blob: 0b40bb88a88400fa8505ac83c7aa73606da9e183 [file] [log] [blame]
/*
* Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
*
* Copyright (c) 2000 Nils Faerber
*
* Based on rtc.c by Paul Gortmaker
*
* Original Driver by Nils Faerber <nils@kernelconcepts.de>
*
* Modifications from:
* CIH <cih@coventive.com>
* Nicolas Pitre <nico@fluxnic.net>
* Andrew Christian <andrew.christian@hp.com>
*
* Converted to the RTC subsystem and Driver Model
* by Richard Purdie <rpurdie@rpsys.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <mach/hardware.h>
#include <asm/irq.h>
#ifdef CONFIG_ARCH_PXA
#include <mach/regs-rtc.h>
#include <mach/regs-ost.h>
#endif
#define RTC_DEF_DIVIDER (32768 - 1)
#define RTC_DEF_TRIM 0
static const unsigned long RTC_FREQ = 1024;
static struct rtc_time rtc_alarm;
static DEFINE_SPINLOCK(sa1100_rtc_lock);
static inline int rtc_periodic_alarm(struct rtc_time *tm)
{
return (tm->tm_year == -1) ||
((unsigned)tm->tm_mon >= 12) ||
((unsigned)(tm->tm_mday - 1) >= 31) ||
((unsigned)tm->tm_hour > 23) ||
((unsigned)tm->tm_min > 59) ||
((unsigned)tm->tm_sec > 59);
}
/*
* Calculate the next alarm time given the requested alarm time mask
* and the current time.
*/
static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
struct rtc_time *alrm)
{
unsigned long next_time;
unsigned long now_time;
next->tm_year = now->tm_year;
next->tm_mon = now->tm_mon;
next->tm_mday = now->tm_mday;
next->tm_hour = alrm->tm_hour;
next->tm_min = alrm->tm_min;
next->tm_sec = alrm->tm_sec;
rtc_tm_to_time(now, &now_time);
rtc_tm_to_time(next, &next_time);
if (next_time < now_time) {
/* Advance one day */
next_time += 60 * 60 * 24;
rtc_time_to_tm(next_time, next);
}
}
static int rtc_update_alarm(struct rtc_time *alrm)
{
struct rtc_time alarm_tm, now_tm;
unsigned long now, time;
int ret;
do {
now = RCNR;
rtc_time_to_tm(now, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
ret = rtc_tm_to_time(&alarm_tm, &time);
if (ret != 0)
break;
RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
RTAR = time;
} while (now != RCNR);
return ret;
}
static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct rtc_device *rtc = platform_get_drvdata(pdev);
unsigned int rtsr;
unsigned long events = 0;
spin_lock(&sa1100_rtc_lock);
rtsr = RTSR;
/* clear interrupt sources */
RTSR = 0;
/* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_probe(). */
if (rtsr & (RTSR_ALE | RTSR_HZE)) {
/* This is the original code, before there was the if test
* above. This code does not clear interrupts that were not
* enabled. */
RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
} else {
/* For some reason, it is possible to enter this routine
* without interruptions enabled, it has been tested with
* several units (Bug in SA11xx chip?).
*
* This situation leads to an infinite "loop" of interrupt
* routine calling and as a result the processor seems to
* lock on its first call to open(). */
RTSR = RTSR_AL | RTSR_HZ;
}
/* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_AL)
rtsr &= ~RTSR_ALE;
RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
/* update irq data & counter */
if (rtsr & RTSR_AL)
events |= RTC_AF | RTC_IRQF;
if (rtsr & RTSR_HZ)
events |= RTC_UF | RTC_IRQF;
rtc_update_irq(rtc, 1, events);
if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
rtc_update_alarm(&rtc_alarm);
spin_unlock(&sa1100_rtc_lock);
return IRQ_HANDLED;
}
static int sa1100_rtc_open(struct device *dev)
{
int ret;
struct platform_device *plat_dev = to_platform_device(dev);
struct rtc_device *rtc = platform_get_drvdata(plat_dev);
ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
"rtc 1Hz", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
goto fail_ui;
}
ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
"rtc Alrm", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
goto fail_ai;
}
rtc->max_user_freq = RTC_FREQ;
rtc_irq_set_freq(rtc, NULL, RTC_FREQ);
return 0;
fail_ai:
free_irq(IRQ_RTC1Hz, dev);
fail_ui:
return ret;
}
static void sa1100_rtc_release(struct device *dev)
{
spin_lock_irq(&sa1100_rtc_lock);
RTSR = 0;
OIER &= ~OIER_E1;
OSSR = OSSR_M1;
spin_unlock_irq(&sa1100_rtc_lock);
free_irq(IRQ_RTCAlrm, dev);
free_irq(IRQ_RTC1Hz, dev);
}
static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
