blob: 6911e0482ed9f26fde40dd748c11327097eb2ed7 [file] [log] [blame]
/*==========================================================================
* $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_ddma.c $
* $Revision: #10 $
* $Date: 2011/10/20 $
* $Change: 1869464 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
#ifndef DWC_DEVICE_ONLY
/** @file
* This file contains Descriptor DMA support implementation for host mode.
*/
#include "dwc_otg_hcd.h"
#include "dwc_otg_regs.h"
static inline uint8_t frame_list_idx(uint16_t frame)
{
return (frame & (MAX_FRLIST_EN_NUM - 1));
}
static inline uint16_t desclist_idx_inc(uint16_t idx, uint16_t inc, uint8_t speed)
{
return (idx + inc) &
(((speed ==
DWC_OTG_EP_SPEED_HIGH) ? MAX_DMA_DESC_NUM_HS_ISOC :
MAX_DMA_DESC_NUM_GENERIC) - 1);
}
static inline uint16_t desclist_idx_dec(uint16_t idx, uint16_t inc, uint8_t speed)
{
return (idx - inc) &
(((speed ==
DWC_OTG_EP_SPEED_HIGH) ? MAX_DMA_DESC_NUM_HS_ISOC :
MAX_DMA_DESC_NUM_GENERIC) - 1);
}
static inline uint16_t max_desc_num(dwc_otg_qh_t * qh)
{
return (((qh->ep_type == UE_ISOCHRONOUS)
&& (qh->dev_speed == DWC_OTG_EP_SPEED_HIGH))
? MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC);
}
static inline uint16_t frame_incr_val(dwc_otg_qh_t * qh)
{
return ((qh->dev_speed == DWC_OTG_EP_SPEED_HIGH)
? ((qh->interval + 8 - 1) / 8)
: qh->interval);
}
static int desc_list_alloc(dwc_otg_qh_t * qh)
{
int retval = 0;
qh->desc_list = (dwc_otg_host_dma_desc_t *)
DWC_DMA_ALLOC(sizeof(dwc_otg_host_dma_desc_t) * max_desc_num(qh),
&qh->desc_list_dma);
if (!qh->desc_list) {
retval = -DWC_E_NO_MEMORY;
DWC_ERROR("%s: DMA descriptor list allocation failed\n", __func__);
}
dwc_memset(qh->desc_list, 0x00,
sizeof(dwc_otg_host_dma_desc_t) * max_desc_num(qh));
qh->n_bytes =
(uint32_t *) DWC_ALLOC(sizeof(uint32_t) * max_desc_num(qh));
if (!qh->n_bytes) {
retval = -DWC_E_NO_MEMORY;
DWC_ERROR
("%s: Failed to allocate array for descriptors' size actual values\n",
__func__);
}
return retval;
}
static void desc_list_free(dwc_otg_qh_t * qh)
{
if (qh->desc_list) {
DWC_DMA_FREE(max_desc_num(qh), qh->desc_list,
qh->desc_list_dma);
qh->desc_list = NULL;
}
if (qh->n_bytes) {
DWC_FREE(qh->n_bytes);
qh->n_bytes = NULL;
}
}
static int frame_list_alloc(dwc_otg_hcd_t * hcd)
{
int retval = 0;
if (hcd->frame_list)
return 0;
hcd->frame_list = DWC_DMA_ALLOC(4 * MAX_FRLIST_EN_NUM,
&hcd->frame_list_dma);
if (!hcd->frame_list) {
retval = -DWC_E_NO_MEMORY;
DWC_ERROR("%s: Frame List allocation failed\n", __func__);
}
dwc_memset(hcd->frame_list, 0x00, 4 * MAX_FRLIST_EN_NUM);
return retval;
}
static void frame_list_free(dwc_otg_hcd_t * hcd)
{
if (!hcd->frame_list)
return;
DWC_DMA_FREE(4 * MAX_FRLIST_EN_NUM, hcd->frame_list, hcd->frame_list_dma);
hcd->frame_list = NULL;
}
static void per_sched_enable(dwc_otg_hcd_t * hcd, uint16_t fr_list_en)
{
hcfg_data_t hcfg;
