty not open for port: %d?", index);
return 1;
}
read_mem32((u32 *) &size, addr, 4);
/* DBG1( "%d bytes port: %d", size, index); */
if (test_bit(TTY_THROTTLED, &tty->flags)) {
DBG1("No room in tty, don't read data, don't ack interrupt, "
"disable interrupt");
/* disable interrupt in downlink... */
disable_transmit_dl(index, dc);
ret = 0;
goto put;
}
if (unlikely(size == 0)) {
dev_err(&dc->pdev->dev, "size == 0?\n");
ret = 1;
goto put;
}
while (size > 0) {
read_mem32((u32 *) buf, addr + offset, RECEIVE_BUF_MAX);
if (size == 1) {
tty_insert_flip_char(tty, buf[0], TTY_NORMAL);
size = 0;
} else if (size < RECEIVE_BUF_MAX) {
size -= tty_insert_flip_string(tty, (char *) buf, size);
} else {
i = tty_insert_flip_string(tty, \
(char *) buf, RECEIVE_BUF_MAX);
size -= i;
offset += i;
}
}
set_bit(index, &dc->flip);
ret = 1;
put:
tty_kref_put(tty);
return ret;
}
/* Debug for interrupts */
#ifdef DEBUG
static char *interrupt2str(u16 interrupt)
{
static char buf[TMP_BUF_MAX];
char *p = buf;
interrupt & MDM_DL1 ? p += snprintf(p, TMP_BUF_MAX, "MDM_DL1 ") : NULL;
interrupt & MDM_DL2 ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"MDM_DL2 ") : NULL;
interrupt & MDM_UL1 ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"MDM_UL1 ") : NULL;
interrupt & MDM_UL2 ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"MDM_UL2 ") : NULL;
interrupt & DIAG_DL1 ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"DIAG_DL1 ") : NULL;
interrupt & DIAG_DL2 ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"DIAG_DL2 ") : NULL;
interrupt & DIAG_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"DIAG_UL ") : NULL;
interrupt & APP1_DL ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"APP1_DL ") : NULL;
interrupt & APP2_DL ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"APP2_DL ") : NULL;
interrupt & APP1_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"APP1_UL ") : NULL;
interrupt & APP2_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"APP2_UL ") : NULL;
interrupt & CTRL_DL ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"CTRL_DL ") : NULL;
interrupt & CTRL_UL ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"CTRL_UL ") : NULL;
interrupt & RESET ? p += snprintf(p, TMP_BUF_MAX - (p - buf),
"RESET ") : NULL;
return buf;
}
#endif
/*
* Receive flow control
* Return 1 - If ok, else 0
*/
static int receive_flow_control(struct nozomi *dc)
{
enum port_type port = PORT_MDM;
struct ctrl_dl ctrl_dl;
struct ctrl_dl old_ctrl;
u16 enable_ier = 0;
read_mem32((u32 *) &ctrl_dl, dc->port[PORT_CTRL].dl_addr[CH_A], 2);
switch (ctrl_dl.port) {
case CTRL_CMD:
DBG1("The Base Band sends this value as a response to a "
"request for IMSI detach sent over the control "
"channel uplink (see section 7.6.1).");
break;
case CTRL_MDM:
port = PORT_MDM;
enable_ier = MDM_DL;
break;
case CTRL_DIAG:
port = PORT_DIAG;
enable_ier = DIAG_DL;
break;
case CTRL_APP1:
port = PORT_APP1;
enable_ier = APP1_DL;
break;
case CTRL_APP2:
port = PORT_APP2;
enable_ier = APP2_DL;
if (dc->state == NOZOMI_STATE_ALLOCATED) {
/*
* After card initialization the flow control
* received for APP2 is always the last
*/
dc->state = NOZOMI_STATE_READY;
dev_info(&dc->pdev->dev, "Device READY!\n");
}
break;
default:
dev_err(&dc->pdev->dev,
