| /* |
| * QLogic qlge NIC HBA Driver |
| * Copyright (c) 2003-2008 QLogic Corporation |
| * See LICENSE.qlge for copyright and licensing details. |
| * Author: Linux qlge network device driver by |
| * Ron Mercer <ron.mercer@qlogic.com> |
| */ |
| #include <linux/kernel.h> |
| #include <linux/bitops.h> |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/pagemap.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/dmapool.h> |
| #include <linux/mempool.h> |
| #include <linux/spinlock.h> |
| #include <linux/kthread.h> |
| #include <linux/interrupt.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/in.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <net/ipv6.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/if_arp.h> |
| #include <linux/if_ether.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_vlan.h> |
| #include <linux/skbuff.h> |
| #include <linux/delay.h> |
| #include <linux/mm.h> |
| #include <linux/vmalloc.h> |
| #include <linux/prefetch.h> |
| #include <net/ip6_checksum.h> |
| |
| #include "qlge.h" |
| |
| char qlge_driver_name[] = DRV_NAME; |
| const char qlge_driver_version[] = DRV_VERSION; |
| |
| MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>"); |
| MODULE_DESCRIPTION(DRV_STRING " "); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| static const u32 default_msg = |
| NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | |
| /* NETIF_MSG_TIMER | */ |
| NETIF_MSG_IFDOWN | |
| NETIF_MSG_IFUP | |
| NETIF_MSG_RX_ERR | |
| NETIF_MSG_TX_ERR | |
| /* NETIF_MSG_TX_QUEUED | */ |
| /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */ |
| /* NETIF_MSG_PKTDATA | */ |
| NETIF_MSG_HW | NETIF_MSG_WOL | 0; |
| |
| static int debug = -1; /* defaults above */ |
| module_param(debug, int, 0664); |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| |
| #define MSIX_IRQ 0 |
| #define MSI_IRQ 1 |
| #define LEG_IRQ 2 |
| static int qlge_irq_type = MSIX_IRQ; |
| module_param(qlge_irq_type, int, 0664); |
| MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy."); |
| |
| static int qlge_mpi_coredump; |
| module_param(qlge_mpi_coredump, int, 0); |
| MODULE_PARM_DESC(qlge_mpi_coredump, |
| "Option to enable MPI firmware dump. " |
| "Default is OFF - Do Not allocate memory. "); |
| |
| static int qlge_force_coredump; |
| module_param(qlge_force_coredump, int, 0); |
| MODULE_PARM_DESC(qlge_force_coredump, |
| "Option to allow force of firmware core dump. " |
| "Default is OFF - Do not allow."); |
| |
| static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = { |
| {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)}, |
| {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)}, |
| /* required last entry */ |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, qlge_pci_tbl); |
| |
| static int ql_wol(struct ql_adapter *); |
| static void qlge_set_multicast_list(struct net_device *); |
| static int ql_adapter_down(struct ql_adapter *); |
| static int ql_adapter_up(struct ql_adapter *); |
| |
| /* This hardware semaphore causes exclusive access to |
| * resources shared between the NIC driver, MPI firmware, |
| * FCOE firmware and the FC driver. |
| */ |
| static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask) |
| { |
| u32 sem_bits = 0; |
| |
| switch (sem_mask) { |
| case SEM_XGMAC0_MASK: |
| sem_bits = SEM_SET << SEM_XGMAC0_SHIFT; |
| break; |
| case SEM_XGMAC1_MASK: |
| sem_bits = SEM_SET << SEM_XGMAC1_SHIFT; |
| break; |
| case SEM_ICB_MASK: |
| sem_bits = SEM_SET << SEM_ICB_SHIFT; |
| break; |
| case SEM_MAC_ADDR_MASK: |
| sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT; |
| break; |
| case SEM_FLASH_MASK: |
| sem_bits = SEM_SET << SEM_FLASH_SHIFT; |
| break; |
| case SEM_PROBE_MASK: |
| sem_bits = SEM_SET << SEM_PROBE_SHIFT; |
| break; |
| case SEM_RT_IDX_MASK: |
| sem_bits = SEM_SET << SEM_RT_IDX_SHIFT; |
| break; |
| case SEM_PROC_REG_MASK: |
| sem_bits = SEM_SET << SEM_PROC_REG_SHIFT; |
| break; |
| default: |
| netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n"); |
| return -EINVAL; |
| } |
| |
| ql_write32(qdev, SEM, sem_bits | sem_mask); |
| return !(ql_read32(qdev, SEM) & sem_bits); |
| } |
| |
| int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask) |
| { |
| unsigned int wait_count = 30; |
| do { |
| if (!ql_sem_trylock(qdev, sem_mask)) |
| return 0; |
| udelay(100); |
| } while (--wait_count); |
| return -ETIMEDOUT; |
| } |
| |
| void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask) |
| { |
| ql_write32(qdev, SEM, sem_mask); |
| ql_read32(qdev, SEM); /* flush */ |
| } |
| |
| /* This function waits for a specific bit to come ready |
| * in a given register. It is used mostly by the initialize |
| * process, but is also used in kernel thread API such as |
| * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid. |
| */ |
| int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit) |
| { |
| u32 temp; |
| int count = UDELAY_COUNT; |
| |
| while (count) { |
| temp = ql_read32(qdev, reg); |
| |
| /* check for errors */ |
| if (temp & err_bit) { |
| netif_alert(qdev, probe, qdev->ndev, |
| "register 0x%.08x access error, value = 0x%.08x!.\n", |
| reg, temp); |
| return -EIO; |
| } else if (temp & bit) |
| return 0; |
| udelay(UDELAY_DELAY); |
| count--; |
| } |
| netif_alert(qdev, probe, qdev->ndev, |
| "Timed out waiting for reg %x to come ready.\n", reg); |
| return -ETIMEDOUT; |
| } |
| |
| /* The CFG register is used to download TX and RX control blocks |
| * to the chip. This function waits for an operation to complete. |
| */ |
| static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit) |
| { |
| int count = UDELAY_COUNT; |
| u32 temp; |
| |
| while (count) { |
| temp = ql_read32(qdev, CFG); |
| if (temp & CFG_LE) |
| return -EIO; |
| if (!(temp & bit)) |
| return 0; |
| udelay(UDELAY_DELAY); |
| count--; |
| } |
| return -ETIMEDOUT; |
| } |
| |
| |
| /* Used to issue init control blocks to hw. Maps control block, |
| * sets address, triggers download, waits for completion. |
| */ |
| int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit, |
| u16 q_id) |
| { |
| u64 map; |
| int status = 0; |
| int direction; |
| u32 mask; |
| u32 value; |
| |
| direction = |
| (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE : |
| PCI_DMA_FROMDEVICE; |
| |
| map = pci_map_single(qdev->pdev, ptr, size, direction); |
| if (pci_dma_mapping_error(qdev->pdev, map)) { |
| netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n"); |
| return -ENOMEM; |
| } |
| |
| status = ql_sem_spinlock(qdev, SEM_ICB_MASK); |
| if (status) |
| return status; |
| |
| status = ql_wait_cfg(qdev, bit); |
| if (status) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "Timed out waiting for CFG to come ready.\n"); |
| goto exit; |
| } |
| |
| ql_write32(qdev, ICB_L, (u32) map); |
| ql_write32(qdev, ICB_H, (u32) (map >> 32)); |
| |
| mask = CFG_Q_MASK | (bit << 16); |
| value = bit | (q_id << CFG_Q_SHIFT); |
| ql_write32(qdev, CFG, (mask | value)); |
| |
| /* |
| * Wait for the bit to clear after signaling hw. |
| */ |
| status = ql_wait_cfg(qdev, bit); |
| exit: |
| ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */ |
| pci_unmap_single(qdev->pdev, map, size, direction); |
| return status; |
| } |
| |
| /* Get a specific MAC address from the CAM. Used for debug and reg dump. */ |
| int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index, |
| u32 *value) |
| { |
| u32 offset = 0; |
| int status; |
| |
| switch (type) { |
| case MAC_ADDR_TYPE_MULTI_MAC: |
| case MAC_ADDR_TYPE_CAM_MAC: |
| { |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MR, 0); |
| if (status) |
| goto exit; |
| *value++ = ql_read32(qdev, MAC_ADDR_DATA); |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MR, 0); |
| if (status) |
| goto exit; |
| *value++ = ql_read32(qdev, MAC_ADDR_DATA); |
| if (type == MAC_ADDR_TYPE_CAM_MAC) { |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ |
| status = |
| ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, |
| MAC_ADDR_MR, 0); |
| if (status) |
| goto exit; |
| *value++ = ql_read32(qdev, MAC_ADDR_DATA); |
| } |
| break; |
| } |
| case MAC_ADDR_TYPE_VLAN: |
| case MAC_ADDR_TYPE_MULTI_FLTR: |
| default: |
| netif_crit(qdev, ifup, qdev->ndev, |
| "Address type %d not yet supported.\n", type); |
| status = -EPERM; |
| } |
| exit: |
| return status; |
| } |
| |
| /* Set up a MAC, multicast or VLAN address for the |
| * inbound frame matching. |
| */ |
| static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type, |
| u16 index) |
| { |
| u32 offset = 0; |
| int status = 0; |
| |
| switch (type) { |
| case MAC_ADDR_TYPE_MULTI_MAC: |
| { |
| u32 upper = (addr[0] << 8) | addr[1]; |
| u32 lower = (addr[2] << 24) | (addr[3] << 16) | |
| (addr[4] << 8) | (addr[5]); |
| |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset++) | |
| (index << MAC_ADDR_IDX_SHIFT) | |
| type | MAC_ADDR_E); |
| ql_write32(qdev, MAC_ADDR_DATA, lower); |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset++) | |
| (index << MAC_ADDR_IDX_SHIFT) | |
| type | MAC_ADDR_E); |
| |
| ql_write32(qdev, MAC_ADDR_DATA, upper); |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| break; |
| } |
| case MAC_ADDR_TYPE_CAM_MAC: |
| { |
| u32 cam_output; |
| u32 upper = (addr[0] << 8) | addr[1]; |
| u32 lower = |
| (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | |
| (addr[5]); |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| type); /* type */ |
| ql_write32(qdev, MAC_ADDR_DATA, lower); |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| type); /* type */ |
| ql_write32(qdev, MAC_ADDR_DATA, upper); |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */ |
| (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| type); /* type */ |
| /* This field should also include the queue id |
| and possibly the function id. Right now we hardcode |
| the route field to NIC core. |
| */ |
| cam_output = (CAM_OUT_ROUTE_NIC | |
| (qdev-> |
| func << CAM_OUT_FUNC_SHIFT) | |
| (0 << CAM_OUT_CQ_ID_SHIFT)); |
| if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| cam_output |= CAM_OUT_RV; |
| /* route to NIC core */ |
| ql_write32(qdev, MAC_ADDR_DATA, cam_output); |
| break; |
| } |
| case MAC_ADDR_TYPE_VLAN: |
| { |
| u32 enable_bit = *((u32 *) &addr[0]); |
| /* For VLAN, the addr actually holds a bit that |
| * either enables or disables the vlan id we are |
| * addressing. It's either MAC_ADDR_E on or off. |
| * That's bit-27 we're talking about. |
| */ |
| status = |
| ql_wait_reg_rdy(qdev, |
| MAC_ADDR_IDX, MAC_ADDR_MW, 0); |
| if (status) |
| goto exit; |
| ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */ |
| (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| type | /* type */ |
