blob: 041ad07ee699a05c571b833f0469970da4972cae [file] [log] [blame]
/*
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef HFI1_VERBS_H
#define HFI1_VERBS_H
#include <linux/types.h>
#include <linux/seqlock.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/kref.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/completion.h>
#include <rdma/ib_pack.h>
#include <rdma/ib_user_verbs.h>
#include <rdma/ib_mad.h>
struct hfi1_ctxtdata;
struct hfi1_pportdata;
struct hfi1_devdata;
struct hfi1_packet;
#include "iowait.h"
#define HFI1_MAX_RDMA_ATOMIC 16
#define HFI1_GUIDS_PER_PORT 5
/*
* Increment this value if any changes that break userspace ABI
* compatibility are made.
*/
#define HFI1_UVERBS_ABI_VERSION 2
/*
* Define an ib_cq_notify value that is not valid so we know when CQ
* notifications are armed.
*/
#define IB_CQ_NONE (IB_CQ_NEXT_COMP + 1)
#define IB_SEQ_NAK (3 << 29)
/* AETH NAK opcode values */
#define IB_RNR_NAK 0x20
#define IB_NAK_PSN_ERROR 0x60
#define IB_NAK_INVALID_REQUEST 0x61
#define IB_NAK_REMOTE_ACCESS_ERROR 0x62
#define IB_NAK_REMOTE_OPERATIONAL_ERROR 0x63
#define IB_NAK_INVALID_RD_REQUEST 0x64
/* Flags for checking QP state (see ib_hfi1_state_ops[]) */
#define HFI1_POST_SEND_OK 0x01
#define HFI1_POST_RECV_OK 0x02
#define HFI1_PROCESS_RECV_OK 0x04
#define HFI1_PROCESS_SEND_OK 0x08
#define HFI1_PROCESS_NEXT_SEND_OK 0x10
#define HFI1_FLUSH_SEND 0x20
#define HFI1_FLUSH_RECV 0x40
#define HFI1_PROCESS_OR_FLUSH_SEND \
(HFI1_PROCESS_SEND_OK | HFI1_FLUSH_SEND)
/* IB Performance Manager status values */
#define IB_PMA_SAMPLE_STATUS_DONE 0x00
#define IB_PMA_SAMPLE_STATUS_STARTED 0x01
#define IB_PMA_SAMPLE_STATUS_RUNNING 0x02
/* Mandatory IB performance counter select values. */
#define IB_PMA_PORT_XMIT_DATA cpu_to_be16(0x0001)
#define IB_PMA_PORT_RCV_DATA cpu_to_be16(0x0002)
#define IB_PMA_PORT_XMIT_PKTS cpu_to_be16(0x0003)
#define IB_PMA_PORT_RCV_PKTS cpu_to_be16(0x0004)
#define IB_PMA_PORT_XMIT_WAIT cpu_to_be16(0x0005)
#define HFI1_VENDOR_IPG cpu_to_be16(0xFFA0)
#define IB_BTH_REQ_ACK (1 << 31)
#define IB_BTH_SOLICITED (1 << 23)
#define IB_BTH_MIG_REQ (1 << 22)
#define IB_GRH_VERSION 6
#define IB_GRH_VERSION_MASK 0xF
#define IB_GRH_VERSION_SHIFT 28
#define IB_GRH_TCLASS_MASK 0xFF
#define IB_GRH_TCLASS_SHIFT 20
#define IB_GRH_FLOW_MASK 0xFFFFF
#define IB_GRH_FLOW_SHIFT 0
#define IB_GRH_NEXT_HDR 0x1B
#define IB_DEFAULT_GID_PREFIX cpu_to_be64(0xfe80000000000000ULL)
/* flags passed by hfi1_ib_rcv() */
enum {
HFI1_HAS_GRH = (1 << 0),
};
struct ib_reth {
__be64 vaddr;
__be32 rkey;
__be32 length;
} __packed;
struct ib_atomic_eth {
__be32 vaddr[2]; /* unaligned so access as 2 32-bit words */
__be32 rkey;
__be64 swap_data;
__be64 compare_data;
} __packed;
union ib_ehdrs {
struct {
__be32 deth[2];
__be32 imm_data;
} ud;
struct {
struct ib_reth reth;
__be32 imm_data;
} rc;
struct {
__be32 aeth;
__be32 atomic_ack_eth[2];
} at;
__be32 imm_data;
__be32 aeth;
struct ib_atomic_eth atomic_eth;
} __packed;
struct hfi1_other_headers {
__be32 bth[3];
union ib_ehdrs u;
} __packed;
/*
* Note that UD packets with a GRH header are 8+40+12+8 = 68 bytes
* long (72 w/ imm_data). Only the first 56 bytes of the IB header
* will be in the eager header buffer. The remaining 12 or 16 bytes
* are in the data buffer.