hcfg.d32 = DWC_READ_REG32(&hcd->core_if->host_if->host_global_regs->hcfg);
if (hcfg.b.perschedena) {
/* already enabled */
return;
}
DWC_WRITE_REG32(&hcd->core_if->host_if->host_global_regs->hflbaddr,
hcd->frame_list_dma);
switch (fr_list_en) {
case 64:
hcfg.b.frlisten = 3;
break;
case 32:
hcfg.b.frlisten = 2;
break;
case 16:
hcfg.b.frlisten = 1;
break;
case 8:
hcfg.b.frlisten = 0;
break;
default:
break;
}
hcfg.b.perschedena = 1;
DWC_DEBUGPL(DBG_HCD, "Enabling Periodic schedule\n");
DWC_WRITE_REG32(&hcd->core_if->host_if->host_global_regs->hcfg, hcfg.d32);
}
static void per_sched_disable(dwc_otg_hcd_t * hcd)
{
hcfg_data_t hcfg;
hcfg.d32 = DWC_READ_REG32(&hcd->core_if->host_if->host_global_regs->hcfg);
if (!hcfg.b.perschedena) {
/* already disabled */
return;
}
hcfg.b.perschedena = 0;
DWC_DEBUGPL(DBG_HCD, "Disabling Periodic schedule\n");
DWC_WRITE_REG32(&hcd->core_if->host_if->host_global_regs->hcfg, hcfg.d32);
}
/*
* Activates/Deactivates FrameList entries for the channel
* based on endpoint servicing period.
*/
void update_frame_list(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh, uint8_t enable)
{
uint16_t i, j, inc;
dwc_hc_t *hc = NULL;
if (!qh->channel) {
DWC_ERROR("qh->channel = %p", qh->channel);
return;
}
if (!hcd) {
DWC_ERROR("------hcd = %p", hcd);
return;
}
if (!hcd->frame_list) {
DWC_ERROR("-------hcd->frame_list = %p", hcd->frame_list);
return;
}
hc = qh->channel;
inc = frame_incr_val(qh);
if (qh->ep_type == UE_ISOCHRONOUS)
i = frame_list_idx(qh->sched_frame);
else
i = 0;
j = i;
do {
if (enable)
hcd->frame_list[j] |= (1 << hc->hc_num);
else
hcd->frame_list[j] &= ~(1 << hc->hc_num);
j = (j + inc) & (MAX_FRLIST_EN_NUM - 1);
}
while (j != i);
if (!enable)
return;
hc->schinfo = 0;
if (qh->channel->speed == DWC_OTG_EP_SPEED_HIGH) {
j = 1;
/* TODO - check this */
inc = (8 + qh->interval - 1) / qh->interval;
for (i = 0; i < inc; i++) {
hc->schinfo |= j;
j = j << qh->interval;
}
} else {
hc->schinfo = 0xff;
}
}
#if 1
void dump_frame_list(dwc_otg_hcd_t * hcd)
{
int i = 0;
DWC_PRINTF("--FRAME LIST (hex) --\n");
for (i = 0; i < MAX_FRLIST_EN_NUM; i++) {
DWC_PRINTF("%x\t", hcd->frame_list[i]);
if (!(i % 8) && i)
DWC_PRINTF("\n");
}
DWC_PRINTF("\n----\n");
}
#endif
static void release_channel_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
dwc_hc_t *hc = qh->channel;
if (dwc_qh_is_non_per(qh))
hcd->non_periodic_channels--;
else
update_frame_list(hcd, qh, 0);
/*
* The condition is added to prevent double cleanup try in case of device
* disconnect. See channel cleanup in dwc_otg_hcd_disconnect_cb().
*/
if (hc->qh) {
dwc_otg_hc_cleanup(hcd->core_if, hc);
DWC_CIRCLEQ_INSERT_TAIL(&hcd->free_hc_list, hc, hc_list_entry);
hc->qh = NULL;
}
qh->channel = NULL;
qh->ntd = 0;
if (qh->desc_list) {
dwc_memset(qh->desc_list, 0x00,
sizeof(dwc_otg_host_dma_desc_t) * max_desc_num(qh));
}
}
/**
* Initializes a QH structure's Descriptor DMA related members.