| enable_bit); /* enable/disable */ |
| break; |
| } |
| case MAC_ADDR_TYPE_MULTI_FLTR: |
| default: |
| netif_crit(qdev, ifup, qdev->ndev, |
| "Address type %d not yet supported.\n", type); |
| status = -EPERM; |
| } |
| exit: |
| return status; |
| } |
| |
| /* Set or clear MAC address in hardware. We sometimes |
| * have to clear it to prevent wrong frame routing |
| * especially in a bonding environment. |
| */ |
| static int ql_set_mac_addr(struct ql_adapter *qdev, int set) |
| { |
| int status; |
| char zero_mac_addr[ETH_ALEN]; |
| char *addr; |
| |
| if (set) { |
| addr = &qdev->current_mac_addr[0]; |
| netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, |
| "Set Mac addr %pM\n", addr); |
| } else { |
| memset(zero_mac_addr, 0, ETH_ALEN); |
| addr = &zero_mac_addr[0]; |
| netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, |
| "Clearing MAC address\n"); |
| } |
| status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); |
| if (status) |
| return status; |
| status = ql_set_mac_addr_reg(qdev, (u8 *) addr, |
| MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ); |
| ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); |
| if (status) |
| netif_err(qdev, ifup, qdev->ndev, |
| "Failed to init mac address.\n"); |
| return status; |
| } |
| |
| void ql_link_on(struct ql_adapter *qdev) |
| { |
| netif_err(qdev, link, qdev->ndev, "Link is up.\n"); |
| netif_carrier_on(qdev->ndev); |
| ql_set_mac_addr(qdev, 1); |
| } |
| |
| void ql_link_off(struct ql_adapter *qdev) |
| { |
| netif_err(qdev, link, qdev->ndev, "Link is down.\n"); |
| netif_carrier_off(qdev->ndev); |
| ql_set_mac_addr(qdev, 0); |
| } |
| |
| /* Get a specific frame routing value from the CAM. |
| * Used for debug and reg dump. |
| */ |
| int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value) |
| { |
| int status = 0; |
| |
| status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); |
| if (status) |
| goto exit; |
| |
| ql_write32(qdev, RT_IDX, |
| RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT)); |
| status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0); |
| if (status) |
| goto exit; |
| *value = ql_read32(qdev, RT_DATA); |
| exit: |
| return status; |
| } |
| |
| /* The NIC function for this chip has 16 routing indexes. Each one can be used |
| * to route different frame types to various inbound queues. We send broadcast/ |
| * multicast/error frames to the default queue for slow handling, |
| * and CAM hit/RSS frames to the fast handling queues. |
| */ |
| static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask, |
| int enable) |
| { |
| int status = -EINVAL; /* Return error if no mask match. */ |
| u32 value = 0; |
| |
| switch (mask) { |
| case RT_IDX_CAM_HIT: |
| { |
| value = RT_IDX_DST_CAM_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| case RT_IDX_VALID: /* Promiscuous Mode frames. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_IP_CSUM_ERR_SLOT << |
| RT_IDX_IDX_SHIFT); /* index */ |
| break; |
| } |
| case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_TCP_UDP_CSUM_ERR_SLOT << |
| RT_IDX_IDX_SHIFT); /* index */ |
| break; |
| } |
| case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| case RT_IDX_MCAST: /* Pass up All Multicast frames. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */ |
| { |
| value = RT_IDX_DST_RSS | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| case 0: /* Clear the E-bit on an entry. */ |
| { |
| value = RT_IDX_DST_DFLT_Q | /* dest */ |
| RT_IDX_TYPE_NICQ | /* type */ |
| (index << RT_IDX_IDX_SHIFT);/* index */ |
| break; |
| } |
| default: |
| netif_err(qdev, ifup, qdev->ndev, |
| "Mask type %d not yet supported.\n", mask); |
| status = -EPERM; |
| goto exit; |
| } |
| |
| if (value) { |
| status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); |
| if (status) |
| goto exit; |
| value |= (enable ? RT_IDX_E : 0); |
| ql_write32(qdev, RT_IDX, value); |
| ql_write32(qdev, RT_DATA, enable ? mask : 0); |
| } |
| exit: |
| return status; |
| } |
| |
| static void ql_enable_interrupts(struct ql_adapter *qdev) |
| { |
| ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI); |
| } |
| |
| static void ql_disable_interrupts(struct ql_adapter *qdev) |
| { |
| ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16)); |
| } |
| |
| /* If we're running with multiple MSI-X vectors then we enable on the fly. |
| * Otherwise, we may have multiple outstanding workers and don't want to |
| * enable until the last one finishes. In this case, the irq_cnt gets |
| * incremented every time we queue a worker and decremented every time |
| * a worker finishes. Once it hits zero we enable the interrupt. |
| */ |
| u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr) |
| { |
| u32 var = 0; |
| unsigned long hw_flags = 0; |
| struct intr_context *ctx = qdev->intr_context + intr; |
| |
| if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) { |
| /* Always enable if we're MSIX multi interrupts and |
| * it's not the default (zeroeth) interrupt. |
| */ |
| ql_write32(qdev, INTR_EN, |
| ctx->intr_en_mask); |
| var = ql_read32(qdev, STS); |
| return var; |
| } |
| |
| spin_lock_irqsave(&qdev->hw_lock, hw_flags); |
| if (atomic_dec_and_test(&ctx->irq_cnt)) { |
| ql_write32(qdev, INTR_EN, |
| ctx->intr_en_mask); |
| var = ql_read32(qdev, STS); |
| } |
| spin_unlock_irqrestore(&qdev->hw_lock, hw_flags); |
| return var; |
| } |
| |
| static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr) |
| { |
| u32 var = 0; |
| struct intr_context *ctx; |
| |
| /* HW disables for us if we're MSIX multi interrupts and |
| * it's not the default (zeroeth) interrupt. |
| */ |
| if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) |
| return 0; |
| |
| ctx = qdev->intr_context + intr; |
| spin_lock(&qdev->hw_lock); |
| if (!atomic_read(&ctx->irq_cnt)) { |
| ql_write32(qdev, INTR_EN, |
| ctx->intr_dis_mask); |
| var = ql_read32(qdev, STS); |
| } |
| atomic_inc(&ctx->irq_cnt); |
| spin_unlock(&qdev->hw_lock); |
| return var; |
| } |
| |
| static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev) |
| { |
| int i; |
| for (i = 0; i < qdev->intr_count; i++) { |
| /* The enable call does a atomic_dec_and_test |
| * and enables only if the result is zero. |
| * So we precharge it here. |
| */ |
| if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) || |
| i == 0)) |
| atomic_set(&qdev->intr_context[i].irq_cnt, 1); |
| ql_enable_completion_interrupt(qdev, i); |
| } |
| |
| } |
| |
| static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str) |
| { |
| int status, i; |
| u16 csum = 0; |
| __le16 *flash = (__le16 *)&qdev->flash; |
| |
| status = strncmp((char *)&qdev->flash, str, 4); |
| if (status) { |
| netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n"); |
| return status; |
| } |
| |
| for (i = 0; i < size; i++) |
| csum += le16_to_cpu(*flash++); |
| |
| if (csum) |
| netif_err(qdev, ifup, qdev->ndev, |
| "Invalid flash checksum, csum = 0x%.04x.\n", csum); |
| |
| return csum; |
| } |
| |
| static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data) |
| { |
| int status = 0; |
| /* wait for reg to come ready */ |
| status = ql_wait_reg_rdy(qdev, |
| FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); |
| if (status) |
| goto exit; |
| /* set up for reg read */ |
| ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset); |
| /* wait for reg to come ready */ |
| status = ql_wait_reg_rdy(qdev, |
| FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); |
| if (status) |
| goto exit; |
| /* This data is stored on flash as an array of |
| * __le32. Since ql_read32() returns cpu endian |
| * we need to swap it back. |
| */ |
| *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA)); |
| exit: |
| return status; |
| } |
| |
| static int ql_get_8000_flash_params(struct ql_adapter *qdev) |
| { |
| u32 i, size; |
| int status; |
| __le32 *p = (__le32 *)&qdev->flash; |
| u32 offset; |
| u8 mac_addr[6]; |
| |
| /* Get flash offset for function and adjust |
| * for dword access. |
| */ |
| if (!qdev->port) |
| offset = FUNC0_FLASH_OFFSET / sizeof(u32); |
| else |
| offset = FUNC1_FLASH_OFFSET / sizeof(u32); |
| |
| if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) |
| return -ETIMEDOUT; |
| |
| size = sizeof(struct flash_params_8000) / sizeof(u32); |
| for (i = 0; i < size; i++, p++) { |
| status = ql_read_flash_word(qdev, i+offset, p); |
| if (status) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "Error reading flash.\n"); |
| goto exit; |
| } |
| } |
| |
| status = ql_validate_flash(qdev, |
| sizeof(struct flash_params_8000) / sizeof(u16), |
| "8000"); |
| if (status) { |
| netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); |
| status = -EINVAL; |
| goto exit; |
| } |
| |
| /* Extract either manufacturer or BOFM modified |
| * MAC address. |
| */ |
| if (qdev->flash.flash_params_8000.data_type1 == 2) |
| memcpy(mac_addr, |
| qdev->flash.flash_params_8000.mac_addr1, |
| qdev->ndev->addr_len); |
| else |
| memcpy(mac_addr, |
| qdev->flash.flash_params_8000.mac_addr, |
| qdev->ndev->addr_len); |
| |
| if (!is_valid_ether_addr(mac_addr)) { |
| netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n"); |
| status = -EINVAL; |
| goto exit; |
| } |
| |
| memcpy(qdev->ndev->dev_addr, |
| mac_addr, |
| qdev->ndev->addr_len); |
| |
| exit: |
| ql_sem_unlock(qdev, SEM_FLASH_MASK); |
| return status; |
| } |
| |
| static int ql_get_8012_flash_params(struct ql_adapter *qdev) |
| { |
| int i; |
| int status; |
| __le32 *p = (__le32 *)&qdev->flash; |
| u32 offset = 0; |
| u32 size = sizeof(struct flash_params_8012) / sizeof(u32); |
| |
| /* Second function's parameters follow the first |
| * function's. |
| */ |
| if (qdev->port) |
| offset = size; |
| |
| if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) |
| return -ETIMEDOUT; |
| |
| for (i = 0; i < size; i++, p++) { |
| status = ql_read_flash_word(qdev, i+offset, p); |
| if (status) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "Error reading flash.\n"); |
| goto exit; |
| } |
| |
| } |
| |
| status = ql_validate_flash(qdev, |
| sizeof(struct flash_params_8012) / sizeof(u16), |
| "8012"); |
| if (status) { |
| netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n"); |
| status = -EINVAL; |
| goto exit; |
| } |
| |
| if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) { |
| status = -EINVAL; |
| goto exit; |
| } |
| |
| memcpy(qdev->ndev->dev_addr, |
| qdev->flash.flash_params_8012.mac_addr, |
| qdev->ndev->addr_len); |
| |
| exit: |
| ql_sem_unlock(qdev, SEM_FLASH_MASK); |
| return status; |
| } |
| |
| /* xgmac register are located behind the xgmac_addr and xgmac_data |
| * register pair. Each read/write requires us to wait for the ready |