*/
struct hfi1_ib_header {
__be16 lrh[4];
union {
struct {
struct ib_grh grh;
struct hfi1_other_headers oth;
} l;
struct hfi1_other_headers oth;
} u;
} __packed;
struct ahg_ib_header {
struct sdma_engine *sde;
u32 ahgdesc[2];
u16 tx_flags;
u8 ahgcount;
u8 ahgidx;
struct hfi1_ib_header ibh;
};
struct hfi1_pio_header {
__le64 pbc;
struct hfi1_ib_header hdr;
} __packed;
/*
* used for force cacheline alignment for AHG
*/
struct tx_pio_header {
struct hfi1_pio_header phdr;
} ____cacheline_aligned;
/*
* There is one struct hfi1_mcast for each multicast GID.
* All attached QPs are then stored as a list of
* struct hfi1_mcast_qp.
*/
struct hfi1_mcast_qp {
struct list_head list;
struct hfi1_qp *qp;
};
struct hfi1_mcast {
struct rb_node rb_node;
union ib_gid mgid;
struct list_head qp_list;
wait_queue_head_t wait;
atomic_t refcount;
int n_attached;
};
/* Protection domain */
struct hfi1_pd {
struct ib_pd ibpd;
int user; /* non-zero if created from user space */
};
/* Address Handle */
struct hfi1_ah {
struct ib_ah ibah;
struct ib_ah_attr attr;
atomic_t refcount;
};
/*
* This structure is used by hfi1_mmap() to validate an offset
* when an mmap() request is made. The vm_area_struct then uses
* this as its vm_private_data.
*/
struct hfi1_mmap_info {
struct list_head pending_mmaps;
struct ib_ucontext *context;
void *obj;
__u64 offset;
struct kref ref;
unsigned size;
};
/*
* This structure is used to contain the head pointer, tail pointer,
* and completion queue entries as a single memory allocation so
* it can be mmap'ed into user space.
*/
struct hfi1_cq_wc {
u32 head; /* index of next entry to fill */
u32 tail; /* index of next ib_poll_cq() entry */
union {
/* these are actually size ibcq.cqe + 1 */
struct ib_uverbs_wc uqueue[0];
struct ib_wc kqueue[0];
};
};
/*
* The completion queue structure.
*/
struct hfi1_cq {
struct ib_cq ibcq;
struct kthread_work comptask;
struct hfi1_devdata *dd;
spinlock_t lock; /* protect changes in this struct */
u8 notify;
u8 triggered;
struct hfi1_cq_wc *queue;
struct hfi1_mmap_info *ip;
};
/*
* A segment is a linear region of low physical memory.
* Used by the verbs layer.
*/
struct hfi1_seg {
void *vaddr;
size_t length;
};
/* The number of hfi1_segs that fit in a page. */
#define HFI1_SEGSZ (PAGE_SIZE / sizeof(struct hfi1_seg))
struct hfi1_segarray {
struct hfi1_seg segs[HFI1_SEGSZ];
};
struct hfi1_mregion {
struct ib_pd *pd; /* shares refcnt of ibmr.pd */
u64 user_base; /* User's address for this region */
u64 iova; /* IB start address of this region */
size_t length;
u32 lkey;
u32 offset; /* offset (bytes) to start of region */
int access_flags;
u32 max_segs; /* number of hfi1_segs in all the arrays */
u32 mapsz; /* size of the map array */
u8 page_shift; /* 0 - non unform/non powerof2 sizes */
u8 lkey_published; /* in global table */
struct completion comp; /* complete when refcount goes to zero */
atomic_t refcount;
struct hfi1_segarray *map[0]; /* the segments */
};
/*
* These keep track of the copy progress within a memory region.
* Used by the verbs layer.
*/
struct hfi1_sge {
struct hfi1_mregion *mr;
void *vaddr; /* kernel virtual address of segment */
u32 sge_length; /* length of the SGE */
u32 length; /* remaining length of the segment */
u16 m; /* current index: mr->map[m] */
u16 n; /* current index: mr->map[m]->segs[n] */
};
/* Memory region */
struct hfi1_mr {
struct ib_mr ibmr;
struct ib_umem *umem;
struct hfi1_mregion mr; /* must be last */
};
/*
* Send work request queue entry.
