blob: df73cbd9387e89195eca1e30438cc04ae2f33be5 [file] [log] [blame]
/*
* Promise TX2/TX4/TX2000/133 IDE driver
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Split from:
* linux/drivers/ide/pdc202xx.c Version 0.35 Mar. 30, 2002
* Copyright (C) 1998-2002 Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2005-2007 MontaVista Software, Inc.
* Portions Copyright (C) 1999 Promise Technology, Inc.
* Author: Frank Tiernan (frankt@promise.com)
* Released under terms of General Public License
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ide.h>
#include <asm/io.h>
#ifdef CONFIG_PPC_PMAC
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#endif
#define DRV_NAME "pdc202xx_new"
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt, args...) printk("%s: " fmt, __func__, ## args)
#else
#define DBG(fmt, args...)
#endif
static u8 max_dma_rate(struct pci_dev *pdev)
{
u8 mode;
switch(pdev->device) {
case PCI_DEVICE_ID_PROMISE_20277:
case PCI_DEVICE_ID_PROMISE_20276:
case PCI_DEVICE_ID_PROMISE_20275:
case PCI_DEVICE_ID_PROMISE_20271:
case PCI_DEVICE_ID_PROMISE_20269:
mode = 4;
break;
case PCI_DEVICE_ID_PROMISE_20270:
case PCI_DEVICE_ID_PROMISE_20268:
mode = 3;
break;
default:
return 0;
}
return mode;
}
/**
* get_indexed_reg - Get indexed register
* @hwif: for the port address
* @index: index of the indexed register
*/
static u8 get_indexed_reg(ide_hwif_t *hwif, u8 index)
{
u8 value;
outb(index, hwif->dma_base + 1);
value = inb(hwif->dma_base + 3);
DBG("index[%02X] value[%02X]\n", index, value);
return value;
}
/**
* set_indexed_reg - Set indexed register
* @hwif: for the port address
* @index: index of the indexed register
*/
static void set_indexed_reg(ide_hwif_t *hwif, u8 index, u8 value)
{
outb(index, hwif->dma_base + 1);
outb(value, hwif->dma_base + 3);
DBG("index[%02X] value[%02X]\n", index, value);
}
/*
* ATA Timing Tables based on 133 MHz PLL output clock.
*
* If the PLL outputs 100 MHz clock, the ASIC hardware will set
* the timing registers automatically when "set features" command is
* issued to the device. However, if the PLL output clock is 133 MHz,
* the following tables must be used.
*/
static struct pio_timing {
u8 reg0c, reg0d, reg13;
} pio_timings [] = {
{ 0xfb, 0x2b, 0xac }, /* PIO mode 0, IORDY off, Prefetch off */
{ 0x46, 0x29, 0xa4 }, /* PIO mode 1, IORDY off, Prefetch off */
{ 0x23, 0x26, 0x64 }, /* PIO mode 2, IORDY off, Prefetch off */
{ 0x27, 0x0d, 0x35 }, /* PIO mode 3, IORDY on, Prefetch off */
{ 0x23, 0x09, 0x25 }, /* PIO mode 4, IORDY on, Prefetch off */
};
static struct mwdma_timing {
u8 reg0e, reg0f;
} mwdma_timings [] = {
{ 0xdf, 0x5f }, /* MWDMA mode 0 */
{ 0x6b, 0x27 }, /* MWDMA mode 1 */
{ 0x69, 0x25 }, /* MWDMA mode 2 */
};
static struct udma_timing {
u8 reg10, reg11, reg12;
} udma_timings [] = {
{ 0x4a, 0x0f, 0xd5 }, /* UDMA mode 0 */
{ 0x3a, 0x0a, 0xd0 }, /* UDMA mode 1 */
{ 0x2a, 0x07, 0xcd }, /* UDMA mode 2 */
{ 0x1a, 0x05, 0xcd }, /* UDMA mode 3 */
{ 0x1a, 0x03, 0xcd }, /* UDMA mode 4 */
{ 0x1a, 0x02, 0xcb }, /* UDMA mode 5 */
{ 0x1a, 0x01, 0xcb }, /* UDMA mode 6 */
};
static void pdcnew_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
{
struct pci_dev *dev = to_pci_dev(hwif->dev);
u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
const u8 speed = drive->dma_mode;
/*
* IDE core issues SETFEATURES_XFER to the drive first (thanks to
* IDE_HFLAG_POST_SET_MODE in ->host_flags). PDC202xx hardware will
* automatically set the timing registers based on 100 MHz PLL output.
