blob: 903a902a6a54d736aeafd9127ab5f7caa3c45fc1 [file] [log] [blame]
/* ==========================================================================
* $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
* $Revision: #44 $
* $Date: 2011/10/26 $
* $Change: 1873028 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
#ifndef DWC_DEVICE_ONLY
/**
* @file
*
* This file contains the functions to manage Queue Heads and Queue
* Transfer Descriptors.
*/
#include "dwc_otg_hcd.h"
#include "dwc_otg_regs.h"
/**
* Free each QTD in the QH's QTD-list then free the QH. QH should already be
* removed from a list. QTD list should already be empty if called from URB
* Dequeue.
*
* @param hcd HCD instance.
* @param qh The QH to free.
*/
void dwc_otg_hcd_qh_free(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
dwc_otg_qtd_t *qtd, *qtd_tmp;
/* Free each QTD in the QTD list */
DWC_SPINLOCK(hcd->lock);
DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
DWC_CIRCLEQ_REMOVE(&qh->qtd_list, qtd, qtd_list_entry);
dwc_otg_hcd_qtd_free(qtd);
}
if (hcd->core_if->dma_desc_enable) {
dwc_otg_hcd_qh_free_ddma(hcd, qh);
} else if (qh->dw_align_buf) {
uint32_t buf_size;
if (qh->ep_type == UE_ISOCHRONOUS) {
buf_size = 4096;
} else {
buf_size = hcd->core_if->core_params->max_transfer_size;
}
DWC_DMA_FREE(buf_size, qh->dw_align_buf, qh->dw_align_buf_dma);
}
DWC_FREE(qh);
DWC_SPINUNLOCK(hcd->lock);
return;
}
#define BitStuffTime(bytecount) ((8 * 7* bytecount) / 6)
#define HS_HOST_DELAY 5 /* nanoseconds */
#define FS_LS_HOST_DELAY 1000 /* nanoseconds */
#define HUB_LS_SETUP 333 /* nanoseconds */
#define NS_TO_US(ns) ((ns + 500) / 1000)
/* convert & round nanoseconds to microseconds */
static uint32_t calc_bus_time(int speed, int is_in, int is_isoc, int bytecount)
{
unsigned long retval;
switch (speed) {
case USB_SPEED_HIGH:
if (is_isoc) {
retval =
((38 * 8 * 2083) +
(2083 * (3 + BitStuffTime(bytecount)))) / 1000 +
HS_HOST_DELAY;
} else {
retval =
((55 * 8 * 2083) +
(2083 * (3 + BitStuffTime(bytecount)))) / 1000 +
HS_HOST_DELAY;
}
break;
case USB_SPEED_FULL:
if (is_isoc) {
retval =
(8354 * (31 + 10 * BitStuffTime(bytecount))) / 1000;
if (is_in) {
retval = 7268 + FS_LS_HOST_DELAY + retval;
} else {
retval = 6265 + FS_LS_HOST_DELAY + retval;
}
} else {
retval =
(8354 * (31 + 10 * BitStuffTime(bytecount))) / 1000;
retval = 9107 + FS_LS_HOST_DELAY + retval;
}
break;
case USB_SPEED_LOW:
if (is_in) {
retval =
(67667 * (31 + 10 * BitStuffTime(bytecount))) /
1000;
retval =
64060 + (2 * HUB_LS_SETUP) + FS_LS_HOST_DELAY +
retval;
} else {
retval =
(66700 * (31 + 10 * BitStuffTime(bytecount))) /
1000;
retval =
64107 + (2 * HUB_LS_SETUP) + FS_LS_HOST_DELAY +
retval;
}
break;
default:
DWC_WARN("Unknown device speed\n");
retval = -1;
}
return NS_TO_US(retval);
}
/**
* Initializes a QH structure.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh The QH to init.
* @param urb Holds the information about the device/endpoint that we need
* to initialize the QH.