* The size of the sg_list is determined when the QP is created and stored
* in qp->s_max_sge.
*/
struct hfi1_swqe {
union {
struct ib_send_wr wr; /* don't use wr.sg_list */
struct ib_rdma_wr rdma_wr;
struct ib_atomic_wr atomic_wr;
struct ib_ud_wr ud_wr;
};
u32 psn; /* first packet sequence number */
u32 lpsn; /* last packet sequence number */
u32 ssn; /* send sequence number */
u32 length; /* total length of data in sg_list */
struct hfi1_sge sg_list[0];
};
/*
* Receive work request queue entry.
* The size of the sg_list is determined when the QP (or SRQ) is created
* and stored in qp->r_rq.max_sge (or srq->rq.max_sge).
*/
struct hfi1_rwqe {
u64 wr_id;
u8 num_sge;
struct ib_sge sg_list[0];
};
/*
* This structure is used to contain the head pointer, tail pointer,
* and receive work queue entries as a single memory allocation so
* it can be mmap'ed into user space.
* Note that the wq array elements are variable size so you can't
* just index into the array to get the N'th element;
* use get_rwqe_ptr() instead.
*/
struct hfi1_rwq {
u32 head; /* new work requests posted to the head */
u32 tail; /* receives pull requests from here. */
struct hfi1_rwqe wq[0];
};
struct hfi1_rq {
struct hfi1_rwq *wq;
u32 size; /* size of RWQE array */
u8 max_sge;
/* protect changes in this struct */
spinlock_t lock ____cacheline_aligned_in_smp;
};
struct hfi1_srq {
struct ib_srq ibsrq;
struct hfi1_rq rq;
struct hfi1_mmap_info *ip;
/* send signal when number of RWQEs < limit */
u32 limit;
};
struct hfi1_sge_state {
struct hfi1_sge *sg_list; /* next SGE to be used if any */
struct hfi1_sge sge; /* progress state for the current SGE */
u32 total_len;
u8 num_sge;
};
/*
* This structure holds the information that the send tasklet needs
* to send a RDMA read response or atomic operation.
*/
struct hfi1_ack_entry {
u8 opcode;
u8 sent;
u32 psn;
u32 lpsn;
union {
struct hfi1_sge rdma_sge;
u64 atomic_data;
};
};
/*
* Variables prefixed with s_ are for the requester (sender).
* Variables prefixed with r_ are for the responder (receiver).
* Variables prefixed with ack_ are for responder replies.
*
* Common variables are protected by both r_rq.lock and s_lock in that order
* which only happens in modify_qp() or changing the QP 'state'.
*/
struct hfi1_qp {
struct ib_qp ibqp;
/* read mostly fields above and below */
struct ib_ah_attr remote_ah_attr;
struct ib_ah_attr alt_ah_attr;
struct hfi1_qp __rcu *next; /* link list for QPN hash table */
struct hfi1_swqe *s_wq; /* send work queue */
struct hfi1_mmap_info *ip;
struct ahg_ib_header *s_hdr; /* next packet header to send */
u8 s_sc; /* SC[0..4] for next packet */
unsigned long timeout_jiffies; /* computed from timeout */
enum ib_mtu path_mtu;
int srate_mbps; /* s_srate (below) converted to Mbit/s */
u32 remote_qpn;
u32 pmtu; /* decoded from path_mtu */
u32 qkey; /* QKEY for this QP (for UD or RD) */
u32 s_size; /* send work queue size */
u32 s_rnr_timeout; /* number of milliseconds for RNR timeout */
u32 s_ahgpsn; /* set to the psn in the copy of the header */
u8 state; /* QP state */
u8 allowed_ops; /* high order bits of allowed opcodes */
u8 qp_access_flags;
u8 alt_timeout; /* Alternate path timeout for this QP */
u8 timeout; /* Timeout for this QP */
u8 s_srate;
u8 s_mig_state;
u8 port_num;