*
* As we set up the PLL to output 133 MHz for UltraDMA/133 capable
* chips, we must override the default register settings...
*/
if (max_dma_rate(dev) == 4) {
u8 mode = speed & 0x07;
if (speed >= XFER_UDMA_0) {
set_indexed_reg(hwif, 0x10 + adj,
udma_timings[mode].reg10);
set_indexed_reg(hwif, 0x11 + adj,
udma_timings[mode].reg11);
set_indexed_reg(hwif, 0x12 + adj,
udma_timings[mode].reg12);
} else {
set_indexed_reg(hwif, 0x0e + adj,
mwdma_timings[mode].reg0e);
set_indexed_reg(hwif, 0x0f + adj,
mwdma_timings[mode].reg0f);
}
} else if (speed == XFER_UDMA_2) {
/* Set tHOLD bit to 0 if using UDMA mode 2 */
u8 tmp = get_indexed_reg(hwif, 0x10 + adj);
set_indexed_reg(hwif, 0x10 + adj, tmp & 0x7f);
}
}
static void pdcnew_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
{
struct pci_dev *dev = to_pci_dev(hwif->dev);
u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
const u8 pio = drive->pio_mode - XFER_PIO_0;
if (max_dma_rate(dev) == 4) {
set_indexed_reg(hwif, 0x0c + adj, pio_timings[pio].reg0c);
set_indexed_reg(hwif, 0x0d + adj, pio_timings[pio].reg0d);
set_indexed_reg(hwif, 0x13 + adj, pio_timings[pio].reg13);
}
}
static u8 pdcnew_cable_detect(ide_hwif_t *hwif)
{
if (get_indexed_reg(hwif, 0x0b) & 0x04)
return ATA_CBL_PATA40;
else
return ATA_CBL_PATA80;
}
static void pdcnew_reset(ide_drive_t *drive)
{
/*
* Deleted this because it is redundant from the caller.
*/
printk(KERN_WARNING "pdc202xx_new: %s channel reset.\n",
drive->hwif->channel ? "Secondary" : "Primary");
}
/**
* read_counter - Read the byte count registers
* @dma_base: for the port address
*/
static long read_counter(u32 dma_base)
{
u32 pri_dma_base = dma_base, sec_dma_base = dma_base + 0x08;
u8 cnt0, cnt1, cnt2, cnt3;
long count = 0, last;
int retry = 3;
do {
last = count;
/* Read the current count */
outb(0x20, pri_dma_base + 0x01);
cnt0 = inb(pri_dma_base + 0x03);
outb(0x21, pri_dma_base + 0x01);
cnt1 = inb(pri_dma_base + 0x03);
outb(0x20, sec_dma_base + 0x01);
cnt2 = inb(sec_dma_base + 0x03);
outb(0x21, sec_dma_base + 0x01);
cnt3 = inb(sec_dma_base + 0x03);
count = (cnt3 << 23) | (cnt2 << 15) | (cnt1 << 8) | cnt0;
/*
* The 30-bit decrementing counter is read in 4 pieces.
* Incorrect value may be read when the most significant bytes
* are changing...
*/
} while (retry-- && (((last ^ count) & 0x3fff8000) || last < count));
DBG("cnt0[%02X] cnt1[%02X] cnt2[%02X] cnt3[%02X]\n",
cnt0, cnt1, cnt2, cnt3);
return count;
}
/**
* detect_pll_input_clock - Detect the PLL input clock in Hz.
* @dma_base: for the port address
* E.g. 16949000 on 33 MHz PCI bus, i.e. half of the PCI clock.