* Allocates memory for descriptor list.
* On first periodic QH, allocates memory for FrameList
* and enables periodic scheduling.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh The QH to init.
*
* @return 0 if successful, negative error code otherwise.
*/
int dwc_otg_hcd_qh_init_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
int retval = 0;
if (qh->do_split) {
DWC_ERROR("SPLIT Transfers are not supported in Descriptor DMA.\n");
return -1;
}
retval = desc_list_alloc(qh);
if ((retval == 0)
&& (qh->ep_type == UE_ISOCHRONOUS || qh->ep_type == UE_INTERRUPT)) {
if (!hcd->frame_list) {
retval = frame_list_alloc(hcd);
/* Enable periodic schedule on first periodic QH */
if (retval == 0)
per_sched_enable(hcd, MAX_FRLIST_EN_NUM);
}
}
qh->ntd = 0;
return retval;
}
/**
* Frees descriptor list memory associated with the QH.
* If QH is periodic and the last, frees FrameList memory
* and disables periodic scheduling.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh The QH to init.
*/
void dwc_otg_hcd_qh_free_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
desc_list_free(qh);
/*
* Channel still assigned due to some reasons.
* Seen on Isoc URB dequeue. Channel halted but no subsequent
* ChHalted interrupt to release the channel. Afterwards
* when it comes here from endpoint disable routine
* channel remains assigned.
*/
if (qh->channel)
release_channel_ddma(hcd, qh);
if ((qh->ep_type == UE_ISOCHRONOUS || qh->ep_type == UE_INTERRUPT)
&& !hcd->periodic_channels && hcd->frame_list) {
per_sched_disable(hcd);
frame_list_free(hcd);
}
}
static uint8_t frame_to_desc_idx(dwc_otg_qh_t * qh, uint16_t frame_idx)
{
if (qh->dev_speed == DWC_OTG_EP_SPEED_HIGH) {
/*
* Descriptor set(8 descriptors) index
* which is 8-aligned.
*/
return (frame_idx & ((MAX_DMA_DESC_NUM_HS_ISOC / 8) - 1)) * 8;
} else {
return (frame_idx & (MAX_DMA_DESC_NUM_GENERIC - 1));
}
}
/*
* Determine starting frame for Isochronous transfer.
* Few frames skipped to prevent race condition with HC.
*/
static uint8_t calc_starting_frame(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
uint8_t * skip_frames)
{
uint16_t frame = 0;
hcd->frame_number = dwc_otg_hcd_get_frame_number(hcd);
/* sched_frame is always frame number(not uFrame) both in FS and HS !! */
/*
* skip_frames is used to limit activated descriptors number
* to avoid the situation when HC services the last activated
* descriptor firstly.
* Example for FS:
* Current frame is 1, scheduled frame is 3. Since HC always fetches the descriptor
* corresponding to curr_frame+1, the descriptor corresponding to frame 2
* will be fetched. If the number of descriptors is max=64 (or greather) the
* list will be fully programmed with Active descriptors and it is possible
* case(rare) that the latest descriptor(considering rollback) corresponding
* to frame 2 will be serviced first. HS case is more probable because, in fact,
* up to 11 uframes(16 in the code) may be skipped.
*/
if (qh->dev_speed == DWC_OTG_EP_SPEED_HIGH) {
/*
* Consider uframe counter also, to start xfer asap.
* If half of the frame elapsed skip 2 frames otherwise
* just 1 frame.
* Starting descriptor index must be 8-aligned, so
* if the current frame is near to complete the next one
* is skipped as well.
*/
if (dwc_micro_frame_num(hcd->frame_number) >= 5) {
*skip_frames = 2 * 8;
frame = dwc_frame_num_inc(hcd->frame_number, *skip_frames);
} else {
*skip_frames = 1 * 8;
frame = dwc_frame_num_inc(hcd->frame_number, *skip_frames);
}
frame = dwc_full_frame_num(frame);
} else {
/*
* Two frames are skipped for FS - the current and the next.
* But for descriptor programming, 1 frame(descriptor) is enough,
* see example above.