u8 s_pkey_index; /* PKEY index to use */
u8 s_alt_pkey_index; /* Alternate path PKEY index to use */
u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */
u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */
u8 s_retry_cnt; /* number of times to retry */
u8 s_rnr_retry_cnt;
u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */
u8 s_max_sge; /* size of s_wq->sg_list */
u8 s_draining;
/* start of read/write fields */
atomic_t refcount ____cacheline_aligned_in_smp;
wait_queue_head_t wait;
struct hfi1_ack_entry s_ack_queue[HFI1_MAX_RDMA_ATOMIC + 1]
____cacheline_aligned_in_smp;
struct hfi1_sge_state s_rdma_read_sge;
spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */
unsigned long r_aflags;
u64 r_wr_id; /* ID for current receive WQE */
u32 r_ack_psn; /* PSN for next ACK or atomic ACK */
u32 r_len; /* total length of r_sge */
u32 r_rcv_len; /* receive data len processed */
u32 r_psn; /* expected rcv packet sequence number */
u32 r_msn; /* message sequence number */
u8 r_state; /* opcode of last packet received */
u8 r_flags;
u8 r_head_ack_queue; /* index into s_ack_queue[] */
struct list_head rspwait; /* link for waiting to respond */
struct hfi1_sge_state r_sge; /* current receive data */
struct hfi1_rq r_rq; /* receive work queue */
spinlock_t s_lock ____cacheline_aligned_in_smp;
struct hfi1_sge_state *s_cur_sge;
u32 s_flags;
struct hfi1_swqe *s_wqe;
struct hfi1_sge_state s_sge; /* current send request data */
struct hfi1_mregion *s_rdma_mr;
struct sdma_engine *s_sde; /* current sde */
u32 s_cur_size; /* size of send packet in bytes */
u32 s_len; /* total length of s_sge */
u32 s_rdma_read_len; /* total length of s_rdma_read_sge */
u32 s_next_psn; /* PSN for next request */
u32 s_last_psn; /* last response PSN processed */
u32 s_sending_psn; /* lowest PSN that is being sent */
u32 s_sending_hpsn; /* highest PSN that is being sent */
u32 s_psn; /* current packet sequence number */
u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */
u32 s_ack_psn; /* PSN for acking sends and RDMA writes */
u32 s_head; /* new entries added here */
u32 s_tail; /* next entry to process */
u32 s_cur; /* current work queue entry */
u32 s_acked; /* last un-ACK'ed entry */
u32 s_last; /* last completed entry */
u32 s_ssn; /* SSN of tail entry */
u32 s_lsn; /* limit sequence number (credit) */
u16 s_hdrwords; /* size of s_hdr in 32 bit words */
u16 s_rdma_ack_cnt;
s8 s_ahgidx;
u8 s_state; /* opcode of last packet sent */
u8 s_ack_state; /* opcode of packet to ACK */
u8 s_nak_state; /* non-zero if NAK is pending */
u8 r_nak_state; /* non-zero if NAK is pending */
u8 s_retry; /* requester retry counter */
u8 s_rnr_retry; /* requester RNR retry counter */
u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */
u8 s_tail_ack_queue; /* index into s_ack_queue[] */
struct hfi1_sge_state s_ack_rdma_sge;
struct timer_list s_timer;
struct iowait s_iowait;
struct hfi1_sge r_sg_list[0] /* verified SGEs */
____cacheline_aligned_in_smp;
};
/*
* Atomic bit definitions for r_aflags.
*/
#define HFI1_R_WRID_VALID 0
#define HFI1_R_REWIND_SGE 1
/*
* Bit definitions for r_flags.
*/
#define HFI1_R_REUSE_SGE 0x01
#define HFI1_R_RDMAR_SEQ 0x02
#define HFI1_R_RSP_NAK 0x04
#define HFI1_R_RSP_SEND 0x08
#define HFI1_R_COMM_EST 0x10
/*
* Bit definitions for s_flags.