spin_lock_irq(&sa1100_rtc_lock);
if (enabled)
RTSR |= RTSR_ALE;
else
RTSR &= ~RTSR_ALE;
spin_unlock_irq(&sa1100_rtc_lock);
return 0;
}
static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
rtc_time_to_tm(RCNR, tm);
return 0;
}
static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
unsigned long time;
int ret;
ret = rtc_tm_to_time(tm, &time);
if (ret == 0)
RCNR = time;
return ret;
}
static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
u32 rtsr;
memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
rtsr = RTSR;
alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
return 0;
}
static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
int ret;
spin_lock_irq(&sa1100_rtc_lock);
ret = rtc_update_alarm(&alrm->time);
if (ret == 0) {
if (alrm->enabled)
RTSR |= RTSR_ALE;
else
RTSR &= ~RTSR_ALE;
}
spin_unlock_irq(&sa1100_rtc_lock);
return ret;
}
static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{
seq_printf(seq, "trim/divider\t\t: 0x%08x\n", (u32) RTTR);
seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", (u32)RTSR);
return 0;
}
static const struct rtc_class_ops sa1100_rtc_ops = {
.open = sa1100_rtc_open,
.release = sa1100_rtc_release,
.read_time = sa1100_rtc_read_time,
.set_time = sa1100_rtc_set_time,
.read_alarm = sa1100_rtc_read_alarm,
.set_alarm = sa1100_rtc_set_alarm,
.proc = sa1100_rtc_proc,
.alarm_irq_enable = sa1100_rtc_alarm_irq_enable,
};
static int sa1100_rtc_probe(struct platform_device *pdev)
{
struct rtc_device *rtc;
/*
* According to the manual we should be able to let RTTR be zero
* and then a default diviser for a 32.768KHz clock is used.
* Apparently this doesn't work, at least for my SA1110 rev 5.
* If the clock divider is uninitialized then reset it to the
* default value to get the 1Hz clock.
*/
if (RTTR == 0) {
RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
dev_warn(&pdev->dev, "warning: "
"initializing default clock divider/trim value\n");
/* The current RTC value probably doesn't make sense either */
RCNR = 0;
}
device_init_wakeup(&pdev->dev, 1);
rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
THIS_MODULE);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
platform_set_drvdata(pdev, rtc);
/* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_interrupt().
*
* Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
* interrupt pending, even though interrupts were never enabled.
* In this case, this bit it must be reset before enabling
* interruptions to avoid a nonexistent interrupt to occur.
*
* In principle, the same problem would apply to bit 0, although it has
* never been observed to happen.
*
* This issue is addressed both here and in sa1100_rtc_interrupt().
* If the issue is not addressed here, in the times when the processor
* wakes up with the bit set there will be one spurious interrupt.
*
* The issue is also dealt with in sa1100_rtc_interrupt() to be on the
* safe side, once the condition that lead to this strange
* initialization is unknown and could in principle happen during
* normal processing.
*
* Notice that clearing bit 1 and 0 is accomplished by writting ONES to
* the corresponding bits in RTSR. */
RTSR = RTSR_AL | RTSR_HZ;
return 0;
}
static int sa1100_rtc_remove(struct platform_device *pdev)
{
struct rtc_device *rtc = platform_get_drvdata(pdev);
if (rtc)
rtc_device_unregister(rtc);
return 0;
}
#ifdef CONFIG_PM
static int sa1100_rtc_suspend(struct device *dev)
{
if (device_may_wakeup(dev))
enable_irq_wake(IRQ_RTCAlrm);
return 0;
}
static int sa1100_rtc_resume(struct device *dev)
{
if (device_may_wakeup(dev))
disable_irq_wake(IRQ_RTCAlrm);
return 0;
}
static const struct dev_pm_ops sa1100_rtc_pm_ops = {
.suspend = sa1100_rtc_suspend,
.resume = sa1100_rtc_resume,
};
#endif
static struct platform_driver sa1100_rtc_driver = {
.probe = sa1100_rtc_probe,
.remove = sa1100_rtc_remove,
.driver = {
.name = "sa1100-rtc",
#ifdef CONFIG_PM
.pm = &sa1100_rtc_pm_ops,
#endif
},
};
static int __init sa1100_rtc_init(void)
{
return platform_driver_register(&sa1100_rtc_driver);
}
static void __exit sa1100_rtc_exit(void)
{
platform_driver_unregister(&sa1100_rtc_driver);
}
module_init(sa1100_rtc_init);
module_exit(sa1100_rtc_exit);
MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:sa1100-rtc");