*/
*skip_frames = 1;
frame = dwc_frame_num_inc(hcd->frame_number, 2);
}
return frame;
}
/*
* Calculate initial descriptor index for isochronous transfer
* based on scheduled frame.
*/
static uint8_t recalc_initial_desc_idx(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
uint16_t frame = 0, fr_idx, fr_idx_tmp;
uint8_t skip_frames = 0;
/*
* With current ISOC processing algorithm the channel is being
* released when no more QTDs in the list(qh->ntd == 0).
* Thus this function is called only when qh->ntd == 0 and qh->channel == 0.
*
* So qh->channel != NULL branch is not used and just not removed from the
* source file. It is required for another possible approach which is,
* do not disable and release the channel when ISOC session completed,
* just move QH to inactive schedule until new QTD arrives.
* On new QTD, the QH moved back to 'ready' schedule,
* starting frame and therefore starting desc_index are recalculated.
* In this case channel is released only on ep_disable.
*/
/* Calculate starting descriptor index. For INTERRUPT endpoint it is always 0. */
if (qh->channel) {
frame = calc_starting_frame(hcd, qh, &skip_frames);
/*
* Calculate initial descriptor index based on FrameList current bitmap
* and servicing period.
*/
fr_idx_tmp = frame_list_idx(frame);
fr_idx =
(MAX_FRLIST_EN_NUM + frame_list_idx(qh->sched_frame) -
fr_idx_tmp)
% frame_incr_val(qh);
fr_idx = (fr_idx + fr_idx_tmp) % MAX_FRLIST_EN_NUM;
} else {
qh->sched_frame = calc_starting_frame(hcd, qh, &skip_frames);
fr_idx = frame_list_idx(qh->sched_frame);
}
qh->td_first = qh->td_last = frame_to_desc_idx(qh, fr_idx);
return skip_frames;
}
#define ISOC_URB_GIVEBACK_ASAP
#define MAX_ISOC_XFER_SIZE_FS 1023
#define MAX_ISOC_XFER_SIZE_HS 3072
#define DESCNUM_THRESHOLD 4
static void init_isoc_dma_desc(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
uint8_t skip_frames)
{
struct dwc_otg_hcd_iso_packet_desc *frame_desc;
dwc_otg_qtd_t *qtd;
dwc_otg_host_dma_desc_t *dma_desc;
uint16_t idx, inc, n_desc, ntd_max, max_xfer_size;
idx = qh->td_last;
inc = qh->interval;
n_desc = 0;
ntd_max = (max_desc_num(qh) + qh->interval - 1) / qh->interval;
if (skip_frames && !qh->channel)
ntd_max = ntd_max - skip_frames / qh->interval;
max_xfer_size =
(qh->dev_speed ==
DWC_OTG_EP_SPEED_HIGH) ? MAX_ISOC_XFER_SIZE_HS :
MAX_ISOC_XFER_SIZE_FS;
DWC_CIRCLEQ_FOREACH(qtd, &qh->qtd_list, qtd_list_entry) {
while ((qh->ntd < ntd_max)
&& (qtd->isoc_frame_index_last <
qtd->urb->packet_count)) {
dma_desc = &qh->desc_list[idx];
dwc_memset(dma_desc, 0x00, sizeof(dwc_otg_host_dma_desc_t));
frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
if (frame_desc->length > max_xfer_size)
qh->n_bytes[idx] = max_xfer_size;
else
qh->n_bytes[idx] = frame_desc->length;
dma_desc->status.b_isoc.n_bytes = qh->n_bytes[idx];
dma_desc->status.b_isoc.a = 1;
dma_desc->status.b_isoc.sts = 0;
dma_desc->buf = qtd->urb->dma + frame_desc->offset;
qh->ntd++;
qtd->isoc_frame_index_last++;
#ifdef ISOC_URB_GIVEBACK_ASAP
/*
* Set IOC for each descriptor corresponding to the
* last frame of the URB.
*/
if (qtd->isoc_frame_index_last ==
qtd->urb->packet_count)
dma_desc->status.b_isoc.ioc = 1;
#endif
idx = desclist_idx_inc(idx, inc, qh->dev_speed);
n_desc++;
}
qtd->in_process = 1;
}
qh->td_last = idx;
#ifdef ISOC_URB_GIVEBACK_ASAP
/* Set IOC for the last descriptor if descriptor list is full */
if (qh->ntd == ntd_max) {
idx = desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
qh->desc_list[idx].status.b_isoc.ioc = 1;
}
#else
/*
* Set IOC bit only for one descriptor.