*
* HFI1_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled
* HFI1_S_BUSY - send tasklet is processing the QP
* HFI1_S_TIMER - the RC retry timer is active
* HFI1_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics
* HFI1_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs
* before processing the next SWQE
* HFI1_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete
* before processing the next SWQE
* HFI1_S_WAIT_RNR - waiting for RNR timeout
* HFI1_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE
* HFI1_S_WAIT_DMA - waiting for send DMA queue to drain before generating
* next send completion entry not via send DMA
* HFI1_S_WAIT_PIO - waiting for a send buffer to be available
* HFI1_S_WAIT_TX - waiting for a struct verbs_txreq to be available
* HFI1_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available
* HFI1_S_WAIT_KMEM - waiting for kernel memory to be available
* HFI1_S_WAIT_PSN - waiting for a packet to exit the send DMA queue
* HFI1_S_WAIT_ACK - waiting for an ACK packet before sending more requests
* HFI1_S_SEND_ONE - send one packet, request ACK, then wait for ACK
* HFI1_S_ECN - a BECN was queued to the send engine
*/
#define HFI1_S_SIGNAL_REQ_WR 0x0001
#define HFI1_S_BUSY 0x0002
#define HFI1_S_TIMER 0x0004
#define HFI1_S_RESP_PENDING 0x0008
#define HFI1_S_ACK_PENDING 0x0010
#define HFI1_S_WAIT_FENCE 0x0020
#define HFI1_S_WAIT_RDMAR 0x0040
#define HFI1_S_WAIT_RNR 0x0080
#define HFI1_S_WAIT_SSN_CREDIT 0x0100
#define HFI1_S_WAIT_DMA 0x0200
#define HFI1_S_WAIT_PIO 0x0400
#define HFI1_S_WAIT_TX 0x0800
#define HFI1_S_WAIT_DMA_DESC 0x1000
#define HFI1_S_WAIT_KMEM 0x2000
#define HFI1_S_WAIT_PSN 0x4000
#define HFI1_S_WAIT_ACK 0x8000
#define HFI1_S_SEND_ONE 0x10000
#define HFI1_S_UNLIMITED_CREDIT 0x20000
#define HFI1_S_AHG_VALID 0x40000
#define HFI1_S_AHG_CLEAR 0x80000
#define HFI1_S_ECN 0x100000
/*
* Wait flags that would prevent any packet type from being sent.
*/
#define HFI1_S_ANY_WAIT_IO (HFI1_S_WAIT_PIO | HFI1_S_WAIT_TX | \
HFI1_S_WAIT_DMA_DESC | HFI1_S_WAIT_KMEM)
/*
* Wait flags that would prevent send work requests from making progress.
*/
#define HFI1_S_ANY_WAIT_SEND (HFI1_S_WAIT_FENCE | HFI1_S_WAIT_RDMAR | \
HFI1_S_WAIT_RNR | HFI1_S_WAIT_SSN_CREDIT | HFI1_S_WAIT_DMA | \
HFI1_S_WAIT_PSN | HFI1_S_WAIT_ACK)
#define HFI1_S_ANY_WAIT (HFI1_S_ANY_WAIT_IO | HFI1_S_ANY_WAIT_SEND)
#define HFI1_PSN_CREDIT 16
/*
* Since struct hfi1_swqe is not a fixed size, we can't simply index into
* struct hfi1_qp.s_wq. This function does the array index computation.
*/
static inline struct hfi1_swqe *get_swqe_ptr(struct hfi1_qp *qp,
unsigned n)
{
return (struct hfi1_swqe *)((char *)qp->s_wq +
(sizeof(struct hfi1_swqe) +
qp->s_max_sge *
sizeof(struct hfi1_sge)) * n);
}
/*
* Since struct hfi1_rwqe is not a fixed size, we can't simply index into
* struct hfi1_rwq.wq. This function does the array index computation.
*/
static inline struct hfi1_rwqe *get_rwqe_ptr(struct hfi1_rq *rq, unsigned n)
{
return (struct hfi1_rwqe *)
((char *) rq->wq->wq +
(sizeof(struct hfi1_rwqe) +
rq->max_sge * sizeof(struct ib_sge)) * n);
}
#define MAX_LKEY_TABLE_BITS 23
struct hfi1_lkey_table {
spinlock_t lock; /* protect changes in this struct */
u32 next; /* next unused index (speeds search) */
u32 gen; /* generation count */
u32 max; /* size of the table */
struct hfi1_mregion __rcu **table;
};
struct hfi1_opcode_stats {
u64 n_packets; /* number of packets */
u64 n_bytes; /* total number of bytes */
};
struct hfi1_opcode_stats_perctx {
struct hfi1_opcode_stats stats[256];
};
static inline void inc_opstats(
u32 tlen,
struct hfi1_opcode_stats *stats)
{
#ifdef CONFIG_DEBUG_FS
stats->n_bytes += tlen;
stats->n_packets++;
#endif
}
struct hfi1_ibport {
struct hfi1_qp __rcu *qp[2];
struct ib_mad_agent *send_agent; /* agent for SMI (traps) */