| * bit before reading/writing the data. |
| */ |
| static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data) |
| { |
| int status; |
| /* wait for reg to come ready */ |
| status = ql_wait_reg_rdy(qdev, |
| XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); |
| if (status) |
| return status; |
| /* write the data to the data reg */ |
| ql_write32(qdev, XGMAC_DATA, data); |
| /* trigger the write */ |
| ql_write32(qdev, XGMAC_ADDR, reg); |
| return status; |
| } |
| |
| /* xgmac register are located behind the xgmac_addr and xgmac_data |
| * register pair. Each read/write requires us to wait for the ready |
| * bit before reading/writing the data. |
| */ |
| int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data) |
| { |
| int status = 0; |
| /* wait for reg to come ready */ |
| status = ql_wait_reg_rdy(qdev, |
| XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); |
| if (status) |
| goto exit; |
| /* set up for reg read */ |
| ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R); |
| /* wait for reg to come ready */ |
| status = ql_wait_reg_rdy(qdev, |
| XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); |
| if (status) |
| goto exit; |
| /* get the data */ |
| *data = ql_read32(qdev, XGMAC_DATA); |
| exit: |
| return status; |
| } |
| |
| /* This is used for reading the 64-bit statistics regs. */ |
| int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data) |
| { |
| int status = 0; |
| u32 hi = 0; |
| u32 lo = 0; |
| |
| status = ql_read_xgmac_reg(qdev, reg, &lo); |
| if (status) |
| goto exit; |
| |
| status = ql_read_xgmac_reg(qdev, reg + 4, &hi); |
| if (status) |
| goto exit; |
| |
| *data = (u64) lo | ((u64) hi << 32); |
| |
| exit: |
| return status; |
| } |
| |
| static int ql_8000_port_initialize(struct ql_adapter *qdev) |
| { |
| int status; |
| /* |
| * Get MPI firmware version for driver banner |
| * and ethool info. |
| */ |
| status = ql_mb_about_fw(qdev); |
| if (status) |
| goto exit; |
| status = ql_mb_get_fw_state(qdev); |
| if (status) |
| goto exit; |
| /* Wake up a worker to get/set the TX/RX frame sizes. */ |
| queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0); |
| exit: |
| return status; |
| } |
| |
| /* Take the MAC Core out of reset. |
| * Enable statistics counting. |
| * Take the transmitter/receiver out of reset. |
| * This functionality may be done in the MPI firmware at a |
| * later date. |
| */ |
| static int ql_8012_port_initialize(struct ql_adapter *qdev) |
| { |
| int status = 0; |
| u32 data; |
| |
| if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) { |
| /* Another function has the semaphore, so |
| * wait for the port init bit to come ready. |
| */ |
| netif_info(qdev, link, qdev->ndev, |
| "Another function has the semaphore, so wait for the port init bit to come ready.\n"); |
| status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0); |
| if (status) { |
| netif_crit(qdev, link, qdev->ndev, |
| "Port initialize timed out.\n"); |
| } |
| return status; |
| } |
| |
| netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n"); |
| /* Set the core reset. */ |
| status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data); |
| if (status) |
| goto end; |
| data |= GLOBAL_CFG_RESET; |
| status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); |
| if (status) |
| goto end; |
| |
| /* Clear the core reset and turn on jumbo for receiver. */ |
| data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */ |
| data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */ |
| data |= GLOBAL_CFG_TX_STAT_EN; |
| data |= GLOBAL_CFG_RX_STAT_EN; |
| status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); |
| if (status) |
| goto end; |
| |
| /* Enable transmitter, and clear it's reset. */ |
| status = ql_read_xgmac_reg(qdev, TX_CFG, &data); |
| if (status) |
| goto end; |
| data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */ |
| data |= TX_CFG_EN; /* Enable the transmitter. */ |
| status = ql_write_xgmac_reg(qdev, TX_CFG, data); |
| if (status) |
| goto end; |
| |
| /* Enable receiver and clear it's reset. */ |
| status = ql_read_xgmac_reg(qdev, RX_CFG, &data); |
| if (status) |
| goto end; |
| data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */ |
| data |= RX_CFG_EN; /* Enable the receiver. */ |
| status = ql_write_xgmac_reg(qdev, RX_CFG, data); |
| if (status) |
| goto end; |
| |
| /* Turn on jumbo. */ |
| status = |
| ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16)); |
| if (status) |
| goto end; |
| status = |
| ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580); |
| if (status) |
| goto end; |
| |
| /* Signal to the world that the port is enabled. */ |
| ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init)); |
| end: |
| ql_sem_unlock(qdev, qdev->xg_sem_mask); |
| return status; |
| } |
| |
| static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev) |
| { |
| return PAGE_SIZE << qdev->lbq_buf_order; |
| } |
| |
| /* Get the next large buffer. */ |
| static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring) |
| { |
| struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx]; |
| rx_ring->lbq_curr_idx++; |
| if (rx_ring->lbq_curr_idx == rx_ring->lbq_len) |
| rx_ring->lbq_curr_idx = 0; |
| rx_ring->lbq_free_cnt++; |
| return lbq_desc; |
| } |
| |
| static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring) |
| { |
| struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring); |
| |
| pci_dma_sync_single_for_cpu(qdev->pdev, |
| dma_unmap_addr(lbq_desc, mapaddr), |
| rx_ring->lbq_buf_size, |
| PCI_DMA_FROMDEVICE); |
| |
| /* If it's the last chunk of our master page then |
| * we unmap it. |
| */ |
| if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size) |
| == ql_lbq_block_size(qdev)) |
| pci_unmap_page(qdev->pdev, |
| lbq_desc->p.pg_chunk.map, |
| ql_lbq_block_size(qdev), |
| PCI_DMA_FROMDEVICE); |
| return lbq_desc; |
| } |
| |
| /* Get the next small buffer. */ |
| static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring) |
| { |
| struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx]; |
| rx_ring->sbq_curr_idx++; |
| if (rx_ring->sbq_curr_idx == rx_ring->sbq_len) |
| rx_ring->sbq_curr_idx = 0; |
| rx_ring->sbq_free_cnt++; |
| return sbq_desc; |
| } |
| |
| /* Update an rx ring index. */ |
| static void ql_update_cq(struct rx_ring *rx_ring) |
| { |
| rx_ring->cnsmr_idx++; |
| rx_ring->curr_entry++; |
| if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) { |
| rx_ring->cnsmr_idx = 0; |
| rx_ring->curr_entry = rx_ring->cq_base; |
| } |
| } |
| |
| static void ql_write_cq_idx(struct rx_ring *rx_ring) |
| { |
| ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); |
| } |
| |
| static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring, |
| struct bq_desc *lbq_desc) |
| { |
| if (!rx_ring->pg_chunk.page) { |
| u64 map; |
| rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP | |
| GFP_ATOMIC, |
| qdev->lbq_buf_order); |
| if (unlikely(!rx_ring->pg_chunk.page)) { |
| netif_err(qdev, drv, qdev->ndev, |
| "page allocation failed.\n"); |
| return -ENOMEM; |
| } |
| rx_ring->pg_chunk.offset = 0; |
| map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page, |
| 0, ql_lbq_block_size(qdev), |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(qdev->pdev, map)) { |
| __free_pages(rx_ring->pg_chunk.page, |
| qdev->lbq_buf_order); |
| rx_ring->pg_chunk.page = NULL; |
| netif_err(qdev, drv, qdev->ndev, |
| "PCI mapping failed.\n"); |
| return -ENOMEM; |
| } |
| rx_ring->pg_chunk.map = map; |
| rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page); |
| } |
| |
| /* Copy the current master pg_chunk info |
| * to the current descriptor. |
| */ |
| lbq_desc->p.pg_chunk = rx_ring->pg_chunk; |
| |
| /* Adjust the master page chunk for next |
| * buffer get. |
| */ |
| rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size; |
| if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) { |
| rx_ring->pg_chunk.page = NULL; |
| lbq_desc->p.pg_chunk.last_flag = 1; |
| } else { |
| rx_ring->pg_chunk.va += rx_ring->lbq_buf_size; |
| get_page(rx_ring->pg_chunk.page); |
| lbq_desc->p.pg_chunk.last_flag = 0; |
| } |
| return 0; |
| } |
| /* Process (refill) a large buffer queue. */ |
| static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| { |
| u32 clean_idx = rx_ring->lbq_clean_idx; |
| u32 start_idx = clean_idx; |
| struct bq_desc *lbq_desc; |
| u64 map; |
| int i; |
| |
| while (rx_ring->lbq_free_cnt > 32) { |
| for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "lbq: try cleaning clean_idx = %d.\n", |
| clean_idx); |
| lbq_desc = &rx_ring->lbq[clean_idx]; |
| if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) { |
| rx_ring->lbq_clean_idx = clean_idx; |
| netif_err(qdev, ifup, qdev->ndev, |
| "Could not get a page chunk, i=%d, clean_idx =%d .\n", |
| i, clean_idx); |
| return; |
| } |
| |
| map = lbq_desc->p.pg_chunk.map + |
| lbq_desc->p.pg_chunk.offset; |
| dma_unmap_addr_set(lbq_desc, mapaddr, map); |
| dma_unmap_len_set(lbq_desc, maplen, |
| rx_ring->lbq_buf_size); |
| *lbq_desc->addr = cpu_to_le64(map); |
| |
| pci_dma_sync_single_for_device(qdev->pdev, map, |
| rx_ring->lbq_buf_size, |
| PCI_DMA_FROMDEVICE); |
| clean_idx++; |
| if (clean_idx == rx_ring->lbq_len) |
| clean_idx = 0; |
| } |
| |
| rx_ring->lbq_clean_idx = clean_idx; |
| rx_ring->lbq_prod_idx += 16; |
| if (rx_ring->lbq_prod_idx == rx_ring->lbq_len) |
| rx_ring->lbq_prod_idx = 0; |
| rx_ring->lbq_free_cnt -= 16; |
| } |
| |
| if (start_idx != clean_idx) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "lbq: updating prod idx = %d.\n", |
| rx_ring->lbq_prod_idx); |
| ql_write_db_reg(rx_ring->lbq_prod_idx, |
| rx_ring->lbq_prod_idx_db_reg); |
| } |
| } |
| |
| /* Process (refill) a small buffer queue. */ |
| static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| { |
| u32 clean_idx = rx_ring->sbq_clean_idx; |
| u32 start_idx = clean_idx; |
| struct bq_desc *sbq_desc; |
| u64 map; |
| int i; |
| |
| while (rx_ring->sbq_free_cnt > 16) { |
| for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) { |
| sbq_desc = &rx_ring->sbq[clean_idx]; |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "sbq: try cleaning clean_idx = %d.\n", |
| clean_idx); |
| if (sbq_desc->p.skb == NULL) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, |
| qdev->ndev, |
| "sbq: getting new skb for index %d.\n", |
| sbq_desc->index); |
| sbq_desc->p.skb = |
| netdev_alloc_skb(qdev->ndev, |
| SMALL_BUFFER_SIZE); |
| if (sbq_desc->p.skb == NULL) { |
| rx_ring->sbq_clean_idx = clean_idx; |
| return; |
| } |
| skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD); |
| map = pci_map_single(qdev->pdev, |