"ERROR: flow control received for non-existing port\n");
return 0;
};
DBG1("0x%04X->0x%04X", *((u16 *)&dc->port[port].ctrl_dl),
*((u16 *)&ctrl_dl));
old_ctrl = dc->port[port].ctrl_dl;
dc->port[port].ctrl_dl = ctrl_dl;
if (old_ctrl.CTS == 1 && ctrl_dl.CTS == 0) {
DBG1("Disable interrupt (0x%04X) on port: %d",
enable_ier, port);
disable_transmit_ul(port, dc);
} else if (old_ctrl.CTS == 0 && ctrl_dl.CTS == 1) {
if (kfifo_len(&dc->port[port].fifo_ul)) {
DBG1("Enable interrupt (0x%04X) on port: %d",
enable_ier, port);
DBG1("Data in buffer [%d], enable transmit! ",
kfifo_len(&dc->port[port].fifo_ul));
enable_transmit_ul(port, dc);
} else {
DBG1("No data in buffer...");
}
}
if (*(u16 *)&old_ctrl == *(u16 *)&ctrl_dl) {
DBG1(" No change in mctrl");
return 1;
}
/* Update statistics */
if (old_ctrl.CTS != ctrl_dl.CTS)
dc->port[port].tty_icount.cts++;
if (old_ctrl.DSR != ctrl_dl.DSR)
dc->port[port].tty_icount.dsr++;
if (old_ctrl.RI != ctrl_dl.RI)
dc->port[port].tty_icount.rng++;
if (old_ctrl.DCD != ctrl_dl.DCD)
dc->port[port].tty_icount.dcd++;
wake_up_interruptible(&dc->port[port].tty_wait);
DBG1("port: %d DCD(%d), CTS(%d), RI(%d), DSR(%d)",
port,
dc->port[port].tty_icount.dcd, dc->port[port].tty_icount.cts,
dc->port[port].tty_icount.rng, dc->port[port].tty_icount.dsr);
return 1;
}
static enum ctrl_port_type port2ctrl(enum port_type port,
const struct nozomi *dc)
{
switch (port) {
case PORT_MDM:
return CTRL_MDM;
case PORT_DIAG:
return CTRL_DIAG;
case PORT_APP1:
return CTRL_APP1;
case PORT_APP2:
return CTRL_APP2;
default:
dev_err(&dc->pdev->dev,
"ERROR: send flow control " \
"received for non-existing port\n");
};
return CTRL_ERROR;
}
/*
* Send flow control, can only update one channel at a time
* Return 0 - If we have updated all flow control
* Return 1 - If we need to update more flow control, ack current enable more
*/
static int send_flow_control(struct nozomi *dc)
{
u32 i, more_flow_control_to_be_updated = 0;
u16 *ctrl;
for (i = PORT_MDM; i < MAX_PORT; i++) {
if (dc->port[i].update_flow_control) {
if (more_flow_control_to_be_updated) {
/* We have more flow control to be updated */
return 1;
}
dc->port[i].ctrl_ul.port = port2ctrl(i, dc);
ctrl = (u16 *)&dc->port[i].ctrl_ul;
write_mem32(dc->port[PORT_CTRL].ul_addr[0], \
(u32 *) ctrl, 2);
dc->port[i].update_flow_control = 0;
more_flow_control_to_be_updated = 1;
}
}
return 0;
}
/*
* Handle downlink data, ports that are handled are modem and diagnostics
* Return 1 - ok
* Return 0 - toggle fields are out of sync
*/
static int handle_data_dl(struct nozomi *dc, enum port_type port, u8 *toggle,
u16 read_iir, u16 mask1, u16 mask2)
{
if (*toggle == 0 && read_iir & mask1) {
if (receive_data(port, dc)) {
writew(mask1, dc->reg_fcr);
*toggle = !(*toggle);
}
if (read_iir & mask2) {
if (receive_data(port, dc)) {
writew(mask2, dc->reg_fcr);
*toggle = !(*toggle);
}
}
} else if (*toggle == 1 && read_iir & mask2) {
if (receive_data(port, dc)) {
writew(mask2, dc->reg_fcr);
*toggle = !(*toggle);
}
if (read_iir & mask1) {
if (receive_data(port, dc)) {
writew(mask1, dc->reg_fcr);
*toggle = !(*toggle);
}
}
} else {
dev_err(&dc->pdev->dev, "port out of sync!, toggle:%d\n",
*toggle);
return 0;
}
return 1;
}
/*
* Handle uplink data, this is currently for the modem port
* Return 1 - ok
* Return 0 - toggle field are out of sync