struct hfi1_ah *sm_ah;
struct hfi1_ah *smi_ah;
struct rb_root mcast_tree;
spinlock_t lock; /* protect changes in this struct */
/* non-zero when timer is set */
unsigned long mkey_lease_timeout;
unsigned long trap_timeout;
__be64 gid_prefix; /* in network order */
__be64 mkey;
__be64 guids[HFI1_GUIDS_PER_PORT - 1]; /* writable GUIDs */
u64 tid; /* TID for traps */
u64 n_rc_resends;
u64 n_seq_naks;
u64 n_rdma_seq;
u64 n_rnr_naks;
u64 n_other_naks;
u64 n_loop_pkts;
u64 n_pkt_drops;
u64 n_vl15_dropped;
u64 n_rc_timeouts;
u64 n_dmawait;
u64 n_unaligned;
u64 n_rc_dupreq;
u64 n_rc_seqnak;
/* Hot-path per CPU counters to avoid cacheline trading to update */
u64 z_rc_acks;
u64 z_rc_qacks;
u64 z_rc_delayed_comp;
u64 __percpu *rc_acks;
u64 __percpu *rc_qacks;
u64 __percpu *rc_delayed_comp;
u32 port_cap_flags;
u32 pma_sample_start;
u32 pma_sample_interval;
__be16 pma_counter_select[5];
u16 pma_tag;
u16 pkey_violations;
u16 qkey_violations;
u16 mkey_violations;
u16 mkey_lease_period;
u16 sm_lid;
u16 repress_traps;
u8 sm_sl;
u8 mkeyprot;
u8 subnet_timeout;
u8 vl_high_limit;
/* the first 16 entries are sl_to_vl for !OPA */
u8 sl_to_sc[32];
u8 sc_to_sl[32];
};
struct hfi1_qp_ibdev;
struct hfi1_ibdev {
struct ib_device ibdev;
struct list_head pending_mmaps;
spinlock_t mmap_offset_lock; /* protect mmap_offset */
u32 mmap_offset;
struct hfi1_mregion __rcu *dma_mr;
struct hfi1_qp_ibdev *qp_dev;
/* QP numbers are shared by all IB ports */
struct hfi1_lkey_table lk_table;
/* protect wait lists */
seqlock_t iowait_lock;
struct list_head txwait; /* list for wait verbs_txreq */
struct list_head memwait; /* list for wait kernel memory */
struct list_head txreq_free;
struct kmem_cache *verbs_txreq_cache;
struct timer_list mem_timer;
/* other waiters */
spinlock_t pending_lock;
u64 n_piowait;
u64 n_txwait;
u64 n_kmem_wait;
u64 n_send_schedule;
u32 n_pds_allocated; /* number of PDs allocated for device */
spinlock_t n_pds_lock;
u32 n_ahs_allocated; /* number of AHs allocated for device */
spinlock_t n_ahs_lock;
u32 n_cqs_allocated; /* number of CQs allocated for device */
spinlock_t n_cqs_lock;
u32 n_qps_allocated; /* number of QPs allocated for device */
spinlock_t n_qps_lock;
u32 n_srqs_allocated; /* number of SRQs allocated for device */
spinlock_t n_srqs_lock;
u32 n_mcast_grps_allocated; /* number of mcast groups allocated */
spinlock_t n_mcast_grps_lock;
#ifdef CONFIG_DEBUG_FS
/* per HFI debugfs */
struct dentry *hfi1_ibdev_dbg;
/* per HFI symlinks to above */
struct dentry *hfi1_ibdev_link;
#endif
};
struct hfi1_verbs_counters {
u64 symbol_error_counter;
u64 link_error_recovery_counter;
u64 link_downed_counter;
u64 port_rcv_errors;
u64 port_rcv_remphys_errors;
u64 port_xmit_discards;
u64 port_xmit_data;
u64 port_rcv_data;
u64 port_xmit_packets;
u64 port_rcv_packets;
u32 local_link_integrity_errors;
u32 excessive_buffer_overrun_errors;
u32 vl15_dropped;
};
static inline struct hfi1_mr *to_imr(struct ib_mr *ibmr)
{
return container_of(ibmr, struct hfi1_mr, ibmr);
}
static inline struct hfi1_pd *to_ipd(struct ib_pd *ibpd)
{
return container_of(ibpd, struct hfi1_pd, ibpd);
}
static inline struct hfi1_ah *to_iah(struct ib_ah *ibah)
{
return container_of(ibah, struct hfi1_ah, ibah);
}
static inline struct hfi1_cq *to_icq(struct ib_cq *ibcq)
{
return container_of(ibcq, struct hfi1_cq, ibcq);
}
static inline struct hfi1_srq *to_isrq(struct ib_srq *ibsrq)
{
return container_of(ibsrq, struct hfi1_srq, ibsrq);
}
static inline struct hfi1_qp *to_iqp(struct ib_qp *ibqp)
{
return container_of(ibqp, struct hfi1_qp, ibqp);
}
static inline struct hfi1_ibdev *to_idev(struct ib_device *ibdev)
{
return container_of(ibdev, struct hfi1_ibdev, ibdev);
}
/*
* Send if not busy or waiting for I/O and either
* a RC response is pending or we can process send work requests.