*/
static long detect_pll_input_clock(unsigned long dma_base)
{
struct timeval start_time, end_time;
long start_count, end_count;
long pll_input, usec_elapsed;
u8 scr1;
start_count = read_counter(dma_base);
do_gettimeofday(&start_time);
/* Start the test mode */
outb(0x01, dma_base + 0x01);
scr1 = inb(dma_base + 0x03);
DBG("scr1[%02X]\n", scr1);
outb(scr1 | 0x40, dma_base + 0x03);
/* Let the counter run for 10 ms. */
mdelay(10);
end_count = read_counter(dma_base);
do_gettimeofday(&end_time);
/* Stop the test mode */
outb(0x01, dma_base + 0x01);
scr1 = inb(dma_base + 0x03);
DBG("scr1[%02X]\n", scr1);
outb(scr1 & ~0x40, dma_base + 0x03);
/*
* Calculate the input clock in Hz
* (the clock counter is 30 bit wide and counts down)
*/
usec_elapsed = (end_time.tv_sec - start_time.tv_sec) * 1000000 +
(end_time.tv_usec - start_time.tv_usec);
pll_input = ((start_count - end_count) & 0x3fffffff) / 10 *
(10000000 / usec_elapsed);
DBG("start[%ld] end[%ld]\n", start_count, end_count);
return pll_input;
}
#ifdef CONFIG_PPC_PMAC
static void apple_kiwi_init(struct pci_dev *pdev)
{
struct device_node *np = pci_device_to_OF_node(pdev);
u8 conf;
if (np == NULL || !of_device_is_compatible(np, "kiwi-root"))
return;
if (pdev->revision >= 0x03) {
/* Setup chip magic config stuff (from darwin) */
pci_read_config_byte (pdev, 0x40, &conf);
pci_write_config_byte(pdev, 0x40, (conf | 0x01));
}
}
#endif /* CONFIG_PPC_PMAC */
static int init_chipset_pdcnew(struct pci_dev *dev)
{
const char *name = DRV_NAME;
unsigned long dma_base = pci_resource_start(dev, 4);
unsigned long sec_dma_base = dma_base + 0x08;
long pll_input, pll_output, ratio;
int f, r;
u8 pll_ctl0, pll_ctl1;
if (dma_base == 0)
return -EFAULT;
#ifdef CONFIG_PPC_PMAC
apple_kiwi_init(dev);
#endif
/* Calculate the required PLL output frequency */
switch(max_dma_rate(dev)) {
case 4: /* it's 133 MHz for Ultra133 chips */
pll_output = 133333333;
break;
case 3: /* and 100 MHz for Ultra100 chips */
default:
pll_output = 100000000;
break;
}
/*
* Detect PLL input clock.
* On some systems, where PCI bus is running at non-standard clock rate
* (e.g. 25 or 40 MHz), we have to adjust the cycle time.
* PDC20268 and newer chips employ PLL circuit to help correct timing
* registers setting.
*/
pll_input = detect_pll_input_clock(dma_base);
printk(KERN_INFO "%s %s: PLL input clock is %ld kHz\n",
name, pci_name(dev), pll_input / 1000);
/* Sanity check */
if (unlikely(pll_input < 5000000L || pll_input > 70000000L)) {
printk(KERN_ERR "%s %s: Bad PLL input clock %ld Hz, giving up!"
"\n", name, pci_name(dev), pll_input);
goto out;
}
#ifdef DEBUG
DBG("pll_output is %ld Hz\n", pll_output);
/* Show the current clock value of PLL control register
* (maybe already configured by the BIOS)
*/
outb(0x02, sec_dma_base + 0x01);
pll_ctl0 = inb(sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
pll_ctl1 = inb(sec_dma_base + 0x03);
DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
#endif
/*
* Calculate the ratio of F, R and NO
* POUT = (F + 2) / (( R + 2) * NO)
*/
ratio = pll_output / (pll_input / 1000);
if (ratio < 8600L) { /* 8.6x */
/* Using NO = 0x01, R = 0x0d */
r = 0x0d;
} else if (ratio < 12900L) { /* 12.9x */
/* Using NO = 0x01, R = 0x08 */
r = 0x08;
} else if (ratio < 16100L) { /* 16.1x */
/* Using NO = 0x01, R = 0x06 */
r = 0x06;
} else if (ratio < 64000L) { /* 64x */
r = 0x00;
} else {
/* Invalid ratio */
printk(KERN_ERR "%s %s: Bad ratio %ld, giving up!\n",
name, pci_name(dev), ratio);
goto out;
}
f = (ratio * (r + 2)) / 1000 - 2;
DBG("F[%d] R[%d] ratio*1000[%ld]\n", f, r, ratio);
if (unlikely(f < 0 || f > 127)) {
/* Invalid F */
printk(KERN_ERR "%s %s: F[%d] invalid!\n",
name, pci_name(dev), f);
goto out;
}
pll_ctl0 = (u8) f;
pll_ctl1 = (u8) r;
DBG("Writing pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
outb(0x02, sec_dma_base + 0x01);
outb(pll_ctl0, sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
outb(pll_ctl1, sec_dma_base + 0x03);
/* Wait the PLL circuit to be stable */