*/
#define SCHEDULE_SLOP 10
void qh_init(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh, dwc_otg_hcd_urb_t * urb)
{
char *speed, *type;
int dev_speed;
uint32_t hub_addr, hub_port;
dwc_memset(qh, 0, sizeof(dwc_otg_qh_t));
/* Initialize QH */
qh->ep_type = dwc_otg_hcd_get_pipe_type(&urb->pipe_info);
qh->ep_is_in = dwc_otg_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
qh->data_toggle = DWC_OTG_HC_PID_DATA0;
qh->maxp = dwc_otg_hcd_get_mps(&urb->pipe_info);
DWC_CIRCLEQ_INIT(&qh->qtd_list);
DWC_LIST_INIT(&qh->qh_list_entry);
qh->channel = NULL;
/* FS/LS Enpoint on HS Hub
* NOT virtual root hub */
dev_speed = hcd->fops->speed(hcd, urb->priv);
hcd->fops->hub_info(hcd, urb->priv, &hub_addr, &hub_port);
qh->do_split = 0;
if (((dev_speed == USB_SPEED_LOW) ||
(dev_speed == USB_SPEED_FULL)) &&
(hub_addr != 0 && hub_addr != 1)) {
DWC_DEBUGPL(DBG_HCD,
"QH init: EP %d: TT found at hub addr %d, for port %d\n",
dwc_otg_hcd_get_ep_num(&urb->pipe_info), hub_addr,
hub_port);
qh->do_split = 1;
}
if (qh->ep_type == UE_INTERRUPT || qh->ep_type == UE_ISOCHRONOUS) {
/* Compute scheduling parameters once and save them. */
hprt0_data_t hprt;
/** @todo Account for split transfers in the bus time. */
int bytecount =
dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
qh->usecs =
calc_bus_time((qh->do_split ? USB_SPEED_HIGH : dev_speed),
qh->ep_is_in, (qh->ep_type == UE_ISOCHRONOUS),
bytecount);
/* Start in a slightly future (micro)frame. */
qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
SCHEDULE_SLOP);
qh->interval = urb->interval;
#if 0
/* Increase interrupt polling rate for debugging. */
if (qh->ep_type == UE_INTERRUPT) {
qh->interval = 8;
}
#endif
hprt.d32 = DWC_READ_REG32(hcd->core_if->host_if->hprt0);
if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
((dev_speed == USB_SPEED_LOW) ||
(dev_speed == USB_SPEED_FULL))) {
qh->interval *= 8;
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
}
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
dwc_otg_hcd_get_dev_addr(&urb->pipe_info));
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
dwc_otg_hcd_get_ep_num(&urb->pipe_info),
dwc_otg_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
switch (dev_speed) {
case USB_SPEED_LOW:
qh->dev_speed = DWC_OTG_EP_SPEED_LOW;
speed = "low";
break;
case USB_SPEED_FULL:
qh->dev_speed = DWC_OTG_EP_SPEED_FULL;
speed = "full";
break;
case USB_SPEED_HIGH:
qh->dev_speed = DWC_OTG_EP_SPEED_HIGH;
speed = "high";
break;
default:
speed = "?";
break;
}
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
switch (qh->ep_type) {
case UE_ISOCHRONOUS:
type = "isochronous";
break;
case UE_INTERRUPT:
type = "interrupt";
break;
case UE_CONTROL:
type = "control";
break;
case UE_BULK:
type = "bulk";
break;
default:
type = "?";
break;
}
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n", type);
#ifdef DEBUG
if (qh->ep_type == UE_INTERRUPT) {
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
qh->usecs);
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
qh->interval);
}
#endif
}
/**
* This function allocates and initializes a QH.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param urb Holds the information about the device/endpoint that we need
* to initialize the QH.
* @param atomic_alloc Flag to do atomic allocation if needed
*
* @return Returns pointer to the newly allocated QH, or NULL on error. */
dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t * hcd,
dwc_otg_hcd_urb_t * urb, int atomic_alloc)
{
dwc_otg_qh_t *qh;
/* Allocate memory */
/** @todo add memflags argument */
qh = dwc_otg_hcd_qh_alloc(atomic_alloc);
if (qh == NULL) {
DWC_ERROR("qh allocation failed");
return NULL;
}
qh_init(hcd, qh, urb);
if (hcd->core_if->dma_desc_enable
&& (dwc_otg_hcd_qh_init_ddma(hcd, qh) < 0)) {
dwc_otg_hcd_qh_free(hcd, qh);
return NULL;
}
return qh;
}
/**
* Checks that a channel is available for a periodic transfer.