*/
static inline int hfi1_send_ok(struct hfi1_qp *qp)
{
return !(qp->s_flags & (HFI1_S_BUSY | HFI1_S_ANY_WAIT_IO)) &&
(qp->s_hdrwords || (qp->s_flags & HFI1_S_RESP_PENDING) ||
!(qp->s_flags & HFI1_S_ANY_WAIT_SEND));
}
/*
* This must be called with s_lock held.
*/
void hfi1_schedule_send(struct hfi1_qp *qp);
void hfi1_bad_pqkey(struct hfi1_ibport *ibp, __be16 trap_num, u32 key, u32 sl,
u32 qp1, u32 qp2, __be16 lid1, __be16 lid2);
void hfi1_cap_mask_chg(struct hfi1_ibport *ibp);
void hfi1_sys_guid_chg(struct hfi1_ibport *ibp);
void hfi1_node_desc_chg(struct hfi1_ibport *ibp);
int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port,
const struct ib_wc *in_wc, const struct ib_grh *in_grh,
const struct ib_mad_hdr *in_mad, size_t in_mad_size,
struct ib_mad_hdr *out_mad, size_t *out_mad_size,
u16 *out_mad_pkey_index);
int hfi1_create_agents(struct hfi1_ibdev *dev);
void hfi1_free_agents(struct hfi1_ibdev *dev);
/*
* The PSN_MASK and PSN_SHIFT allow for
* 1) comparing two PSNs
* 2) returning the PSN with any upper bits masked
* 3) returning the difference between to PSNs
*
* The number of significant bits in the PSN must
* necessarily be at least one bit less than
* the container holding the PSN.
*/
#ifndef CONFIG_HFI1_VERBS_31BIT_PSN
#define PSN_MASK 0xFFFFFF
#define PSN_SHIFT 8
#else
#define PSN_MASK 0x7FFFFFFF
#define PSN_SHIFT 1
#endif
#define PSN_MODIFY_MASK 0xFFFFFF
/* Number of bits to pay attention to in the opcode for checking qp type */
#define OPCODE_QP_MASK 0xE0
/*
* Compare the lower 24 bits of the msn values.
* Returns an integer <, ==, or > than zero.
*/
static inline int cmp_msn(u32 a, u32 b)
{
return (((int) a) - ((int) b)) << 8;
}
/*
* Compare two PSNs
* Returns an integer <, ==, or > than zero.
*/
static inline int cmp_psn(u32 a, u32 b)
{
return (((int) a) - ((int) b)) << PSN_SHIFT;
}
/*
* Return masked PSN
*/
static inline u32 mask_psn(u32 a)
{
return a & PSN_MASK;
}
/*
* Return delta between two PSNs
*/
static inline u32 delta_psn(u32 a, u32 b)
{
return (((int)a - (int)b) << PSN_SHIFT) >> PSN_SHIFT;
}
struct hfi1_mcast *hfi1_mcast_find(struct hfi1_ibport *ibp, union ib_gid *mgid);
int hfi1_multicast_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid);
int hfi1_multicast_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid);
int hfi1_mcast_tree_empty(struct hfi1_ibport *ibp);
struct verbs_txreq;
void hfi1_put_txreq(struct verbs_txreq *tx);
int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
u32 hdrwords, struct hfi1_sge_state *ss, u32 len);
void hfi1_copy_sge(struct hfi1_sge_state *ss, void *data, u32 length,
int release);
void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release);
void hfi1_cnp_rcv(struct hfi1_packet *packet);
void hfi1_uc_rcv(struct hfi1_packet *packet);
void hfi1_rc_rcv(struct hfi1_packet *packet);
void hfi1_rc_hdrerr(
struct hfi1_ctxtdata *rcd,
struct hfi1_ib_header *hdr,
u32 rcv_flags,
struct hfi1_qp *qp);
u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah_attr);
int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr);
struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid);
void hfi1_rc_rnr_retry(unsigned long arg);
void hfi1_rc_send_complete(struct hfi1_qp *qp, struct hfi1_ib_header *hdr);
void hfi1_rc_error(struct hfi1_qp *qp, enum ib_wc_status err);
void hfi1_ud_rcv(struct hfi1_packet *packet);