* Always try to be ahead of HW processing,
* i.e. on IOC generation driver activates next descriptors but
* core continues to process descriptors followed the one with IOC set.
*/
if (n_desc > DESCNUM_THRESHOLD) {
/*
* Move IOC "up". Required even if there is only one QTD
* in the list, cause QTDs migth continue to be queued,
* but during the activation it was only one queued.
* Actually more than one QTD might be in the list if this function called
* from XferCompletion - QTDs was queued during HW processing of the previous
* descriptor chunk.
*/
idx = dwc_desclist_idx_dec(idx, inc * ((qh->ntd + 1) / 2), qh->dev_speed);
} else {
/*
* Set the IOC for the latest descriptor
* if either number of descriptor is not greather than threshold
* or no more new descriptors activated.
*/
idx = dwc_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
}
qh->desc_list[idx].status.b_isoc.ioc = 1;
#endif
}
static void init_non_isoc_dma_desc(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
dwc_hc_t *hc;
dwc_otg_host_dma_desc_t *dma_desc;
dwc_otg_qtd_t *qtd;
int num_packets, len, n_desc = 0;
hc = qh->channel;
/*
* Start with hc->xfer_buff initialized in
* assign_and_init_hc(), then if SG transfer consists of multiple URBs,
* this pointer re-assigned to the buffer of the currently processed QTD.
* For non-SG request there is always one QTD active.
*/
DWC_CIRCLEQ_FOREACH(qtd, &qh->qtd_list, qtd_list_entry) {
if (n_desc) {
/* SG request - more than 1 QTDs */
hc->xfer_buff = (uint8_t *)qtd->urb->dma + qtd->urb->actual_length;
hc->xfer_len = qtd->urb->length - qtd->urb->actual_length;
}
qtd->n_desc = 0;
do {
dma_desc = &qh->desc_list[n_desc];
len = hc->xfer_len;
if (len > MAX_DMA_DESC_SIZE)
len = MAX_DMA_DESC_SIZE - hc->max_packet + 1;
if (hc->ep_is_in) {
if (len > 0) {
num_packets = (len + hc->max_packet - 1) / hc->max_packet;
} else {
/* Need 1 packet for transfer length of 0. */
num_packets = 1;
}
/* Always program an integral # of max packets for IN transfers. */
len = num_packets * hc->max_packet;
}
dma_desc->status.b.n_bytes = len;
qh->n_bytes[n_desc] = len;
if ((qh->ep_type == UE_CONTROL)
&& (qtd->control_phase == DWC_OTG_CONTROL_SETUP))
dma_desc->status.b.sup = 1; /* Setup Packet */
dma_desc->status.b.a = 1; /* Active descriptor */
dma_desc->status.b.sts = 0;
dma_desc->buf =
((unsigned long)hc->xfer_buff & 0xffffffff);
/*
* Last descriptor(or single) of IN transfer
* with actual size less than MaxPacket.
*/
if (len > hc->xfer_len) {
hc->xfer_len = 0;
} else {
hc->xfer_buff += len;
hc->xfer_len -= len;
}
qtd->n_desc++;
n_desc++;
}
while ((hc->xfer_len > 0) && (n_desc != MAX_DMA_DESC_NUM_GENERIC));
qtd->in_process = 1;
if (qh->ep_type == UE_CONTROL)
break;
if (n_desc == MAX_DMA_DESC_NUM_GENERIC)
break;
}
if (n_desc) {
/* Request Transfer Complete interrupt for the last descriptor */
qh->desc_list[n_desc - 1].status.b.ioc = 1;
/* End of List indicator */
qh->desc_list[n_desc - 1].status.b.eol = 1;
hc->ntd = n_desc;
}
}
/**
* For Control and Bulk endpoints initializes descriptor list
* and starts the transfer.
*
* For Interrupt and Isochronous endpoints initializes descriptor list
* then updates FrameList, marking appropriate entries as active.