*/
static int handle_data_ul(struct nozomi *dc, enum port_type port, u16 read_iir)
{
u8 *toggle = &(dc->port[port].toggle_ul);
if (*toggle == 0 && read_iir & MDM_UL1) {
dc->last_ier &= ~MDM_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_data(port, dc)) {
writew(MDM_UL1, dc->reg_fcr);
dc->last_ier = dc->last_ier | MDM_UL;
writew(dc->last_ier, dc->reg_ier);
*toggle = !*toggle;
}
if (read_iir & MDM_UL2) {
dc->last_ier &= ~MDM_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_data(port, dc)) {
writew(MDM_UL2, dc->reg_fcr);
dc->last_ier = dc->last_ier | MDM_UL;
writew(dc->last_ier, dc->reg_ier);
*toggle = !*toggle;
}
}
} else if (*toggle == 1 && read_iir & MDM_UL2) {
dc->last_ier &= ~MDM_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_data(port, dc)) {
writew(MDM_UL2, dc->reg_fcr);
dc->last_ier = dc->last_ier | MDM_UL;
writew(dc->last_ier, dc->reg_ier);
*toggle = !*toggle;
}
if (read_iir & MDM_UL1) {
dc->last_ier &= ~MDM_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_data(port, dc)) {
writew(MDM_UL1, dc->reg_fcr);
dc->last_ier = dc->last_ier | MDM_UL;
writew(dc->last_ier, dc->reg_ier);
*toggle = !*toggle;
}
}
} else {
writew(read_iir & MDM_UL, dc->reg_fcr);
dev_err(&dc->pdev->dev, "port out of sync!\n");
return 0;
}
return 1;
}
static irqreturn_t interrupt_handler(int irq, void *dev_id)
{
struct nozomi *dc = dev_id;
unsigned int a;
u16 read_iir;
if (!dc)
return IRQ_NONE;
spin_lock(&dc->spin_mutex);
read_iir = readw(dc->reg_iir);
/* Card removed */
if (read_iir == (u16)-1)
goto none;
/*
* Just handle interrupt enabled in IER
* (by masking with dc->last_ier)
*/
read_iir &= dc->last_ier;
if (read_iir == 0)
goto none;
DBG4("%s irq:0x%04X, prev:0x%04X", interrupt2str(read_iir), read_iir,
dc->last_ier);
if (read_iir & RESET) {
if (unlikely(!nozomi_read_config_table(dc))) {
dc->last_ier = 0x0;
writew(dc->last_ier, dc->reg_ier);
dev_err(&dc->pdev->dev, "Could not read status from "
"card, we should disable interface\n");
} else {
writew(RESET, dc->reg_fcr);
}
/* No more useful info if this was the reset interrupt. */
goto exit_handler;
}
if (read_iir & CTRL_UL) {
DBG1("CTRL_UL");
dc->last_ier &= ~CTRL_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_flow_control(dc)) {
writew(CTRL_UL, dc->reg_fcr);
dc->last_ier = dc->last_ier | CTRL_UL;
writew(dc->last_ier, dc->reg_ier);
}
}
if (read_iir & CTRL_DL) {
receive_flow_control(dc);
writew(CTRL_DL, dc->reg_fcr);
}
if (read_iir & MDM_DL) {
if (!handle_data_dl(dc, PORT_MDM,
&(dc->port[PORT_MDM].toggle_dl), read_iir,
MDM_DL1, MDM_DL2)) {
dev_err(&dc->pdev->dev, "MDM_DL out of sync!\n");
goto exit_handler;
}
}
if (read_iir & MDM_UL) {
if (!handle_data_ul(dc, PORT_MDM, read_iir)) {
dev_err(&dc->pdev->dev, "MDM_UL out of sync!\n");
goto exit_handler;
}
}
if (read_iir & DIAG_DL) {
if (!handle_data_dl(dc, PORT_DIAG,
&(dc->port[PORT_DIAG].toggle_dl), read_iir,
DIAG_DL1, DIAG_DL2)) {
dev_err(&dc->pdev->dev, "DIAG_DL out of sync!\n");
goto exit_handler;
}
}
if (read_iir & DIAG_UL) {
dc->last_ier &= ~DIAG_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_data(PORT_DIAG, dc)) {
writew(DIAG_UL, dc->reg_fcr);
dc->last_ier = dc->last_ier | DIAG_UL;
writew(dc->last_ier, dc->reg_ier);
}
}
if (read_iir & APP1_DL) {
if (receive_data(PORT_APP1, dc))