*
* @return 0 if successful, negative error code otherise.
*/
static int periodic_channel_available(dwc_otg_hcd_t * hcd)
{
/*
* Currently assuming that there is a dedicated host channnel for each
* periodic transaction plus at least one host channel for
* non-periodic transactions.
*/
int status;
int num_channels;
num_channels = hcd->core_if->core_params->host_channels;
if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels)
&& (hcd->periodic_channels < num_channels - 1)) {
status = 0;
} else {
DWC_INFO("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
__func__, num_channels, hcd->periodic_channels, hcd->non_periodic_channels); //NOTICE
status = -DWC_E_NO_SPACE;
}
return status;
}
/**
* Checks that there is sufficient bandwidth for the specified QH in the
* periodic schedule. For simplicity, this calculation assumes that all the
* transfers in the periodic schedule may occur in the same (micro)frame.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh QH containing periodic bandwidth required.
*
* @return 0 if successful, negative error code otherwise.
*/
static int check_periodic_bandwidth(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
int status;
int16_t max_claimed_usecs;
status = 0;
if ((qh->dev_speed == DWC_OTG_EP_SPEED_HIGH) || qh->do_split) {
/*
* High speed mode.
* Max periodic usecs is 80% x 125 usec = 100 usec.
*/
max_claimed_usecs = 100 - qh->usecs;
} else {
/*
* Full speed mode.
* Max periodic usecs is 90% x 1000 usec = 900 usec.
*/
max_claimed_usecs = 900 - qh->usecs;
}
if (hcd->periodic_usecs > max_claimed_usecs) {
DWC_INFO("%s: already claimed usecs %d, required usecs %d\n", __func__, hcd->periodic_usecs, qh->usecs); //NOTICE
status = -DWC_E_NO_SPACE;
}
return status;
}
/**
* Checks that the max transfer size allowed in a host channel is large enough
* to handle the maximum data transfer in a single (micro)frame for a periodic
* transfer.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh QH for a periodic endpoint.
*
* @return 0 if successful, negative error code otherwise.
*/
static int check_max_xfer_size(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
int status;
uint32_t max_xfer_size;
uint32_t max_channel_xfer_size;
status = 0;
max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
if (max_xfer_size > max_channel_xfer_size) {
DWC_INFO("%s: Periodic xfer length %d > " "max xfer length for channel %d\n",
__func__, max_xfer_size, max_channel_xfer_size); //NOTICE
status = -DWC_E_NO_SPACE;
}
return status;
}
/**
* Schedules an interrupt or isochronous transfer in the periodic schedule.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh QH for the periodic transfer. The QH should already contain the
* scheduling information.
*
* @return 0 if successful, negative error code otherwise.
*/
static int schedule_periodic(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
int status = 0;
status = periodic_channel_available(hcd);
if (status) {
DWC_INFO("%s: No host channel available for periodic " "transfer.\n", __func__); //NOTICE
return status;
}
status = check_periodic_bandwidth(hcd, qh);
if (status) {
DWC_INFO("%s: Insufficient periodic bandwidth for " "periodic transfer.\n", __func__); //NOTICE
return status;
}
status = check_max_xfer_size(hcd, qh);
if (status) {
DWC_INFO("%s: Channel max transfer size too small " "for periodic transfer.\n", __func__); //NOTICE
return status;
}
if (hcd->core_if->dma_desc_enable) {
/* Don't rely on SOF and start in ready schedule */
DWC_LIST_INSERT_TAIL(&hcd->periodic_sched_ready, &qh->qh_list_entry);
}
else {
/* Always start in the inactive schedule. */
DWC_LIST_INSERT_TAIL(&hcd->periodic_sched_inactive, &qh->qh_list_entry);
}
/* Reserve the periodic channel. */
hcd->periodic_channels++;
/* Update claimed usecs per (micro)frame. */
hcd->periodic_usecs += qh->usecs;
return status;
}
/**
* This function adds a QH to either the non periodic or periodic schedule if
* it is not already in the schedule. If the QH is already in the schedule, no
* action is taken.