| sbq_desc->p.skb->data, |
| rx_ring->sbq_buf_size, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(qdev->pdev, map)) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "PCI mapping failed.\n"); |
| rx_ring->sbq_clean_idx = clean_idx; |
| dev_kfree_skb_any(sbq_desc->p.skb); |
| sbq_desc->p.skb = NULL; |
| return; |
| } |
| dma_unmap_addr_set(sbq_desc, mapaddr, map); |
| dma_unmap_len_set(sbq_desc, maplen, |
| rx_ring->sbq_buf_size); |
| *sbq_desc->addr = cpu_to_le64(map); |
| } |
| |
| clean_idx++; |
| if (clean_idx == rx_ring->sbq_len) |
| clean_idx = 0; |
| } |
| rx_ring->sbq_clean_idx = clean_idx; |
| rx_ring->sbq_prod_idx += 16; |
| if (rx_ring->sbq_prod_idx == rx_ring->sbq_len) |
| rx_ring->sbq_prod_idx = 0; |
| rx_ring->sbq_free_cnt -= 16; |
| } |
| |
| if (start_idx != clean_idx) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "sbq: updating prod idx = %d.\n", |
| rx_ring->sbq_prod_idx); |
| ql_write_db_reg(rx_ring->sbq_prod_idx, |
| rx_ring->sbq_prod_idx_db_reg); |
| } |
| } |
| |
| static void ql_update_buffer_queues(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring) |
| { |
| ql_update_sbq(qdev, rx_ring); |
| ql_update_lbq(qdev, rx_ring); |
| } |
| |
| /* Unmaps tx buffers. Can be called from send() if a pci mapping |
| * fails at some stage, or from the interrupt when a tx completes. |
| */ |
| static void ql_unmap_send(struct ql_adapter *qdev, |
| struct tx_ring_desc *tx_ring_desc, int mapped) |
| { |
| int i; |
| for (i = 0; i < mapped; i++) { |
| if (i == 0 || (i == 7 && mapped > 7)) { |
| /* |
| * Unmap the skb->data area, or the |
| * external sglist (AKA the Outbound |
| * Address List (OAL)). |
| * If its the zeroeth element, then it's |
| * the skb->data area. If it's the 7th |
| * element and there is more than 6 frags, |
| * then its an OAL. |
| */ |
| if (i == 7) { |
| netif_printk(qdev, tx_done, KERN_DEBUG, |
| qdev->ndev, |
| "unmapping OAL area.\n"); |
| } |
| pci_unmap_single(qdev->pdev, |
| dma_unmap_addr(&tx_ring_desc->map[i], |
| mapaddr), |
| dma_unmap_len(&tx_ring_desc->map[i], |
| maplen), |
| PCI_DMA_TODEVICE); |
| } else { |
| netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev, |
| "unmapping frag %d.\n", i); |
| pci_unmap_page(qdev->pdev, |
| dma_unmap_addr(&tx_ring_desc->map[i], |
| mapaddr), |
| dma_unmap_len(&tx_ring_desc->map[i], |
| maplen), PCI_DMA_TODEVICE); |
| } |
| } |
| |
| } |
| |
| /* Map the buffers for this transmit. This will return |
| * NETDEV_TX_BUSY or NETDEV_TX_OK based on success. |
| */ |
| static int ql_map_send(struct ql_adapter *qdev, |
| struct ob_mac_iocb_req *mac_iocb_ptr, |
| struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc) |
| { |
| int len = skb_headlen(skb); |
| dma_addr_t map; |
| int frag_idx, err, map_idx = 0; |
| struct tx_buf_desc *tbd = mac_iocb_ptr->tbd; |
| int frag_cnt = skb_shinfo(skb)->nr_frags; |
| |
| if (frag_cnt) { |
| netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, |
| "frag_cnt = %d.\n", frag_cnt); |
| } |
| /* |
| * Map the skb buffer first. |
| */ |
| map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE); |
| |
| err = pci_dma_mapping_error(qdev->pdev, map); |
| if (err) { |
| netif_err(qdev, tx_queued, qdev->ndev, |
| "PCI mapping failed with error: %d\n", err); |
| |
| return NETDEV_TX_BUSY; |
| } |
| |
| tbd->len = cpu_to_le32(len); |
| tbd->addr = cpu_to_le64(map); |
| dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); |
| dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len); |
| map_idx++; |
| |
| /* |
| * This loop fills the remainder of the 8 address descriptors |
| * in the IOCB. If there are more than 7 fragments, then the |
| * eighth address desc will point to an external list (OAL). |
| * When this happens, the remainder of the frags will be stored |
| * in this list. |
| */ |
| for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx]; |
| tbd++; |
| if (frag_idx == 6 && frag_cnt > 7) { |
| /* Let's tack on an sglist. |
| * Our control block will now |
| * look like this: |
| * iocb->seg[0] = skb->data |
| * iocb->seg[1] = frag[0] |
| * iocb->seg[2] = frag[1] |
| * iocb->seg[3] = frag[2] |
| * iocb->seg[4] = frag[3] |
| * iocb->seg[5] = frag[4] |
| * iocb->seg[6] = frag[5] |
| * iocb->seg[7] = ptr to OAL (external sglist) |
| * oal->seg[0] = frag[6] |
| * oal->seg[1] = frag[7] |
| * oal->seg[2] = frag[8] |
| * oal->seg[3] = frag[9] |
| * oal->seg[4] = frag[10] |
| * etc... |
| */ |
| /* Tack on the OAL in the eighth segment of IOCB. */ |
| map = pci_map_single(qdev->pdev, &tx_ring_desc->oal, |
| sizeof(struct oal), |
| PCI_DMA_TODEVICE); |
| err = pci_dma_mapping_error(qdev->pdev, map); |
| if (err) { |
| netif_err(qdev, tx_queued, qdev->ndev, |
| "PCI mapping outbound address list with error: %d\n", |
| err); |
| goto map_error; |
| } |
| |
| tbd->addr = cpu_to_le64(map); |
| /* |
| * The length is the number of fragments |
| * that remain to be mapped times the length |
| * of our sglist (OAL). |
| */ |
| tbd->len = |
| cpu_to_le32((sizeof(struct tx_buf_desc) * |
| (frag_cnt - frag_idx)) | TX_DESC_C); |
| dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, |
| map); |
| dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, |
| sizeof(struct oal)); |
| tbd = (struct tx_buf_desc *)&tx_ring_desc->oal; |
| map_idx++; |
| } |
| |
| map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag), |
| DMA_TO_DEVICE); |
| |
| err = dma_mapping_error(&qdev->pdev->dev, map); |
| if (err) { |
| netif_err(qdev, tx_queued, qdev->ndev, |
| "PCI mapping frags failed with error: %d.\n", |
| err); |
| goto map_error; |
| } |
| |
| tbd->addr = cpu_to_le64(map); |
| tbd->len = cpu_to_le32(skb_frag_size(frag)); |
| dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); |
| dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, |
| skb_frag_size(frag)); |
| |
| } |
| /* Save the number of segments we've mapped. */ |
| tx_ring_desc->map_cnt = map_idx; |
| /* Terminate the last segment. */ |
| tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E); |
| return NETDEV_TX_OK; |
| |
| map_error: |
| /* |
| * If the first frag mapping failed, then i will be zero. |
| * This causes the unmap of the skb->data area. Otherwise |
| * we pass in the number of frags that mapped successfully |
| * so they can be umapped. |
| */ |
| ql_unmap_send(qdev, tx_ring_desc, map_idx); |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* Categorizing receive firmware frame errors */ |
| static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err, |
| struct rx_ring *rx_ring) |
| { |
| struct nic_stats *stats = &qdev->nic_stats; |
| |
| stats->rx_err_count++; |
| rx_ring->rx_errors++; |
| |
| switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) { |
| case IB_MAC_IOCB_RSP_ERR_CODE_ERR: |
| stats->rx_code_err++; |
| break; |
| case IB_MAC_IOCB_RSP_ERR_OVERSIZE: |
| stats->rx_oversize_err++; |
| break; |
| case IB_MAC_IOCB_RSP_ERR_UNDERSIZE: |
| stats->rx_undersize_err++; |
| break; |
| case IB_MAC_IOCB_RSP_ERR_PREAMBLE: |
| stats->rx_preamble_err++; |
| break; |
| case IB_MAC_IOCB_RSP_ERR_FRAME_LEN: |
| stats->rx_frame_len_err++; |
| break; |
| case IB_MAC_IOCB_RSP_ERR_CRC: |
| stats->rx_crc_err++; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * ql_update_mac_hdr_len - helper routine to update the mac header length |
| * based on vlan tags if present |
| */ |
| static void ql_update_mac_hdr_len(struct ql_adapter *qdev, |
| struct ib_mac_iocb_rsp *ib_mac_rsp, |
| void *page, size_t *len) |
| { |
| u16 *tags; |
| |
| if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| return; |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) { |
| tags = (u16 *)page; |
| /* Look for stacked vlan tags in ethertype field */ |
| if (tags[6] == ETH_P_8021Q && |
| tags[8] == ETH_P_8021Q) |
| *len += 2 * VLAN_HLEN; |
| else |
| *len += VLAN_HLEN; |
| } |
| } |
| |
| /* Process an inbound completion from an rx ring. */ |
| static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring, |
| struct ib_mac_iocb_rsp *ib_mac_rsp, |
| u32 length, |
| u16 vlan_id) |
| { |
| struct sk_buff *skb; |
| struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); |
| struct napi_struct *napi = &rx_ring->napi; |
| |
| /* Frame error, so drop the packet. */ |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { |
| ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); |
| put_page(lbq_desc->p.pg_chunk.page); |
| return; |
| } |
| napi->dev = qdev->ndev; |
| |
| skb = napi_get_frags(napi); |
| if (!skb) { |
| netif_err(qdev, drv, qdev->ndev, |
| "Couldn't get an skb, exiting.\n"); |
| rx_ring->rx_dropped++; |
| put_page(lbq_desc->p.pg_chunk.page); |
| return; |
| } |
| prefetch(lbq_desc->p.pg_chunk.va); |
| __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, |
| lbq_desc->p.pg_chunk.page, |
| lbq_desc->p.pg_chunk.offset, |
| length); |
| |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += length; |
| skb_shinfo(skb)->nr_frags++; |
| |
| rx_ring->rx_packets++; |
| rx_ring->rx_bytes += length; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb_record_rx_queue(skb, rx_ring->cq_id); |
| if (vlan_id != 0xffff) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); |
| napi_gro_frags(napi); |
| } |
| |
| /* Process an inbound completion from an rx ring. */ |
| static void ql_process_mac_rx_page(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring, |
| struct ib_mac_iocb_rsp *ib_mac_rsp, |
| u32 length, |
| u16 vlan_id) |
| { |
| struct net_device *ndev = qdev->ndev; |
| struct sk_buff *skb = NULL; |
| void *addr; |
| struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); |
| struct napi_struct *napi = &rx_ring->napi; |
| size_t hlen = ETH_HLEN; |
| |
| skb = netdev_alloc_skb(ndev, length); |
| if (!skb) { |
| rx_ring->rx_dropped++; |
| put_page(lbq_desc->p.pg_chunk.page); |
| return; |
| } |
| |
| addr = lbq_desc->p.pg_chunk.va; |
| prefetch(addr); |
| |
| /* Frame error, so drop the packet. */ |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { |
| ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); |
| goto err_out; |
| } |
| |
| /* Update the MAC header length*/ |
| ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen); |
| |
| /* The max framesize filter on this chip is set higher than |
| * MTU since FCoE uses 2k frames. |
| */ |
| if (skb->len > ndev->mtu + hlen) { |
| netif_err(qdev, drv, qdev->ndev, |
| "Segment too small, dropping.\n"); |
| rx_ring->rx_dropped++; |
| goto err_out; |
| } |
| memcpy(skb_put(skb, hlen), addr, hlen); |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", |
| length); |
| skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, |
| lbq_desc->p.pg_chunk.offset + hlen, |
| length - hlen); |
| skb->len += length - hlen; |