writew(APP1_DL, dc->reg_fcr);
}
if (read_iir & APP1_UL) {
dc->last_ier &= ~APP1_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_data(PORT_APP1, dc)) {
writew(APP1_UL, dc->reg_fcr);
dc->last_ier = dc->last_ier | APP1_UL;
writew(dc->last_ier, dc->reg_ier);
}
}
if (read_iir & APP2_DL) {
if (receive_data(PORT_APP2, dc))
writew(APP2_DL, dc->reg_fcr);
}
if (read_iir & APP2_UL) {
dc->last_ier &= ~APP2_UL;
writew(dc->last_ier, dc->reg_ier);
if (send_data(PORT_APP2, dc)) {
writew(APP2_UL, dc->reg_fcr);
dc->last_ier = dc->last_ier | APP2_UL;
writew(dc->last_ier, dc->reg_ier);
}
}
exit_handler:
spin_unlock(&dc->spin_mutex);
for (a = 0; a < NOZOMI_MAX_PORTS; a++) {
struct tty_struct *tty;
if (test_and_clear_bit(a, &dc->flip)) {
tty = tty_port_tty_get(&dc->port[a].port);
if (tty)
tty_flip_buffer_push(tty);
tty_kref_put(tty);
}
}
return IRQ_HANDLED;
none:
spin_unlock(&dc->spin_mutex);
return IRQ_NONE;
}
static void nozomi_get_card_type(struct nozomi *dc)
{
int i;
u32 size = 0;
for (i = 0; i < 6; i++)
size += pci_resource_len(dc->pdev, i);
/* Assume card type F32_8 if no match */
dc->card_type = size == 2048 ? F32_2 : F32_8;
dev_info(&dc->pdev->dev, "Card type is: %d\n", dc->card_type);
}
static void nozomi_setup_private_data(struct nozomi *dc)
{
void __iomem *offset = dc->base_addr + dc->card_type / 2;
unsigned int i;
dc->reg_fcr = (void __iomem *)(offset + R_FCR);
dc->reg_iir = (void __iomem *)(offset + R_IIR);
dc->reg_ier = (void __iomem *)(offset + R_IER);
dc->last_ier = 0;
dc->flip = 0;
dc->port[PORT_MDM].token_dl = MDM_DL;
dc->port[PORT_DIAG].token_dl = DIAG_DL;
dc->port[PORT_APP1].token_dl = APP1_DL;
dc->port[PORT_APP2].token_dl = APP2_DL;
for (i = 0; i < MAX_PORT; i++)
init_waitqueue_head(&dc->port[i].tty_wait);
}
static ssize_t card_type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
const struct nozomi *dc = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n", dc->card_type);
}
static DEVICE_ATTR(card_type, S_IRUGO, card_type_show, NULL);
static ssize_t open_ttys_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
const struct nozomi *dc = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%u\n", dc->open_ttys);
}
static DEVICE_ATTR(open_ttys, S_IRUGO, open_ttys_show, NULL);
static void make_sysfs_files(struct nozomi *dc)
{
if (device_create_file(&dc->pdev->dev, &dev_attr_card_type))
dev_err(&dc->pdev->dev,
"Could not create sysfs file for card_type\n");
if (device_create_file(&dc->pdev->dev, &dev_attr_open_ttys))
dev_err(&dc->pdev->dev,
"Could not create sysfs file for open_ttys\n");
}
static void remove_sysfs_files(struct nozomi *dc)
{
device_remove_file(&dc->pdev->dev, &dev_attr_card_type);
device_remove_file(&dc->pdev->dev, &dev_attr_open_ttys);
}
/* Allocate memory for one device */
static int __devinit nozomi_card_init(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
resource_size_t start;
int ret;
struct nozomi *dc = NULL;
int ndev_idx;
int i;
dev_dbg(&pdev->dev, "Init, new card found\n");
for (ndev_idx = 0; ndev_idx < ARRAY_SIZE(ndevs); ndev_idx++)
if (!ndevs[ndev_idx])
break;
if (ndev_idx >= ARRAY_SIZE(ndevs)) {
dev_err(&pdev->dev, "no free tty range for this card left\n");
ret = -EIO;
goto err;
}
dc = kzalloc(sizeof(struct nozomi), GFP_KERNEL);
if (unlikely(!dc)) {
dev_err(&pdev->dev, "Could not allocate memory\n");