* In case of Isochronous, the starting descriptor index is calculated based
* on the scheduled frame, but only on the first transfer descriptor within a session.
* Then starts the transfer via enabling the channel.
* For Isochronous endpoint the channel is not halted on XferComplete
* interrupt so remains assigned to the endpoint(QH) until session is done.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh The QH to init.
*
* @return 0 if successful, negative error code otherwise.
*/
void dwc_otg_hcd_start_xfer_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
{
/* Channel is already assigned */
dwc_hc_t *hc = qh->channel;
uint8_t skip_frames = 0;
switch (hc->ep_type) {
case DWC_OTG_EP_TYPE_CONTROL:
case DWC_OTG_EP_TYPE_BULK:
init_non_isoc_dma_desc(hcd, qh);
dwc_otg_hc_start_transfer_ddma(hcd->core_if, hc);
break;
case DWC_OTG_EP_TYPE_INTR:
init_non_isoc_dma_desc(hcd, qh);
update_frame_list(hcd, qh, 1);
dwc_otg_hc_start_transfer_ddma(hcd->core_if, hc);
break;
case DWC_OTG_EP_TYPE_ISOC:
if (!qh->ntd)
skip_frames = recalc_initial_desc_idx(hcd, qh);
init_isoc_dma_desc(hcd, qh, skip_frames);
if (!hc->xfer_started) {
update_frame_list(hcd, qh, 1);
/*
* Always set to max, instead of actual size.
* Otherwise ntd will be changed with
* channel being enabled. Not recommended.
*
*/
hc->ntd = max_desc_num(qh);
/* Enable channel only once for ISOC */
dwc_otg_hc_start_transfer_ddma(hcd->core_if, hc);
}
break;
default:
break;
}
}
static void complete_isoc_xfer_ddma(dwc_otg_hcd_t * hcd,
dwc_hc_t * hc,
dwc_otg_hc_regs_t * hc_regs,
dwc_otg_halt_status_e halt_status)
{
struct dwc_otg_hcd_iso_packet_desc *frame_desc;
dwc_otg_qtd_t *qtd, *qtd_tmp;
dwc_otg_qh_t *qh;
dwc_otg_host_dma_desc_t *dma_desc;
uint16_t idx, remain;
uint8_t urb_compl;
qh = hc->qh;
idx = qh->td_first;
if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE) {
DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry)
qtd->in_process = 0;
return;
} else if ((halt_status == DWC_OTG_HC_XFER_AHB_ERR) ||
(halt_status == DWC_OTG_HC_XFER_BABBLE_ERR)) {
/*
* Channel is halted in these error cases.
* Considered as serious issues.
* Complete all URBs marking all frames as failed,
* irrespective whether some of the descriptors(frames) succeeded or no.
* Pass error code to completion routine as well, to
* update urb->status, some of class drivers might use it to stop
* queing transfer requests.
*/
int err = (halt_status == DWC_OTG_HC_XFER_AHB_ERR)
? (-DWC_E_IO)
: (-DWC_E_OVERFLOW);
DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry) {
for (idx = 0; idx < qtd->urb->packet_count; idx++) {
frame_desc = &qtd->urb->iso_descs[idx];
frame_desc->status = err;
}
hcd->fops->complete(hcd, qtd->urb->priv, qtd->urb, err);
dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
}
return;
}
DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry) {
if (!qtd->in_process)
break;
urb_compl = 0;
do {
dma_desc = &qh->desc_list[idx];
frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index];
remain = hc->ep_is_in ? dma_desc->status.b_isoc.n_bytes : 0;
if (dma_desc->status.b_isoc.sts == DMA_DESC_STS_PKTERR) {
/*
* XactError or, unable to complete all the transactions
* in the scheduled micro-frame/frame,
* both indicated by DMA_DESC_STS_PKTERR.
*/
qtd->urb->error_count++;
frame_desc->actual_length = qh->n_bytes[idx] - remain;
frame_desc->status = -DWC_E_PROTOCOL;
} else {
/* Success */
frame_desc->actual_length = qh->n_bytes[idx] - remain;
frame_desc->status = 0;
}
if (++qtd->isoc_frame_index == qtd->urb->packet_count) {
/*
* urb->status is not used for isoc transfers here.