| skb->data_len += length - hlen; |
| skb->truesize += length - hlen; |
| |
| rx_ring->rx_packets++; |
| rx_ring->rx_bytes += skb->len; |
| skb->protocol = eth_type_trans(skb, ndev); |
| skb_checksum_none_assert(skb); |
| |
| if ((ndev->features & NETIF_F_RXCSUM) && |
| !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { |
| /* TCP frame. */ |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "TCP checksum done!\n"); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && |
| (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { |
| /* Unfragmented ipv4 UDP frame. */ |
| struct iphdr *iph = |
| (struct iphdr *)((u8 *)addr + hlen); |
| if (!(iph->frag_off & |
| htons(IP_MF|IP_OFFSET))) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| netif_printk(qdev, rx_status, KERN_DEBUG, |
| qdev->ndev, |
| "UDP checksum done!\n"); |
| } |
| } |
| } |
| |
| skb_record_rx_queue(skb, rx_ring->cq_id); |
| if (vlan_id != 0xffff) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); |
| if (skb->ip_summed == CHECKSUM_UNNECESSARY) |
| napi_gro_receive(napi, skb); |
| else |
| netif_receive_skb(skb); |
| return; |
| err_out: |
| dev_kfree_skb_any(skb); |
| put_page(lbq_desc->p.pg_chunk.page); |
| } |
| |
| /* Process an inbound completion from an rx ring. */ |
| static void ql_process_mac_rx_skb(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring, |
| struct ib_mac_iocb_rsp *ib_mac_rsp, |
| u32 length, |
| u16 vlan_id) |
| { |
| struct net_device *ndev = qdev->ndev; |
| struct sk_buff *skb = NULL; |
| struct sk_buff *new_skb = NULL; |
| struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring); |
| |
| skb = sbq_desc->p.skb; |
| /* Allocate new_skb and copy */ |
| new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN); |
| if (new_skb == NULL) { |
| rx_ring->rx_dropped++; |
| return; |
| } |
| skb_reserve(new_skb, NET_IP_ALIGN); |
| memcpy(skb_put(new_skb, length), skb->data, length); |
| skb = new_skb; |
| |
| /* Frame error, so drop the packet. */ |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { |
| ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); |
| dev_kfree_skb_any(skb); |
| return; |
| } |
| |
| /* loopback self test for ethtool */ |
| if (test_bit(QL_SELFTEST, &qdev->flags)) { |
| ql_check_lb_frame(qdev, skb); |
| dev_kfree_skb_any(skb); |
| return; |
| } |
| |
| /* The max framesize filter on this chip is set higher than |
| * MTU since FCoE uses 2k frames. |
| */ |
| if (skb->len > ndev->mtu + ETH_HLEN) { |
| dev_kfree_skb_any(skb); |
| rx_ring->rx_dropped++; |
| return; |
| } |
| |
| prefetch(skb->data); |
| if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "%s Multicast.\n", |
| (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| IB_MAC_IOCB_RSP_M_HASH ? "Hash" : |
| (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| IB_MAC_IOCB_RSP_M_REG ? "Registered" : |
| (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); |
| } |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Promiscuous Packet.\n"); |
| |
| rx_ring->rx_packets++; |
| rx_ring->rx_bytes += skb->len; |
| skb->protocol = eth_type_trans(skb, ndev); |
| skb_checksum_none_assert(skb); |
| |
| /* If rx checksum is on, and there are no |
| * csum or frame errors. |
| */ |
| if ((ndev->features & NETIF_F_RXCSUM) && |
| !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { |
| /* TCP frame. */ |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "TCP checksum done!\n"); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && |
| (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { |
| /* Unfragmented ipv4 UDP frame. */ |
| struct iphdr *iph = (struct iphdr *) skb->data; |
| if (!(iph->frag_off & |
| htons(IP_MF|IP_OFFSET))) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| netif_printk(qdev, rx_status, KERN_DEBUG, |
| qdev->ndev, |
| "UDP checksum done!\n"); |
| } |
| } |
| } |
| |
| skb_record_rx_queue(skb, rx_ring->cq_id); |
| if (vlan_id != 0xffff) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); |
| if (skb->ip_summed == CHECKSUM_UNNECESSARY) |
| napi_gro_receive(&rx_ring->napi, skb); |
| else |
| netif_receive_skb(skb); |
| } |
| |
| static void ql_realign_skb(struct sk_buff *skb, int len) |
| { |
| void *temp_addr = skb->data; |
| |
| /* Undo the skb_reserve(skb,32) we did before |
| * giving to hardware, and realign data on |
| * a 2-byte boundary. |
| */ |
| skb->data -= QLGE_SB_PAD - NET_IP_ALIGN; |
| skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN; |
| skb_copy_to_linear_data(skb, temp_addr, |
| (unsigned int)len); |
| } |
| |
| /* |
| * This function builds an skb for the given inbound |
| * completion. It will be rewritten for readability in the near |
| * future, but for not it works well. |
| */ |
| static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring, |
| struct ib_mac_iocb_rsp *ib_mac_rsp) |
| { |
| struct bq_desc *lbq_desc; |
| struct bq_desc *sbq_desc; |
| struct sk_buff *skb = NULL; |
| u32 length = le32_to_cpu(ib_mac_rsp->data_len); |
| u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len); |
| size_t hlen = ETH_HLEN; |
| |
| /* |
| * Handle the header buffer if present. |
| */ |
| if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV && |
| ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Header of %d bytes in small buffer.\n", hdr_len); |
| /* |
| * Headers fit nicely into a small buffer. |
| */ |
| sbq_desc = ql_get_curr_sbuf(rx_ring); |
| pci_unmap_single(qdev->pdev, |
| dma_unmap_addr(sbq_desc, mapaddr), |
| dma_unmap_len(sbq_desc, maplen), |
| PCI_DMA_FROMDEVICE); |
| skb = sbq_desc->p.skb; |
| ql_realign_skb(skb, hdr_len); |
| skb_put(skb, hdr_len); |
| sbq_desc->p.skb = NULL; |
| } |
| |
| /* |
| * Handle the data buffer(s). |
| */ |
| if (unlikely(!length)) { /* Is there data too? */ |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "No Data buffer in this packet.\n"); |
| return skb; |
| } |
| |
| if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { |
| if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Headers in small, data of %d bytes in small, combine them.\n", |
| length); |
| /* |
| * Data is less than small buffer size so it's |
| * stuffed in a small buffer. |
| * For this case we append the data |
| * from the "data" small buffer to the "header" small |
| * buffer. |
| */ |
| sbq_desc = ql_get_curr_sbuf(rx_ring); |
| pci_dma_sync_single_for_cpu(qdev->pdev, |
| dma_unmap_addr |
| (sbq_desc, mapaddr), |
| dma_unmap_len |
| (sbq_desc, maplen), |
| PCI_DMA_FROMDEVICE); |
| memcpy(skb_put(skb, length), |
| sbq_desc->p.skb->data, length); |
| pci_dma_sync_single_for_device(qdev->pdev, |
| dma_unmap_addr |
| (sbq_desc, |
| mapaddr), |
| dma_unmap_len |
| (sbq_desc, |
| maplen), |
| PCI_DMA_FROMDEVICE); |
| } else { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "%d bytes in a single small buffer.\n", |
| length); |
| sbq_desc = ql_get_curr_sbuf(rx_ring); |
| skb = sbq_desc->p.skb; |
| ql_realign_skb(skb, length); |
| skb_put(skb, length); |
| pci_unmap_single(qdev->pdev, |
| dma_unmap_addr(sbq_desc, |
| mapaddr), |
| dma_unmap_len(sbq_desc, |
| maplen), |
| PCI_DMA_FROMDEVICE); |
| sbq_desc->p.skb = NULL; |
| } |
| } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { |
| if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Header in small, %d bytes in large. Chain large to small!\n", |
| length); |
| /* |
| * The data is in a single large buffer. We |
| * chain it to the header buffer's skb and let |
| * it rip. |
| */ |
| lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Chaining page at offset = %d, for %d bytes to skb.\n", |
| lbq_desc->p.pg_chunk.offset, length); |
| skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, |
| lbq_desc->p.pg_chunk.offset, |
| length); |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += length; |
| } else { |
| /* |
| * The headers and data are in a single large buffer. We |
| * copy it to a new skb and let it go. This can happen with |
| * jumbo mtu on a non-TCP/UDP frame. |
| */ |
| lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); |
| skb = netdev_alloc_skb(qdev->ndev, length); |
| if (skb == NULL) { |
| netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev, |
| "No skb available, drop the packet.\n"); |
| return NULL; |
| } |
| pci_unmap_page(qdev->pdev, |
| dma_unmap_addr(lbq_desc, |
| mapaddr), |
| dma_unmap_len(lbq_desc, maplen), |
| PCI_DMA_FROMDEVICE); |
| skb_reserve(skb, NET_IP_ALIGN); |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", |
| length); |
| skb_fill_page_desc(skb, 0, |
| lbq_desc->p.pg_chunk.page, |
| lbq_desc->p.pg_chunk.offset, |
| length); |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += length; |
| length -= length; |
| ql_update_mac_hdr_len(qdev, ib_mac_rsp, |
| lbq_desc->p.pg_chunk.va, |
| &hlen); |
| __pskb_pull_tail(skb, hlen); |
| } |
| } else { |
| /* |
| * The data is in a chain of large buffers |
| * pointed to by a small buffer. We loop |
| * thru and chain them to the our small header |
| * buffer's skb. |
| * frags: There are 18 max frags and our small |
| * buffer will hold 32 of them. The thing is, |
| * we'll use 3 max for our 9000 byte jumbo |
| * frames. If the MTU goes up we could |
| * eventually be in trouble. |
| */ |
| int size, i = 0; |
| sbq_desc = ql_get_curr_sbuf(rx_ring); |
| pci_unmap_single(qdev->pdev, |
| dma_unmap_addr(sbq_desc, mapaddr), |
| dma_unmap_len(sbq_desc, maplen), |
| PCI_DMA_FROMDEVICE); |
| if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) { |
| /* |
| * This is an non TCP/UDP IP frame, so |
| * the headers aren't split into a small |
| * buffer. We have to use the small buffer |
| * that contains our sg list as our skb to |
| * send upstairs. Copy the sg list here to |
| * a local buffer and use it to find the |
| * pages to chain. |
| */ |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "%d bytes of headers & data in chain of large.\n", |
| length); |
| skb = sbq_desc->p.skb; |
| sbq_desc->p.skb = NULL; |
| skb_reserve(skb, NET_IP_ALIGN); |
| } |
| while (length > 0) { |
| lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); |
| size = (length < rx_ring->lbq_buf_size) ? length : |
| rx_ring->lbq_buf_size; |
| |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Adding page %d to skb for %d bytes.\n", |
| i, size); |
| skb_fill_page_desc(skb, i, |
| lbq_desc->p.pg_chunk.page, |
| lbq_desc->p.pg_chunk.offset, |
| size); |
| skb->len += size; |
| skb->data_len += size; |
| skb->truesize += size; |
| length -= size; |
| i++; |
| } |
| ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va, |
| &hlen); |
| __pskb_pull_tail(skb, hlen); |
| } |
| return skb; |
| } |
| |
| /* Process an inbound completion from an rx ring. */ |