ret = -ENOMEM;
goto err_free;
}
dc->pdev = pdev;
ret = pci_enable_device(dc->pdev);
if (ret) {
dev_err(&pdev->dev, "Failed to enable PCI Device\n");
goto err_free;
}
ret = pci_request_regions(dc->pdev, NOZOMI_NAME);
if (ret) {
dev_err(&pdev->dev, "I/O address 0x%04x already in use\n",
(int) /* nozomi_private.io_addr */ 0);
goto err_disable_device;
}
start = pci_resource_start(dc->pdev, 0);
if (start == 0) {
dev_err(&pdev->dev, "No I/O address for card detected\n");
ret = -ENODEV;
goto err_rel_regs;
}
/* Find out what card type it is */
nozomi_get_card_type(dc);
dc->base_addr = ioremap_nocache(start, dc->card_type);
if (!dc->base_addr) {
dev_err(&pdev->dev, "Unable to map card MMIO\n");
ret = -ENODEV;
goto err_rel_regs;
}
dc->send_buf = kmalloc(SEND_BUF_MAX, GFP_KERNEL);
if (!dc->send_buf) {
dev_err(&pdev->dev, "Could not allocate send buffer?\n");
ret = -ENOMEM;
goto err_free_sbuf;
}
for (i = PORT_MDM; i < MAX_PORT; i++) {
if (kfifo_alloc(&dc->port[i].fifo_ul, FIFO_BUFFER_SIZE_UL,
GFP_KERNEL)) {
dev_err(&pdev->dev,
"Could not allocate kfifo buffer\n");
ret = -ENOMEM;
goto err_free_kfifo;
}
}
spin_lock_init(&dc->spin_mutex);
nozomi_setup_private_data(dc);
/* Disable all interrupts */
dc->last_ier = 0;
writew(dc->last_ier, dc->reg_ier);
ret = request_irq(pdev->irq, &interrupt_handler, IRQF_SHARED,
NOZOMI_NAME, dc);
if (unlikely(ret)) {
dev_err(&pdev->dev, "can't request irq %d\n", pdev->irq);
goto err_free_kfifo;
}
DBG1("base_addr: %p", dc->base_addr);
make_sysfs_files(dc);
dc->index_start = ndev_idx * MAX_PORT;
ndevs[ndev_idx] = dc;
pci_set_drvdata(pdev, dc);
/* Enable RESET interrupt */
dc->last_ier = RESET;
iowrite16(dc->last_ier, dc->reg_ier);
dc->state = NOZOMI_STATE_ENABLED;
for (i = 0; i < MAX_PORT; i++) {
struct device *tty_dev;
struct port *port = &dc->port[i];
port->dc = dc;
tty_port_init(&port->port);
port->port.ops = &noz_tty_port_ops;
tty_dev = tty_register_device(ntty_driver, dc->index_start + i,
&pdev->dev);
if (IS_ERR(tty_dev)) {
ret = PTR_ERR(tty_dev);
dev_err(&pdev->dev, "Could not allocate tty?\n");
goto err_free_tty;
}
}
return 0;
err_free_tty:
for (i = dc->index_start; i < dc->index_start + MAX_PORT; ++i)
tty_unregister_device(ntty_driver, i);
err_free_kfifo:
for (i = 0; i < MAX_PORT; i++)
kfifo_free(&dc->port[i].fifo_ul);
err_free_sbuf:
kfree(dc->send_buf);
iounmap(dc->base_addr);
err_rel_regs:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
err_free:
kfree(dc);
err:
return ret;
}
static void __devexit tty_exit(struct nozomi *dc)
{
unsigned int i;
DBG1(" ");
for (i = 0; i < MAX_PORT; ++i) {
struct tty_struct *tty = tty_port_tty_get(&dc->port[i].port);
if (tty && list_empty(&tty->hangup_work.entry))
tty_hangup(tty);
tty_kref_put(tty);
}
/* Racy below - surely should wait for scheduled work to be done or
complete off a hangup method ? */
while (dc->open_ttys)
msleep(1);
for (i = dc->index_start; i < dc->index_start + MAX_PORT; ++i)
tty_unregister_device(ntty_driver, i);
}
/* Deallocate memory for one device */
static void __devexit nozomi_card_exit(struct pci_dev *pdev)
{
int i;
struct ctrl_ul ctrl;
struct nozomi *dc = pci_get_drvdata(pdev);
/* Disable all interrupts */
dc->last_ier = 0;
writew(dc->last_ier, dc->reg_ier);
tty_exit(dc);