mdelay(30);
#ifdef DEBUG
/*
* Show the current clock value of PLL control register
*/
outb(0x02, sec_dma_base + 0x01);
pll_ctl0 = inb(sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
pll_ctl1 = inb(sec_dma_base + 0x03);
DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
#endif
out:
return 0;
}
static struct pci_dev *pdc20270_get_dev2(struct pci_dev *dev)
{
struct pci_dev *dev2;
dev2 = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn) + 1,
PCI_FUNC(dev->devfn)));
if (dev2 &&
dev2->vendor == dev->vendor &&
dev2->device == dev->device) {
if (dev2->irq != dev->irq) {
dev2->irq = dev->irq;
printk(KERN_INFO DRV_NAME " %s: PCI config space "
"interrupt fixed\n", pci_name(dev));
}
return dev2;
}
return NULL;
}
static const struct ide_port_ops pdcnew_port_ops = {
.set_pio_mode = pdcnew_set_pio_mode,
.set_dma_mode = pdcnew_set_dma_mode,
.resetproc = pdcnew_reset,
.cable_detect = pdcnew_cable_detect,
};
#define DECLARE_PDCNEW_DEV(udma) \
{ \
.name = DRV_NAME, \
.init_chipset = init_chipset_pdcnew, \
.port_ops = &pdcnew_port_ops, \
.host_flags = IDE_HFLAG_POST_SET_MODE | \
IDE_HFLAG_ERROR_STOPS_FIFO | \
IDE_HFLAG_OFF_BOARD, \
.pio_mask = ATA_PIO4, \
.mwdma_mask = ATA_MWDMA2, \
.udma_mask = udma, \
}
static const struct ide_port_info pdcnew_chipsets[] = {
/* 0: PDC202{68,70} */ DECLARE_PDCNEW_DEV(ATA_UDMA5),
/* 1: PDC202{69,71,75,76,77} */ DECLARE_PDCNEW_DEV(ATA_UDMA6),
};
/**
* pdc202new_init_one - called when a pdc202xx is found
* @dev: the pdc202new device
* @id: the matching pci id
*
* Called when the PCI registration layer (or the IDE initialization)
* finds a device matching our IDE device tables.
*/
static int pdc202new_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
const struct ide_port_info *d = &pdcnew_chipsets[id->driver_data];
struct pci_dev *bridge = dev->bus->self;
if (dev->device == PCI_DEVICE_ID_PROMISE_20270 && bridge &&
bridge->vendor == PCI_VENDOR_ID_DEC &&
bridge->device == PCI_DEVICE_ID_DEC_21150) {
struct pci_dev *dev2;
if (PCI_SLOT(dev->devfn) & 2)
return -ENODEV;
dev2 = pdc20270_get_dev2(dev);
if (dev2) {
int ret = ide_pci_init_two(dev, dev2, d, NULL);
if (ret < 0)
pci_dev_put(dev2);
return ret;
}
}
if (dev->device == PCI_DEVICE_ID_PROMISE_20276 && bridge &&
bridge->vendor == PCI_VENDOR_ID_INTEL &&
(bridge->device == PCI_DEVICE_ID_INTEL_I960 ||
bridge->device == PCI_DEVICE_ID_INTEL_I960RM)) {
printk(KERN_INFO DRV_NAME " %s: attached to I2O RAID controller,"
" skipping\n", pci_name(dev));
return -ENODEV;
}
return ide_pci_init_one(dev, d, NULL);
}
static void pdc202new_remove(struct pci_dev *dev)
{
struct ide_host *host = pci_get_drvdata(dev);
struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
ide_pci_remove(dev);
pci_dev_put(dev2);
}
static const struct pci_device_id pdc202new_pci_tbl[] = {
{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20268), 0 },
{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20269), 1 },
{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20270), 0 },
{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20271), 1 },
{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20275), 1 },
{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20276), 1 },
{ PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20277), 1 },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, pdc202new_pci_tbl);
static struct pci_driver pdc202new_pci_driver = {
.name = "Promise_IDE",
.id_table = pdc202new_pci_tbl,
.probe = pdc202new_init_one,
.remove = pdc202new_remove,
.suspend = ide_pci_suspend,
.resume = ide_pci_resume,
};
static int __init pdc202new_ide_init(void)
{
return ide_pci_register_driver(&pdc202new_pci_driver);
}
static void __exit pdc202new_ide_exit(void)
{
pci_unregister_driver(&pdc202new_pci_driver);
}
module_init(pdc202new_ide_init);
module_exit(pdc202new_ide_exit);
MODULE_AUTHOR("Andre Hedrick, Frank Tiernan");
MODULE_DESCRIPTION("PCI driver module for Promise PDC20268 and higher");
MODULE_LICENSE("GPL");