* The individual frame_desc status are used instead.
*/
hcd->fops->complete(hcd, qtd->urb->priv, qtd->urb, 0);
dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
/*
* This check is necessary because urb_dequeue can be called
* from urb complete callback(sound driver example).
* All pending URBs are dequeued there, so no need for
* further processing.
*/
if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE) {
return;
}
urb_compl = 1;
}
qh->ntd--;
/* Stop if IOC requested descriptor reached */
if (dma_desc->status.b_isoc.ioc) {
idx = desclist_idx_inc(idx, qh->interval, hc->speed);
goto stop_scan;
}
idx = desclist_idx_inc(idx, qh->interval, hc->speed);
if (urb_compl)
break;
}
while (idx != qh->td_first);
}
stop_scan:
qh->td_first = idx;
}
uint8_t update_non_isoc_urb_state_ddma(dwc_otg_hcd_t * hcd,
dwc_hc_t * hc,
dwc_otg_qtd_t * qtd,
dwc_otg_host_dma_desc_t * dma_desc,
dwc_otg_halt_status_e halt_status,
uint32_t n_bytes, uint8_t * xfer_done)
{
uint16_t remain = hc->ep_is_in ? dma_desc->status.b.n_bytes : 0;
dwc_otg_hcd_urb_t *urb = qtd->urb;
if (halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
urb->status = -DWC_E_IO;
return 1;
}
if (dma_desc->status.b.sts == DMA_DESC_STS_PKTERR) {
switch (halt_status) {
case DWC_OTG_HC_XFER_STALL:
urb->status = -DWC_E_PIPE;
break;
case DWC_OTG_HC_XFER_BABBLE_ERR:
urb->status = -DWC_E_OVERFLOW;
break;
case DWC_OTG_HC_XFER_XACT_ERR:
urb->status = -DWC_E_PROTOCOL;
break;
default:
DWC_ERROR("%s: Unhandled descriptor error status (%d)\n", __func__,
halt_status);
break;
}
return 1;
}
if (dma_desc->status.b.a == 1) {
DWC_DEBUGPL(DBG_HCDV,
"Active descriptor encountered on channel %d\n",
hc->hc_num);
return 0;
}
if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL) {
if (qtd->control_phase == DWC_OTG_CONTROL_DATA) {
urb->actual_length += n_bytes - remain;
if (remain || urb->actual_length == urb->length) {
/*
* For Control Data stage do not set urb->status=0 to prevent
* URB callback. Set it when Status phase done. See below.
*/
*xfer_done = 1;
}
} else if (qtd->control_phase == DWC_OTG_CONTROL_STATUS) {
urb->status = 0;
*xfer_done = 1;
}
/* No handling for SETUP stage */
} else {
/* BULK and INTR */
urb->actual_length += n_bytes - remain;
if (remain || urb->actual_length == urb->length) {
urb->status = 0;
*xfer_done = 1;
}
}
return 0;
}
static void complete_non_isoc_xfer_ddma(dwc_otg_hcd_t * hcd,
dwc_hc_t * hc,
dwc_otg_hc_regs_t * hc_regs,
dwc_otg_halt_status_e halt_status)
{
dwc_otg_hcd_urb_t *urb = NULL;
dwc_otg_qtd_t *qtd, *qtd_tmp;
dwc_otg_qh_t *qh;
dwc_otg_host_dma_desc_t *dma_desc;
uint32_t n_bytes, n_desc, i;
uint8_t failed = 0, xfer_done;
n_desc = 0;
qh = hc->qh;
if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE) {
DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry) {
qtd->in_process = 0;
}
return;
}
DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
urb = qtd->urb;
n_bytes = 0;
xfer_done = 0;
for (i = 0; i < qtd->n_desc; i++) {
dma_desc = &qh->desc_list[n_desc];
n_bytes = qh->n_bytes[n_desc];
failed =
update_non_isoc_urb_state_ddma(hcd, hc, qtd,
dma_desc,
halt_status, n_bytes,
&xfer_done);
if (failed
|| (xfer_done
&& (urb->status != -DWC_E_IN_PROGRESS))) {
hcd->fops->complete(hcd, urb->priv, urb,
urb->status);
dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
if (failed)
goto stop_scan;
} else if (qh->ep_type == UE_CONTROL) {
if (qtd->control_phase == DWC_OTG_CONTROL_SETUP) {
if (urb->length > 0) {
qtd->control_phase = DWC_OTG_CONTROL_DATA;
} else {
qtd->control_phase = DWC_OTG_CONTROL_STATUS;
}
DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
} else if (qtd->control_phase == DWC_OTG_CONTROL_DATA) {
if (xfer_done) {
qtd->control_phase = DWC_OTG_CONTROL_STATUS;
DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
} else if (i + 1 == qtd->n_desc) {
/*
* Last descriptor for Control data stage which is
* not completed yet.