/* Send 0x0001, command card to resend the reset token. */
/* This is to get the reset when the module is reloaded. */
ctrl.port = 0x00;
ctrl.reserved = 0;
ctrl.RTS = 0;
ctrl.DTR = 1;
DBG1("sending flow control 0x%04X", *((u16 *)&ctrl));
/* Setup dc->reg addresses to we can use defines here */
write_mem32(dc->port[PORT_CTRL].ul_addr[0], (u32 *)&ctrl, 2);
writew(CTRL_UL, dc->reg_fcr); /* push the token to the card. */
remove_sysfs_files(dc);
free_irq(pdev->irq, dc);
for (i = 0; i < MAX_PORT; i++)
kfifo_free(&dc->port[i].fifo_ul);
kfree(dc->send_buf);
iounmap(dc->base_addr);
pci_release_regions(pdev);
pci_disable_device(pdev);
ndevs[dc->index_start / MAX_PORT] = NULL;
kfree(dc);
}
static void set_rts(const struct tty_struct *tty, int rts)
{
struct port *port = get_port_by_tty(tty);
port->ctrl_ul.RTS = rts;
port->update_flow_control = 1;
enable_transmit_ul(PORT_CTRL, get_dc_by_tty(tty));
}
static void set_dtr(const struct tty_struct *tty, int dtr)
{
struct port *port = get_port_by_tty(tty);
DBG1("SETTING DTR index: %d, dtr: %d", tty->index, dtr);
port->ctrl_ul.DTR = dtr;
port->update_flow_control = 1;
enable_transmit_ul(PORT_CTRL, get_dc_by_tty(tty));
}
/*
* ----------------------------------------------------------------------------
* TTY code
* ----------------------------------------------------------------------------
*/
static int ntty_install(struct tty_driver *driver, struct tty_struct *tty)
{
struct port *port = get_port_by_tty(tty);
struct nozomi *dc = get_dc_by_tty(tty);
int ret;
if (!port || !dc || dc->state != NOZOMI_STATE_READY)
return -ENODEV;
ret = tty_init_termios(tty);
if (ret == 0) {
tty_driver_kref_get(driver);
tty->count++;
tty->driver_data = port;
driver->ttys[tty->index] = tty;
}
return ret;
}
static void ntty_cleanup(struct tty_struct *tty)
{
tty->driver_data = NULL;
}
static int ntty_activate(struct tty_port *tport, struct tty_struct *tty)
{
struct port *port = container_of(tport, struct port, port);
struct nozomi *dc = port->dc;
unsigned long flags;
DBG1("open: %d", port->token_dl);
spin_lock_irqsave(&dc->spin_mutex, flags);
dc->last_ier = dc->last_ier | port->token_dl;
writew(dc->last_ier, dc->reg_ier);
dc->open_ttys++;
spin_unlock_irqrestore(&dc->spin_mutex, flags);
printk("noz: activated %d: %p\n", tty->index, tport);
return 0;
}
static int ntty_open(struct tty_struct *tty, struct file *filp)
{
struct port *port = tty->driver_data;
return tty_port_open(&port->port, tty, filp);
}
static void ntty_shutdown(struct tty_port *tport)
{
struct port *port = container_of(tport, struct port, port);
struct nozomi *dc = port->dc;
unsigned long flags;
DBG1("close: %d", port->token_dl);
spin_lock_irqsave(&dc->spin_mutex, flags);
dc->last_ier &= ~(port->token_dl);
writew(dc->last_ier, dc->reg_ier);
dc->open_ttys--;
spin_unlock_irqrestore(&dc->spin_mutex, flags);
printk("noz: shutdown %p\n", tport);
}
static void ntty_close(struct tty_struct *tty, struct file *filp)
{
struct port *port = tty->driver_data;
if (port)
tty_port_close(&port->port, tty, filp);
}
static void ntty_hangup(struct tty_struct *tty)
{
struct port *port = tty->driver_data;
tty_port_hangup(&port->port);
}
/*
* called when the userspace process writes to the tty (/dev/noz*).
* Data is inserted into a fifo, which is then read and transferred to the modem.