*
* @return 0 if successful, negative error code otherwise.
*/
int dwc_otg_hcd_qh_add(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
int status = 0;
gintmsk_data_t intr_mask = {.d32 = 0 };
if (!DWC_LIST_EMPTY(&qh->qh_list_entry)) {
/* QH already in a schedule. */
return status;
}
/* Add the new QH to the appropriate schedule */
if (dwc_qh_is_non_per(qh)) {
/* Always start in the inactive schedule. */
DWC_LIST_INSERT_TAIL(&hcd->non_periodic_sched_inactive,
&qh->qh_list_entry);
} else {
status = schedule_periodic(hcd, qh);
if ( !hcd->periodic_qh_count ) {
intr_mask.b.sofintr = 1;
DWC_MODIFY_REG32(&hcd->core_if->core_global_regs->gintmsk,
intr_mask.d32, intr_mask.d32);
}
hcd->periodic_qh_count++;
}
return status;
}
/**
* Removes an interrupt or isochronous transfer from the periodic schedule.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh QH for the periodic transfer.
*/
static void deschedule_periodic(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
DWC_LIST_REMOVE_INIT(&qh->qh_list_entry);
/* Release the periodic channel reservation. */
hcd->periodic_channels--;
/* Update claimed usecs per (micro)frame. */
hcd->periodic_usecs -= qh->usecs;
}
/**
* Removes a QH from either the non-periodic or periodic schedule. Memory is
* not freed.
*
* @param hcd The HCD state structure.
* @param qh QH to remove from schedule. */
void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
gintmsk_data_t intr_mask = {.d32 = 0 };
if (DWC_LIST_EMPTY(&qh->qh_list_entry)) {
/* QH is not in a schedule. */
return;
}
if (dwc_qh_is_non_per(qh)) {
if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
hcd->non_periodic_qh_ptr =
hcd->non_periodic_qh_ptr->next;
}
DWC_LIST_REMOVE_INIT(&qh->qh_list_entry);
} else {
deschedule_periodic(hcd, qh);
hcd->periodic_qh_count--;
if( !hcd->periodic_qh_count ) {
intr_mask.b.sofintr = 1;
DWC_MODIFY_REG32(&hcd->core_if->core_global_regs->gintmsk,
intr_mask.d32, 0);
}
}
}
/**
* Deactivates a QH. For non-periodic QHs, removes the QH from the active
* non-periodic schedule. The QH is added to the inactive non-periodic
* schedule if any QTDs are still attached to the QH.
*
* For periodic QHs, the QH is removed from the periodic queued schedule. If
* there are any QTDs still attached to the QH, the QH is added to either the
* periodic inactive schedule or the periodic ready schedule and its next
* scheduled frame is calculated. The QH is placed in the ready schedule if
* the scheduled frame has been reached already. Otherwise it's placed in the
* inactive schedule. If there are no QTDs attached to the QH, the QH is
* completely removed from the periodic schedule.
*/
void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
int sched_next_periodic_split)
{
if (dwc_qh_is_non_per(qh)) {
dwc_otg_hcd_qh_remove(hcd, qh);
if (!DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
/* Add back to inactive non-periodic schedule. */
dwc_otg_hcd_qh_add(hcd, qh);
}
} else {
uint16_t frame_number = dwc_otg_hcd_get_frame_number(hcd);
if (qh->do_split) {
/* Schedule the next continuing periodic split transfer */
if (sched_next_periodic_split) {
qh->sched_frame = frame_number;
if (dwc_frame_num_le(frame_number,
dwc_frame_num_inc
(qh->start_split_frame,
1))) {
/*
* Allow one frame to elapse after start
* split microframe before scheduling
* complete split, but DONT if we are
* doing the next start split in the
* same frame for an ISOC out.