| static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring, |
| struct ib_mac_iocb_rsp *ib_mac_rsp, |
| u16 vlan_id) |
| { |
| struct net_device *ndev = qdev->ndev; |
| struct sk_buff *skb = NULL; |
| |
| QL_DUMP_IB_MAC_RSP(ib_mac_rsp); |
| |
| skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp); |
| if (unlikely(!skb)) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "No skb available, drop packet.\n"); |
| rx_ring->rx_dropped++; |
| return; |
| } |
| |
| /* Frame error, so drop the packet. */ |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) { |
| ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring); |
| dev_kfree_skb_any(skb); |
| return; |
| } |
| |
| /* The max framesize filter on this chip is set higher than |
| * MTU since FCoE uses 2k frames. |
| */ |
| if (skb->len > ndev->mtu + ETH_HLEN) { |
| dev_kfree_skb_any(skb); |
| rx_ring->rx_dropped++; |
| return; |
| } |
| |
| /* loopback self test for ethtool */ |
| if (test_bit(QL_SELFTEST, &qdev->flags)) { |
| ql_check_lb_frame(qdev, skb); |
| dev_kfree_skb_any(skb); |
| return; |
| } |
| |
| prefetch(skb->data); |
| if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n", |
| (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| IB_MAC_IOCB_RSP_M_HASH ? "Hash" : |
| (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| IB_MAC_IOCB_RSP_M_REG ? "Registered" : |
| (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); |
| rx_ring->rx_multicast++; |
| } |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Promiscuous Packet.\n"); |
| } |
| |
| skb->protocol = eth_type_trans(skb, ndev); |
| skb_checksum_none_assert(skb); |
| |
| /* If rx checksum is on, and there are no |
| * csum or frame errors. |
| */ |
| if ((ndev->features & NETIF_F_RXCSUM) && |
| !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) { |
| /* TCP frame. */ |
| if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) { |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "TCP checksum done!\n"); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && |
| (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) { |
| /* Unfragmented ipv4 UDP frame. */ |
| struct iphdr *iph = (struct iphdr *) skb->data; |
| if (!(iph->frag_off & |
| htons(IP_MF|IP_OFFSET))) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "TCP checksum done!\n"); |
| } |
| } |
| } |
| |
| rx_ring->rx_packets++; |
| rx_ring->rx_bytes += skb->len; |
| skb_record_rx_queue(skb, rx_ring->cq_id); |
| if (vlan_id != 0xffff) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id); |
| if (skb->ip_summed == CHECKSUM_UNNECESSARY) |
| napi_gro_receive(&rx_ring->napi, skb); |
| else |
| netif_receive_skb(skb); |
| } |
| |
| /* Process an inbound completion from an rx ring. */ |
| static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring, |
| struct ib_mac_iocb_rsp *ib_mac_rsp) |
| { |
| u32 length = le32_to_cpu(ib_mac_rsp->data_len); |
| u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && |
| (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ? |
| ((le16_to_cpu(ib_mac_rsp->vlan_id) & |
| IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff; |
| |
| QL_DUMP_IB_MAC_RSP(ib_mac_rsp); |
| |
| if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) { |
| /* The data and headers are split into |
| * separate buffers. |
| */ |
| ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, |
| vlan_id); |
| } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { |
| /* The data fit in a single small buffer. |
| * Allocate a new skb, copy the data and |
| * return the buffer to the free pool. |
| */ |
| ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp, |
| length, vlan_id); |
| } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) && |
| !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) && |
| (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) { |
| /* TCP packet in a page chunk that's been checksummed. |
| * Tack it on to our GRO skb and let it go. |
| */ |
| ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp, |
| length, vlan_id); |
| } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { |
| /* Non-TCP packet in a page chunk. Allocate an |
| * skb, tack it on frags, and send it up. |
| */ |
| ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp, |
| length, vlan_id); |
| } else { |
| /* Non-TCP/UDP large frames that span multiple buffers |
| * can be processed corrrectly by the split frame logic. |
| */ |
| ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, |
| vlan_id); |
| } |
| |
| return (unsigned long)length; |
| } |
| |
| /* Process an outbound completion from an rx ring. */ |
| static void ql_process_mac_tx_intr(struct ql_adapter *qdev, |
| struct ob_mac_iocb_rsp *mac_rsp) |
| { |
| struct tx_ring *tx_ring; |
| struct tx_ring_desc *tx_ring_desc; |
| |
| QL_DUMP_OB_MAC_RSP(mac_rsp); |
| tx_ring = &qdev->tx_ring[mac_rsp->txq_idx]; |
| tx_ring_desc = &tx_ring->q[mac_rsp->tid]; |
| ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); |
| tx_ring->tx_bytes += (tx_ring_desc->skb)->len; |
| tx_ring->tx_packets++; |
| dev_kfree_skb(tx_ring_desc->skb); |
| tx_ring_desc->skb = NULL; |
| |
| if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | |
| OB_MAC_IOCB_RSP_S | |
| OB_MAC_IOCB_RSP_L | |
| OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) { |
| if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) { |
| netif_warn(qdev, tx_done, qdev->ndev, |
| "Total descriptor length did not match transfer length.\n"); |
| } |
| if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) { |
| netif_warn(qdev, tx_done, qdev->ndev, |
| "Frame too short to be valid, not sent.\n"); |
| } |
| if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) { |
| netif_warn(qdev, tx_done, qdev->ndev, |
| "Frame too long, but sent anyway.\n"); |
| } |
| if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) { |
| netif_warn(qdev, tx_done, qdev->ndev, |
| "PCI backplane error. Frame not sent.\n"); |
| } |
| } |
| atomic_inc(&tx_ring->tx_count); |
| } |
| |
| /* Fire up a handler to reset the MPI processor. */ |
| void ql_queue_fw_error(struct ql_adapter *qdev) |
| { |
| ql_link_off(qdev); |
| queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0); |
| } |
| |
| void ql_queue_asic_error(struct ql_adapter *qdev) |
| { |
| ql_link_off(qdev); |
| ql_disable_interrupts(qdev); |
| /* Clear adapter up bit to signal the recovery |
| * process that it shouldn't kill the reset worker |
| * thread |
| */ |
| clear_bit(QL_ADAPTER_UP, &qdev->flags); |
| /* Set asic recovery bit to indicate reset process that we are |
| * in fatal error recovery process rather than normal close |
| */ |
| set_bit(QL_ASIC_RECOVERY, &qdev->flags); |
| queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); |
| } |
| |
| static void ql_process_chip_ae_intr(struct ql_adapter *qdev, |
| struct ib_ae_iocb_rsp *ib_ae_rsp) |
| { |
| switch (ib_ae_rsp->event) { |
| case MGMT_ERR_EVENT: |
| netif_err(qdev, rx_err, qdev->ndev, |
| "Management Processor Fatal Error.\n"); |
| ql_queue_fw_error(qdev); |
| return; |
| |
| case CAM_LOOKUP_ERR_EVENT: |
| netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n"); |
| netdev_err(qdev->ndev, "This event shouldn't occur.\n"); |
| ql_queue_asic_error(qdev); |
| return; |
| |
| case SOFT_ECC_ERROR_EVENT: |
| netdev_err(qdev->ndev, "Soft ECC error detected.\n"); |
| ql_queue_asic_error(qdev); |
| break; |
| |
| case PCI_ERR_ANON_BUF_RD: |
| netdev_err(qdev->ndev, "PCI error occurred when reading " |
| "anonymous buffers from rx_ring %d.\n", |
| ib_ae_rsp->q_id); |
| ql_queue_asic_error(qdev); |
| break; |
| |
| default: |
| netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n", |
| ib_ae_rsp->event); |
| ql_queue_asic_error(qdev); |
| break; |
| } |
| } |
| |
| static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring) |
| { |
| struct ql_adapter *qdev = rx_ring->qdev; |
| u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| struct ob_mac_iocb_rsp *net_rsp = NULL; |
| int count = 0; |
| |
| struct tx_ring *tx_ring; |
| /* While there are entries in the completion queue. */ |
| while (prod != rx_ring->cnsmr_idx) { |
| |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "cq_id = %d, prod = %d, cnsmr = %d.\n.", |
| rx_ring->cq_id, prod, rx_ring->cnsmr_idx); |
| |
| net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry; |
| rmb(); |
| switch (net_rsp->opcode) { |
| |
| case OPCODE_OB_MAC_TSO_IOCB: |
| case OPCODE_OB_MAC_IOCB: |
| ql_process_mac_tx_intr(qdev, net_rsp); |
| break; |
| default: |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Hit default case, not handled! dropping the packet, opcode = %x.\n", |
| net_rsp->opcode); |
| } |
| count++; |
| ql_update_cq(rx_ring); |
| prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| } |
| if (!net_rsp) |
| return 0; |
| ql_write_cq_idx(rx_ring); |
| tx_ring = &qdev->tx_ring[net_rsp->txq_idx]; |
| if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) { |
| if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) |
| /* |
| * The queue got stopped because the tx_ring was full. |
| * Wake it up, because it's now at least 25% empty. |
| */ |
| netif_wake_subqueue(qdev->ndev, tx_ring->wq_id); |
| } |
| |
| return count; |
| } |
| |
| static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget) |
| { |
| struct ql_adapter *qdev = rx_ring->qdev; |
| u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| struct ql_net_rsp_iocb *net_rsp; |
| int count = 0; |
| |
| /* While there are entries in the completion queue. */ |
| while (prod != rx_ring->cnsmr_idx) { |
| |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "cq_id = %d, prod = %d, cnsmr = %d.\n.", |
| rx_ring->cq_id, prod, rx_ring->cnsmr_idx); |
| |
| net_rsp = rx_ring->curr_entry; |
| rmb(); |
| switch (net_rsp->opcode) { |
| case OPCODE_IB_MAC_IOCB: |
| ql_process_mac_rx_intr(qdev, rx_ring, |
| (struct ib_mac_iocb_rsp *) |
| net_rsp); |
| break; |
| |
| case OPCODE_IB_AE_IOCB: |
| ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *) |
| net_rsp); |
| break; |
| default: |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Hit default case, not handled! dropping the packet, opcode = %x.\n", |
| net_rsp->opcode); |
| break; |
| } |
| count++; |
| ql_update_cq(rx_ring); |
| prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| if (count == budget) |
| break; |
| } |
| ql_update_buffer_queues(qdev, rx_ring); |
| ql_write_cq_idx(rx_ring); |
| return count; |
| } |
| |
| static int ql_napi_poll_msix(struct napi_struct *napi, int budget) |
| { |
| struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi); |
| struct ql_adapter *qdev = rx_ring->qdev; |
| struct rx_ring *trx_ring; |
| int i, work_done = 0; |
| struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id]; |
| |
| netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, |
| "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id); |
| |
| /* Service the TX rings first. They start |
| * right after the RSS rings. */ |
| for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) { |
| trx_ring = &qdev->rx_ring[i]; |
| /* If this TX completion ring belongs to this vector and |
| * it's not empty then service it. |
| */ |
| if ((ctx->irq_mask & (1 << trx_ring->cq_id)) && |
| (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) != |
| trx_ring->cnsmr_idx)) { |
| netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, |
| "%s: Servicing TX completion ring %d.\n", |
| __func__, trx_ring->cq_id); |
| ql_clean_outbound_rx_ring(trx_ring); |
| } |
| } |
| |
| /* |
| * Now service the RSS ring if it's active. |
| */ |
| if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != |
| rx_ring->cnsmr_idx) { |
| netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, |
| "%s: Servicing RX completion ring %d.\n", |
| __func__, rx_ring->cq_id); |
| work_done = ql_clean_inbound_rx_ring(rx_ring, budget); |
| } |
| |
| if (work_done < budget) { |
| napi_complete(napi); |
| ql_enable_completion_interrupt(qdev, rx_ring->irq); |
| } |
| return work_done; |
| } |
| |
| static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features) |
| { |
| struct ql_adapter *qdev = netdev_priv(ndev); |
| |
| if (features & NETIF_F_HW_VLAN_CTAG_RX) { |
| ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK | |
| NIC_RCV_CFG_VLAN_MATCH_AND_NON); |
| } else { |
| ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK); |
| } |
| } |
| |
| /** |
| * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter |
| * based on the features to enable/disable hardware vlan accel |
| */ |
| static int qlge_update_hw_vlan_features(struct net_device *ndev, |
| netdev_features_t features) |
| { |
| struct ql_adapter *qdev = netdev_priv(ndev); |
| int status = 0; |
| |
| status = ql_adapter_down(qdev); |
| if (status) { |
| netif_err(qdev, link, qdev->ndev, |
| "Failed to bring down the adapter\n"); |
| return status; |
| } |
| |
| /* update the features with resent change */ |
| ndev->features = features; |
| |
| status = ql_adapter_up(qdev); |
| if (status) { |
| netif_err(qdev, link, qdev->ndev, |
| "Failed to bring up the adapter\n"); |
| return status; |
| } |
| return status; |
| } |
| |
| static netdev_features_t qlge_fix_features(struct net_device *ndev, |
| netdev_features_t features) |
| { |
| int err; |
| |
| /* Update the behavior of vlan accel in the adapter */ |
| err = qlge_update_hw_vlan_features(ndev, features); |
| if (err) |
| return err; |
| |
| return features; |
| } |
| |
| static int qlge_set_features(struct net_device *ndev, |
| netdev_features_t features) |
| { |
| netdev_features_t changed = ndev->features ^ features; |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_RX) |
| qlge_vlan_mode(ndev, features); |
| |
| return 0; |
| } |
| |
| static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid) |
| { |
| u32 enable_bit = MAC_ADDR_E; |
| int err; |
| |
| err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit, |
| MAC_ADDR_TYPE_VLAN, vid); |
| if (err) |
| netif_err(qdev, ifup, qdev->ndev, |
| "Failed to init vlan address.\n"); |
| return err; |
| } |
| |
| static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) |
| { |
| struct ql_adapter *qdev = netdev_priv(ndev); |
| int status; |
| int err; |
| |
| status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); |
| if (status) |
| return status; |
| |
| err = __qlge_vlan_rx_add_vid(qdev, vid); |
| set_bit(vid, qdev->active_vlans); |
| |
| ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); |
| |
| return err; |
| } |
| |
| static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid) |
| { |
| u32 enable_bit = 0; |
| int err; |
| |
| err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit, |
| MAC_ADDR_TYPE_VLAN, vid); |
| if (err) |
| netif_err(qdev, ifup, qdev->ndev, |
| "Failed to clear vlan address.\n"); |
| return err; |
| } |
| |
| static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) |
| { |
| struct ql_adapter *qdev = netdev_priv(ndev); |
| int status; |
| int err; |
| |
| status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); |
| if (status) |
| return status; |
| |
| err = __qlge_vlan_rx_kill_vid(qdev, vid); |
| clear_bit(vid, qdev->active_vlans); |
| |
| ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); |
| |
| return err; |
| } |
| |
| static void qlge_restore_vlan(struct ql_adapter *qdev) |
| { |
| int status; |
| u16 vid; |
| |
| status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); |
| if (status) |
| return; |
| |
| for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID) |
| __qlge_vlan_rx_add_vid(qdev, vid); |
| |
| ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); |
| } |
| |
| /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */ |
| static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id) |
| { |
| struct rx_ring *rx_ring = dev_id; |
| napi_schedule(&rx_ring->napi); |
| return IRQ_HANDLED; |
| } |
| |
| /* This handles a fatal error, MPI activity, and the default |
| * rx_ring in an MSI-X multiple vector environment. |
| * In MSI/Legacy environment it also process the rest of |
| * the rx_rings. |
| */ |
| static irqreturn_t qlge_isr(int irq, void *dev_id) |
| { |
| struct rx_ring *rx_ring = dev_id; |
| struct ql_adapter *qdev = rx_ring->qdev; |
| struct intr_context *intr_context = &qdev->intr_context[0]; |
| u32 var; |
| int work_done = 0; |
| |
| spin_lock(&qdev->hw_lock); |
| if (atomic_read(&qdev->intr_context[0].irq_cnt)) { |
| netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev, |
| "Shared Interrupt, Not ours!\n"); |
| spin_unlock(&qdev->hw_lock); |
| return IRQ_NONE; |
| } |
| spin_unlock(&qdev->hw_lock); |
| |
| var = ql_disable_completion_interrupt(qdev, intr_context->intr); |
| |
| /* |
| * Check for fatal error. |
| */ |
| if (var & STS_FE) { |
| ql_queue_asic_error(qdev); |
| netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var); |
| var = ql_read32(qdev, ERR_STS); |
| netdev_err(qdev->ndev, "Resetting chip. " |
| "Error Status Register = 0x%x\n", var); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Check MPI processor activity. |
| */ |
| if ((var & STS_PI) && |
| (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) { |
| /* |
| * We've got an async event or mailbox completion. |
| * Handle it and clear the source of the interrupt. |
| */ |
| netif_err(qdev, intr, qdev->ndev, |
| "Got MPI processor interrupt.\n"); |
| ql_disable_completion_interrupt(qdev, intr_context->intr); |
| ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16)); |
| queue_delayed_work_on(smp_processor_id(), |
| qdev->workqueue, &qdev->mpi_work, 0); |
| work_done++; |
| } |
| |
| /* |
| * Get the bit-mask that shows the active queues for this |
| * pass. Compare it to the queues that this irq services |
| * and call napi if there's a match. |
| */ |
| var = ql_read32(qdev, ISR1); |
| if (var & intr_context->irq_mask) { |
| netif_info(qdev, intr, qdev->ndev, |
| "Waking handler for rx_ring[0].\n"); |
| ql_disable_completion_interrupt(qdev, intr_context->intr); |
| napi_schedule(&rx_ring->napi); |
| work_done++; |
| } |
| ql_enable_completion_interrupt(qdev, intr_context->intr); |
| return work_done ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) |
| { |
| |
| if (skb_is_gso(skb)) { |
| int err; |
| if (skb_header_cloned(skb)) { |
| err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| if (err) |
| return err; |
| } |
| |
| mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; |
| mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC; |
| mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); |
| mac_iocb_ptr->total_hdrs_len = |
| cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb)); |
| mac_iocb_ptr->net_trans_offset = |
| cpu_to_le16(skb_network_offset(skb) | |
| skb_transport_offset(skb) |
| << OB_MAC_TRANSPORT_HDR_SHIFT); |
| mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); |
| mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO; |
| if (likely(skb->protocol == htons(ETH_P_IP))) { |
| struct iphdr *iph = ip_hdr(skb); |
| iph->check = 0; |
| mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; |
| tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
| iph->daddr, 0, |
| IPPROTO_TCP, |
| 0); |
| } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6; |
| tcp_hdr(skb)->check = |
| ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void ql_hw_csum_setup(struct sk_buff *skb, |
| struct ob_mac_tso_iocb_req *mac_iocb_ptr) |
| { |
| int len; |
| struct iphdr *iph = ip_hdr(skb); |
| __sum16 *check; |
| mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; |
| mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); |
| mac_iocb_ptr->net_trans_offset = |
| cpu_to_le16(skb_network_offset(skb) | |
| skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); |
| |
| mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; |
| len = (ntohs(iph->tot_len) - (iph->ihl << 2)); |
| if (likely(iph->protocol == IPPROTO_TCP)) { |
| check = &(tcp_hdr(skb)->check); |
| mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC; |
| mac_iocb_ptr->total_hdrs_len = |
| cpu_to_le16(skb_transport_offset(skb) + |
| (tcp_hdr(skb)->doff << 2)); |
| } else { |
| check = &(udp_hdr(skb)->check); |
| mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC; |
| mac_iocb_ptr->total_hdrs_len = |
| cpu_to_le16(skb_transport_offset(skb) + |
| sizeof(struct udphdr)); |
| } |
| *check = ~csum_tcpudp_magic(iph->saddr, |
| iph->daddr, len, iph->protocol, 0); |
| } |
| |
| static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct tx_ring_desc *tx_ring_desc; |
| struct ob_mac_iocb_req *mac_iocb_ptr; |
| struct ql_adapter *qdev = netdev_priv(ndev); |
| int tso; |
| struct tx_ring *tx_ring; |
| u32 tx_ring_idx = (u32) skb->queue_mapping; |
| |
| tx_ring = &qdev->tx_ring[tx_ring_idx]; |
| |
| if (skb_padto(skb, ETH_ZLEN)) |
| return NETDEV_TX_OK; |
| |
| if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { |
| netif_info(qdev, tx_queued, qdev->ndev, |
| "%s: BUG! shutting down tx queue %d due to lack of resources.\n", |
| __func__, tx_ring_idx); |
| netif_stop_subqueue(ndev, tx_ring->wq_id); |
| tx_ring->tx_errors++; |
| return NETDEV_TX_BUSY; |
| } |
| tx_ring_desc = &tx_ring->q[tx_ring->prod_idx]; |
| mac_iocb_ptr = tx_ring_desc->queue_entry; |
| memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr)); |
| |
| mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB; |