*/
static int ntty_write(struct tty_struct *tty, const unsigned char *buffer,
int count)
{
int rval = -EINVAL;
struct nozomi *dc = get_dc_by_tty(tty);
struct port *port = tty->driver_data;
unsigned long flags;
/* DBG1( "WRITEx: %d, index = %d", count, index); */
if (!dc || !port)
return -ENODEV;
rval = kfifo_in(&port->fifo_ul, (unsigned char *)buffer, count);
/* notify card */
if (unlikely(dc == NULL)) {
DBG1("No device context?");
goto exit;
}
spin_lock_irqsave(&dc->spin_mutex, flags);
/* CTS is only valid on the modem channel */
if (port == &(dc->port[PORT_MDM])) {
if (port->ctrl_dl.CTS) {
DBG4("Enable interrupt");
enable_transmit_ul(tty->index % MAX_PORT, dc);
} else {
dev_err(&dc->pdev->dev,
"CTS not active on modem port?\n");
}
} else {
enable_transmit_ul(tty->index % MAX_PORT, dc);
}
spin_unlock_irqrestore(&dc->spin_mutex, flags);
exit:
return rval;
}
/*
* Calculate how much is left in device
* This method is called by the upper tty layer.
* #according to sources N_TTY.c it expects a value >= 0 and
* does not check for negative values.
*
* If the port is unplugged report lots of room and let the bits
* dribble away so we don't block anything.
*/
static int ntty_write_room(struct tty_struct *tty)
{
struct port *port = tty->driver_data;
int room = 4096;
const struct nozomi *dc = get_dc_by_tty(tty);
if (dc)
room = kfifo_avail(&port->fifo_ul);
return room;
}
/* Gets io control parameters */
static int ntty_tiocmget(struct tty_struct *tty)
{
const struct port *port = tty->driver_data;
const struct ctrl_dl *ctrl_dl = &port->ctrl_dl;
const struct ctrl_ul *ctrl_ul = &port->ctrl_ul;
/* Note: these could change under us but it is not clear this
matters if so */
return (ctrl_ul->RTS ? TIOCM_RTS : 0) |
(ctrl_ul->DTR ? TIOCM_DTR : 0) |
(ctrl_dl->DCD ? TIOCM_CAR : 0) |
(ctrl_dl->RI ? TIOCM_RNG : 0) |
(ctrl_dl->DSR ? TIOCM_DSR : 0) |
(ctrl_dl->CTS ? TIOCM_CTS : 0);
}
/* Sets io controls parameters */
static int ntty_tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear)
{
struct nozomi *dc = get_dc_by_tty(tty);
unsigned long flags;
spin_lock_irqsave(&dc->spin_mutex, flags);
if (set & TIOCM_RTS)
set_rts(tty, 1);
else if (clear & TIOCM_RTS)
set_rts(tty, 0);
if (set & TIOCM_DTR)
set_dtr(tty, 1);
else if (clear & TIOCM_DTR)
set_dtr(tty, 0);
spin_unlock_irqrestore(&dc->spin_mutex, flags);
return 0;
}
static int ntty_cflags_changed(struct port *port, unsigned long flags,
struct async_icount *cprev)
{
const struct async_icount cnow = port->tty_icount;
int ret;
ret = ((flags & TIOCM_RNG) && (cnow.rng != cprev->rng)) ||
((flags & TIOCM_DSR) && (cnow.dsr != cprev->dsr)) ||
((flags & TIOCM_CD) && (cnow.dcd != cprev->dcd)) ||
((flags & TIOCM_CTS) && (cnow.cts != cprev->cts));
*cprev = cnow;
return ret;
}
static int ntty_tiocgicount(struct tty_struct *tty,
struct serial_icounter_struct *icount)
{
struct port *port = tty->driver_data;
const struct async_icount cnow = port->tty_icount;
icount->cts = cnow.cts;
icount->dsr = cnow.dsr;
icount->rng = cnow.rng;
icount->dcd = cnow.dcd;
icount->rx = cnow.rx;
icount->tx = cnow.tx;
icount->frame = cnow.frame;
icount->overrun = cnow.overrun;
icount->parity = cnow.parity;
icount->brk = cnow.brk;
icount->buf_overrun = cnow.buf_overrun;
return 0;
}
static int ntty_ioctl(struct tty_struct *tty,
unsigned int cmd, unsigned long arg)
{
struct port *port = tty->driver_data;
int rval = -ENOIOCTLCMD;
DBG1("******** IOCTL, cmd: %d", cmd);
switch (cmd) {
case TIOCMIWAIT: {
struct async_icount cprev = port->tty_icount;
rval = wait_event_interruptible(port->tty_wait,
ntty_cflags_changed(port, arg, &cprev));
break;
}
default:
DBG1("ERR: 0x%08X, %d", cmd, cmd);
break;
};
return rval;
}
/*
* Called by the upper tty layer when tty buffers are ready
* to receive data again after a call to throttle.