*/
if ((qh->ep_type != UE_ISOCHRONOUS) ||
(qh->ep_is_in != 0)) {
qh->sched_frame =
dwc_frame_num_inc(qh->sched_frame, 1);
}
}
} else {
qh->sched_frame =
dwc_frame_num_inc(qh->start_split_frame,
qh->interval);
if (dwc_frame_num_le
(qh->sched_frame, frame_number)) {
qh->sched_frame = frame_number;
}
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
} else {
qh->sched_frame =
dwc_frame_num_inc(qh->sched_frame, qh->interval);
if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
qh->sched_frame = frame_number;
}
}
if (DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
dwc_otg_hcd_qh_remove(hcd, qh);
} else {
/*
* Remove from periodic_sched_queued and move to
* appropriate queue.
*/
if (qh->sched_frame == frame_number) {
DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_ready,
&qh->qh_list_entry);
} else {
DWC_LIST_MOVE_HEAD
(&hcd->periodic_sched_inactive,
&qh->qh_list_entry);
}
}
}
}
/**
* This function allocates and initializes a QTD.
*
* @param urb The URB to create a QTD from. Each URB-QTD pair will end up
* pointing to each other so each pair should have a unique correlation.
* @param atomic_alloc Flag to do atomic alloc if needed
*
* @return Returns pointer to the newly allocated QTD, or NULL on error. */
dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(dwc_otg_hcd_urb_t * urb, int atomic_alloc)
{
dwc_otg_qtd_t *qtd;
qtd = dwc_otg_hcd_qtd_alloc(atomic_alloc);
if (qtd == NULL) {
return NULL;
}
dwc_otg_hcd_qtd_init(qtd, urb);
return qtd;
}
/**
* Initializes a QTD structure.
*
* @param qtd The QTD to initialize.
* @param urb The URB to use for initialization. */
void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t * qtd, dwc_otg_hcd_urb_t * urb)
{
dwc_memset(qtd, 0, sizeof(dwc_otg_qtd_t));
qtd->urb = urb;
if (dwc_otg_hcd_get_pipe_type(&urb->pipe_info) == UE_CONTROL) {
/*
* The only time the QTD data toggle is used is on the data
* phase of control transfers. This phase always starts with
* DATA1.
*/
qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
qtd->control_phase = DWC_OTG_CONTROL_SETUP;
}
/* start split */
qtd->complete_split = 0;
qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
qtd->isoc_split_offset = 0;
qtd->in_process = 0;
/* Store the qtd ptr in the urb to reference what QTD. */
urb->qtd = qtd;
return;
}
/**
* This function adds a QTD to the QTD-list of a QH. It will find the correct
* QH to place the QTD into. If it does not find a QH, then it will create a
* new QH. If the QH to which the QTD is added is not currently scheduled, it
* is placed into the proper schedule based on its EP type.
*
* @param[in] qtd The QTD to add
* @param[in] hcd The DWC HCD structure
* @param[out] qh out parameter to return queue head
* @param atomic_alloc Flag to do atomic alloc if needed
*
* @return 0 if successful, negative error code otherwise.
*/
int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * qtd,
dwc_otg_hcd_t * hcd, dwc_otg_qh_t ** qh, int atomic_alloc)
{
int retval = 0;
dwc_irqflags_t flags;
dwc_otg_hcd_urb_t *urb = qtd->urb;
/*
* Get the QH which holds the QTD-list to insert to. Create QH if it
* doesn't exist.
*/
if (*qh == NULL) {
*qh = dwc_otg_hcd_qh_create(hcd, urb, atomic_alloc);
if (*qh == NULL) {
retval = -1;
goto done;
}
}
DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
retval = dwc_otg_hcd_qh_add(hcd, *qh);
if (retval == 0) {
DWC_CIRCLEQ_INSERT_TAIL(&((*qh)->qtd_list), qtd,
qtd_list_entry);
}
DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
done:
return retval;
}
#endif /* DWC_DEVICE_ONLY */