| mac_iocb_ptr->tid = tx_ring_desc->index; |
| /* We use the upper 32-bits to store the tx queue for this IO. |
| * When we get the completion we can use it to establish the context. |
| */ |
| mac_iocb_ptr->txq_idx = tx_ring_idx; |
| tx_ring_desc->skb = skb; |
| |
| mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len); |
| |
| if (vlan_tx_tag_present(skb)) { |
| netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, |
| "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb)); |
| mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V; |
| mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb)); |
| } |
| tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); |
| if (tso < 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) { |
| ql_hw_csum_setup(skb, |
| (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); |
| } |
| if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != |
| NETDEV_TX_OK) { |
| netif_err(qdev, tx_queued, qdev->ndev, |
| "Could not map the segments.\n"); |
| tx_ring->tx_errors++; |
| return NETDEV_TX_BUSY; |
| } |
| QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr); |
| tx_ring->prod_idx++; |
| if (tx_ring->prod_idx == tx_ring->wq_len) |
| tx_ring->prod_idx = 0; |
| wmb(); |
| |
| ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg); |
| netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev, |
| "tx queued, slot %d, len %d\n", |
| tx_ring->prod_idx, skb->len); |
| |
| atomic_dec(&tx_ring->tx_count); |
| |
| if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { |
| netif_stop_subqueue(ndev, tx_ring->wq_id); |
| if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) |
| /* |
| * The queue got stopped because the tx_ring was full. |
| * Wake it up, because it's now at least 25% empty. |
| */ |
| netif_wake_subqueue(qdev->ndev, tx_ring->wq_id); |
| } |
| return NETDEV_TX_OK; |
| } |
| |
| |
| static void ql_free_shadow_space(struct ql_adapter *qdev) |
| { |
| if (qdev->rx_ring_shadow_reg_area) { |
| pci_free_consistent(qdev->pdev, |
| PAGE_SIZE, |
| qdev->rx_ring_shadow_reg_area, |
| qdev->rx_ring_shadow_reg_dma); |
| qdev->rx_ring_shadow_reg_area = NULL; |
| } |
| if (qdev->tx_ring_shadow_reg_area) { |
| pci_free_consistent(qdev->pdev, |
| PAGE_SIZE, |
| qdev->tx_ring_shadow_reg_area, |
| qdev->tx_ring_shadow_reg_dma); |
| qdev->tx_ring_shadow_reg_area = NULL; |
| } |
| } |
| |
| static int ql_alloc_shadow_space(struct ql_adapter *qdev) |
| { |
| qdev->rx_ring_shadow_reg_area = |
| pci_alloc_consistent(qdev->pdev, |
| PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma); |
| if (qdev->rx_ring_shadow_reg_area == NULL) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "Allocation of RX shadow space failed.\n"); |
| return -ENOMEM; |
| } |
| memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE); |
| qdev->tx_ring_shadow_reg_area = |
| pci_alloc_consistent(qdev->pdev, PAGE_SIZE, |
| &qdev->tx_ring_shadow_reg_dma); |
| if (qdev->tx_ring_shadow_reg_area == NULL) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "Allocation of TX shadow space failed.\n"); |
| goto err_wqp_sh_area; |
| } |
| memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE); |
| return 0; |
| |
| err_wqp_sh_area: |
| pci_free_consistent(qdev->pdev, |
| PAGE_SIZE, |
| qdev->rx_ring_shadow_reg_area, |
| qdev->rx_ring_shadow_reg_dma); |
| return -ENOMEM; |
| } |
| |
| static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) |
| { |
| struct tx_ring_desc *tx_ring_desc; |
| int i; |
| struct ob_mac_iocb_req *mac_iocb_ptr; |
| |
| mac_iocb_ptr = tx_ring->wq_base; |
| tx_ring_desc = tx_ring->q; |
| for (i = 0; i < tx_ring->wq_len; i++) { |
| tx_ring_desc->index = i; |
| tx_ring_desc->skb = NULL; |
| tx_ring_desc->queue_entry = mac_iocb_ptr; |
| mac_iocb_ptr++; |
| tx_ring_desc++; |
| } |
| atomic_set(&tx_ring->tx_count, tx_ring->wq_len); |
| } |
| |
| static void ql_free_tx_resources(struct ql_adapter *qdev, |
| struct tx_ring *tx_ring) |
| { |
| if (tx_ring->wq_base) { |
| pci_free_consistent(qdev->pdev, tx_ring->wq_size, |
| tx_ring->wq_base, tx_ring->wq_base_dma); |
| tx_ring->wq_base = NULL; |
| } |
| kfree(tx_ring->q); |
| tx_ring->q = NULL; |
| } |
| |
| static int ql_alloc_tx_resources(struct ql_adapter *qdev, |
| struct tx_ring *tx_ring) |
| { |
| tx_ring->wq_base = |
| pci_alloc_consistent(qdev->pdev, tx_ring->wq_size, |
| &tx_ring->wq_base_dma); |
| |
| if ((tx_ring->wq_base == NULL) || |
| tx_ring->wq_base_dma & WQ_ADDR_ALIGN) |
| goto pci_alloc_err; |
| |
| tx_ring->q = |
| kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL); |
| if (tx_ring->q == NULL) |
| goto err; |
| |
| return 0; |
| err: |
| pci_free_consistent(qdev->pdev, tx_ring->wq_size, |
| tx_ring->wq_base, tx_ring->wq_base_dma); |
| tx_ring->wq_base = NULL; |
| pci_alloc_err: |
| netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n"); |
| return -ENOMEM; |
| } |
| |
| static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| { |
| struct bq_desc *lbq_desc; |
| |
| uint32_t curr_idx, clean_idx; |
| |
| curr_idx = rx_ring->lbq_curr_idx; |
| clean_idx = rx_ring->lbq_clean_idx; |
| while (curr_idx != clean_idx) { |
| lbq_desc = &rx_ring->lbq[curr_idx]; |
| |
| if (lbq_desc->p.pg_chunk.last_flag) { |
| pci_unmap_page(qdev->pdev, |
| lbq_desc->p.pg_chunk.map, |
| ql_lbq_block_size(qdev), |
| PCI_DMA_FROMDEVICE); |
| lbq_desc->p.pg_chunk.last_flag = 0; |
| } |
| |
| put_page(lbq_desc->p.pg_chunk.page); |
| lbq_desc->p.pg_chunk.page = NULL; |
| |
| if (++curr_idx == rx_ring->lbq_len) |
| curr_idx = 0; |
| |
| } |
| if (rx_ring->pg_chunk.page) { |
| pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map, |
| ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE); |
| put_page(rx_ring->pg_chunk.page); |
| rx_ring->pg_chunk.page = NULL; |
| } |
| } |
| |
| static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| { |
| int i; |
| struct bq_desc *sbq_desc; |
| |
| for (i = 0; i < rx_ring->sbq_len; i++) { |
| sbq_desc = &rx_ring->sbq[i]; |
| if (sbq_desc == NULL) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "sbq_desc %d is NULL.\n", i); |
| return; |
| } |
| if (sbq_desc->p.skb) { |
| pci_unmap_single(qdev->pdev, |
| dma_unmap_addr(sbq_desc, mapaddr), |
| dma_unmap_len(sbq_desc, maplen), |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(sbq_desc->p.skb); |
| sbq_desc->p.skb = NULL; |
| } |
| } |
| } |
| |
| /* Free all large and small rx buffers associated |
| * with the completion queues for this device. |
| */ |
| static void ql_free_rx_buffers(struct ql_adapter *qdev) |
| { |
| int i; |
| struct rx_ring *rx_ring; |
| |
| for (i = 0; i < qdev->rx_ring_count; i++) { |
| rx_ring = &qdev->rx_ring[i]; |
| if (rx_ring->lbq) |
| ql_free_lbq_buffers(qdev, rx_ring); |
| if (rx_ring->sbq) |
| ql_free_sbq_buffers(qdev, rx_ring); |
| } |
| } |
| |
| static void ql_alloc_rx_buffers(struct ql_adapter *qdev) |
| { |
| struct rx_ring *rx_ring; |
| int i; |
| |
| for (i = 0; i < qdev->rx_ring_count; i++) { |
| rx_ring = &qdev->rx_ring[i]; |
| if (rx_ring->type != TX_Q) |
| ql_update_buffer_queues(qdev, rx_ring); |
| } |
| } |
| |
| static void ql_init_lbq_ring(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring) |
| { |
| int i; |
| struct bq_desc *lbq_desc; |
| __le64 *bq = rx_ring->lbq_base; |
| |
| memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc)); |
| for (i = 0; i < rx_ring->lbq_len; i++) { |
| lbq_desc = &rx_ring->lbq[i]; |
| memset(lbq_desc, 0, sizeof(*lbq_desc)); |
| lbq_desc->index = i; |
| lbq_desc->addr = bq; |
| bq++; |
| } |
| } |
| |
| static void ql_init_sbq_ring(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring) |
| { |
| int i; |
| struct bq_desc *sbq_desc; |
| __le64 *bq = rx_ring->sbq_base; |
| |
| memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc)); |
| for (i = 0; i < rx_ring->sbq_len; i++) { |
| sbq_desc = &rx_ring->sbq[i]; |
| memset(sbq_desc, 0, sizeof(*sbq_desc)); |
| sbq_desc->index = i; |
| sbq_desc->addr = bq; |
| bq++; |
| } |
| } |
| |
| static void ql_free_rx_resources(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring) |
| { |
| /* Free the small buffer queue. */ |
| if (rx_ring->sbq_base) { |
| pci_free_consistent(qdev->pdev, |
| rx_ring->sbq_size, |
| rx_ring->sbq_base, rx_ring->sbq_base_dma); |
| rx_ring->sbq_base = NULL; |
| } |
| |
| /* Free the small buffer queue control blocks. */ |
| kfree(rx_ring->sbq); |
| rx_ring->sbq = NULL; |
| |
| /* Free the large buffer queue. */ |
| if (rx_ring->lbq_base) { |
| pci_free_consistent(qdev->pdev, |
| rx_ring->lbq_size, |
| rx_ring->lbq_base, rx_ring->lbq_base_dma); |
| rx_ring->lbq_base = NULL; |
| } |
| |
| /* Free the large buffer queue control blocks. */ |
| kfree(rx_ring->lbq); |
| rx_ring->lbq = NULL; |
| |
| /* Free the rx queue. */ |
| if (rx_ring->cq_base) { |
| pci_free_consistent(qdev->pdev, |
| rx_ring->cq_size, |
| rx_ring->cq_base, rx_ring->cq_base_dma); |
| rx_ring->cq_base = NULL; |
| } |
| } |
| |
| /* Allocate queues and buffers for this completions queue based |
| * on the values in the parameter structure. */ |
| static int ql_alloc_rx_resources(struct ql_adapter *qdev, |
| struct rx_ring *rx_ring) |
| { |
| |
| /* |
| * Allocate the completion queue for this rx_ring. |
| */ |
| rx_ring->cq_base = |
| pci_alloc_consistent(qdev->pdev, rx_ring->cq_size, |
| &rx_ring->cq_base_dma); |
| |
| if (rx_ring->cq_base == NULL) { |
| netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n"); |
| return -ENOMEM; |
| } |
| |
| if (rx_ring->sbq_len) { |
| /* |
| * Allocate small buffer queue. |
| */ |
| rx_ring->sbq_base = |
| pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size, |
| &rx_ring->sbq_base_dma); |
| |
| if (rx_ring->sbq_base == NULL) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "Small buffer queue allocation failed.\n"); |
| goto err_mem; |
| } |
| |
| /* |
| * Allocate small buffer queue control blocks. |
| */ |
| rx_ring->sbq = kmalloc_array(rx_ring->sbq_len, |
| sizeof(struct bq_desc), |
| GFP_KERNEL); |
| if (rx_ring->sbq == NULL) |
| goto err_mem; |
| |
| ql_init_sbq_ring(qdev, rx_ring); |
| } |
| |
| if (rx_ring->lbq_len) { |
| /* |
| * Allocate large buffer queue. |
| */ |
| rx_ring->lbq_base = |
| pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size, |
| &rx_ring->lbq_base_dma); |
| |
| if (rx_ring->lbq_base == NULL) { |
| netif_err(qdev, ifup, qdev->ndev, |
| "Large buffer queue allocation failed.\n"); |
| goto err_mem; |
| } |
| /* |
| * Allocate large buffer queue control blocks. |
| */ |
| rx_ring->lbq = kmalloc_array(rx_ring->lbq_len, |
| sizeof(struct bq_desc), |
| GFP_KERNEL); |
| if (rx_ring->lbq == NULL) |
| goto err_mem; |
| |
| ql_init_lbq_ring(qdev, rx_ring); |
| } |
| |
| return 0; |
| |
|