*/
static void ntty_unthrottle(struct tty_struct *tty)
{
struct nozomi *dc = get_dc_by_tty(tty);
unsigned long flags;
DBG1("UNTHROTTLE");
spin_lock_irqsave(&dc->spin_mutex, flags);
enable_transmit_dl(tty->index % MAX_PORT, dc);
set_rts(tty, 1);
spin_unlock_irqrestore(&dc->spin_mutex, flags);
}
/*
* Called by the upper tty layer when the tty buffers are almost full.
* The driver should stop send more data.
*/
static void ntty_throttle(struct tty_struct *tty)
{
struct nozomi *dc = get_dc_by_tty(tty);
unsigned long flags;
DBG1("THROTTLE");
spin_lock_irqsave(&dc->spin_mutex, flags);
set_rts(tty, 0);
spin_unlock_irqrestore(&dc->spin_mutex, flags);
}
/* Returns number of chars in buffer, called by tty layer */
static s32 ntty_chars_in_buffer(struct tty_struct *tty)
{
struct port *port = tty->driver_data;
struct nozomi *dc = get_dc_by_tty(tty);
s32 rval = 0;
if (unlikely(!dc || !port)) {
goto exit_in_buffer;
}
rval = kfifo_len(&port->fifo_ul);
exit_in_buffer:
return rval;
}
static const struct tty_port_operations noz_tty_port_ops = {
.activate = ntty_activate,
.shutdown = ntty_shutdown,
};
static const struct tty_operations tty_ops = {
.ioctl = ntty_ioctl,
.open = ntty_open,
.close = ntty_close,
.hangup = ntty_hangup,
.write = ntty_write,
.write_room = ntty_write_room,
.unthrottle = ntty_unthrottle,
.throttle = ntty_throttle,
.chars_in_buffer = ntty_chars_in_buffer,
.tiocmget = ntty_tiocmget,
.tiocmset = ntty_tiocmset,
.get_icount = ntty_tiocgicount,
.install = ntty_install,
.cleanup = ntty_cleanup,
};
/* Module initialization */
static struct pci_driver nozomi_driver = {
.name = NOZOMI_NAME,
.id_table = nozomi_pci_tbl,
.probe = nozomi_card_init,
.remove = __devexit_p(nozomi_card_exit),
};
static __init int nozomi_init(void)
{
int ret;
printk(KERN_INFO "Initializing %s\n", VERSION_STRING);
ntty_driver = alloc_tty_driver(NTTY_TTY_MAXMINORS);
if (!ntty_driver)
return -ENOMEM;
ntty_driver->owner = THIS_MODULE;
ntty_driver->driver_name = NOZOMI_NAME_TTY;
ntty_driver->name = "noz";
ntty_driver->major = 0;
ntty_driver->type = TTY_DRIVER_TYPE_SERIAL;
ntty_driver->subtype = SERIAL_TYPE_NORMAL;
ntty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
ntty_driver->init_termios = tty_std_termios;
ntty_driver->init_termios.c_cflag = B115200 | CS8 | CREAD | \
HUPCL | CLOCAL;
ntty_driver->init_termios.c_ispeed = 115200;
ntty_driver->init_termios.c_ospeed = 115200;
tty_set_operations(ntty_driver, &tty_ops);
ret = tty_register_driver(ntty_driver);
if (ret) {
printk(KERN_ERR "Nozomi: failed to register ntty driver\n");
goto free_tty;
}
ret = pci_register_driver(&nozomi_driver);
if (ret) {
printk(KERN_ERR "Nozomi: can't register pci driver\n");
goto unr_tty;
}
return 0;
unr_tty:
tty_unregister_driver(ntty_driver);
free_tty:
put_tty_driver(ntty_driver);
return ret;
}
static __exit void nozomi_exit(void)
{
printk(KERN_INFO "Unloading %s\n", DRIVER_DESC);
pci_unregister_driver(&nozomi_driver);
tty_unregister_driver(ntty_driver);
put_tty_driver(ntty_driver);
}
module_init(nozomi_init);
module_exit(nozomi_exit);
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION(DRIVER_DESC);