*/
dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
}
}
}
n_desc++;
}
}
stop_scan:
if (qh->ep_type != UE_CONTROL) {
/*
* Resetting the data toggle for bulk
* and interrupt endpoints in case of stall. See handle_hc_stall_intr()
*/
if (halt_status == DWC_OTG_HC_XFER_STALL)
qh->data_toggle = DWC_OTG_HC_PID_DATA0;
else
dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
}
if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
hcint_data_t hcint;
hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
if (hcint.b.nyet) {
/*
* Got a NYET on the last transaction of the transfer. It
* means that the endpoint should be in the PING state at the
* beginning of the next transfer.
*/
qh->ping_state = 1;
clear_hc_int(hc_regs, nyet);
}
}
}
/**
* This function is called from interrupt handlers.
* Scans the descriptor list, updates URB's status and
* calls completion routine for the URB if it's done.
* Releases the channel to be used by other transfers.
* In case of Isochronous endpoint the channel is not halted until
* the end of the session, i.e. QTD list is empty.
* If periodic channel released the FrameList is updated accordingly.
*
* Calls transaction selection routines to activate pending transfers.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param hc Host channel, the transfer is completed on.
* @param hc_regs Host channel registers.
* @param halt_status Reason the channel is being halted,
* or just XferComplete for isochronous transfer
*/
void dwc_otg_hcd_complete_xfer_ddma(dwc_otg_hcd_t * hcd,
dwc_hc_t * hc,
dwc_otg_hc_regs_t * hc_regs,
dwc_otg_halt_status_e halt_status)
{
uint8_t continue_isoc_xfer = 0;
dwc_otg_transaction_type_e tr_type;
dwc_otg_qh_t *qh = hc->qh;
if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
complete_isoc_xfer_ddma(hcd, hc, hc_regs, halt_status);
/* Release the channel if halted or session completed */
if (halt_status != DWC_OTG_HC_XFER_COMPLETE ||
DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
/* Halt the channel if session completed */
if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
}
release_channel_ddma(hcd, qh);
dwc_otg_hcd_qh_remove(hcd, qh);
} else {
/* Keep in assigned schedule to continue transfer */
DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_assigned,
&qh->qh_list_entry);
continue_isoc_xfer = 1;
}
/** @todo Consider the case when period exceeds FrameList size.
* Frame Rollover interrupt should be used.
*/
} else {
/* Scan descriptor list to complete the URB(s), then release the channel */
complete_non_isoc_xfer_ddma(hcd, hc, hc_regs, halt_status);
release_channel_ddma(hcd, qh);
dwc_otg_hcd_qh_remove(hcd, qh);
if (!DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
/* Add back to inactive non-periodic schedule on normal completion */
dwc_otg_hcd_qh_add(hcd, qh);
}
}
tr_type = dwc_otg_hcd_select_transactions(hcd);
if (tr_type != DWC_OTG_TRANSACTION_NONE || continue_isoc_xfer) {
if (continue_isoc_xfer) {
if (tr_type == DWC_OTG_TRANSACTION_NONE) {
tr_type = DWC_OTG_TRANSACTION_PERIODIC;
} else if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC) {
tr_type = DWC_OTG_TRANSACTION_ALL;
}
}
dwc_otg_hcd_queue_transactions(hcd, tr_type);
}
}
#endif /* DWC_DEVICE_ONLY */