int hfi1_lookup_pkey_idx(struct hfi1_ibport *ibp, u16 pkey);
int hfi1_alloc_lkey(struct hfi1_mregion *mr, int dma_region);
void hfi1_free_lkey(struct hfi1_mregion *mr);
int hfi1_lkey_ok(struct hfi1_lkey_table *rkt, struct hfi1_pd *pd,
struct hfi1_sge *isge, struct ib_sge *sge, int acc);
int hfi1_rkey_ok(struct hfi1_qp *qp, struct hfi1_sge *sge,
u32 len, u64 vaddr, u32 rkey, int acc);
int hfi1_post_srq_receive(struct ib_srq *ibsrq, struct ib_recv_wr *wr,
struct ib_recv_wr **bad_wr);
struct ib_srq *hfi1_create_srq(struct ib_pd *ibpd,
struct ib_srq_init_attr *srq_init_attr,
struct ib_udata *udata);
int hfi1_modify_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr,
enum ib_srq_attr_mask attr_mask,
struct ib_udata *udata);
int hfi1_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr);
int hfi1_destroy_srq(struct ib_srq *ibsrq);
int hfi1_cq_init(struct hfi1_devdata *dd);
void hfi1_cq_exit(struct hfi1_devdata *dd);
void hfi1_cq_enter(struct hfi1_cq *cq, struct ib_wc *entry, int sig);
int hfi1_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry);
struct ib_cq *hfi1_create_cq(
struct ib_device *ibdev,
const struct ib_cq_init_attr *attr,
struct ib_ucontext *context,
struct ib_udata *udata);
int hfi1_destroy_cq(struct ib_cq *ibcq);
int hfi1_req_notify_cq(
struct ib_cq *ibcq,
enum ib_cq_notify_flags notify_flags);
int hfi1_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata);
struct ib_mr *hfi1_get_dma_mr(struct ib_pd *pd, int acc);
struct ib_mr *hfi1_reg_phys_mr(struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf, int acc, u64 *iova_start);
struct ib_mr *hfi1_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int mr_access_flags,
struct ib_udata *udata);
int hfi1_dereg_mr(struct ib_mr *ibmr);
struct ib_mr *hfi1_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type,
u32 max_entries);
struct ib_fmr *hfi1_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
struct ib_fmr_attr *fmr_attr);
int hfi1_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
int list_len, u64 iova);
int hfi1_unmap_fmr(struct list_head *fmr_list);
int hfi1_dealloc_fmr(struct ib_fmr *ibfmr);
static inline void hfi1_get_mr(struct hfi1_mregion *mr)
{
atomic_inc(&mr->refcount);
}
static inline void hfi1_put_mr(struct hfi1_mregion *mr)
{
if (unlikely(atomic_dec_and_test(&mr->refcount)))
complete(&mr->comp);
}
static inline void hfi1_put_ss(struct hfi1_sge_state *ss)
{
while (ss->num_sge) {
hfi1_put_mr(ss->sge.mr);
if (--ss->num_sge)
ss->sge = *ss->sg_list++;
}
}
void hfi1_release_mmap_info(struct kref *ref);
struct hfi1_mmap_info *hfi1_create_mmap_info(struct hfi1_ibdev *dev, u32 size,
struct ib_ucontext *context,
void *obj);
void hfi1_update_mmap_info(struct hfi1_ibdev *dev, struct hfi1_mmap_info *ip,
u32 size, void *obj);
int hfi1_mmap(struct ib_ucontext *context, struct vm_area_struct *vma);
int hfi1_get_rwqe(struct hfi1_qp *qp, int wr_id_only);
void hfi1_migrate_qp(struct hfi1_qp *qp);
int hfi1_ruc_check_hdr(struct hfi1_ibport *ibp, struct hfi1_ib_header *hdr,
int has_grh, struct hfi1_qp *qp, u32 bth0);
u32 hfi1_make_grh(struct hfi1_ibport *ibp, struct ib_grh *hdr,
struct ib_global_route *grh, u32 hwords, u32 nwords);
void hfi1_make_ruc_header(struct hfi1_qp *qp, struct hfi1_other_headers *ohdr,
u32 bth0, u32 bth2, int middle);
void hfi1_do_send(struct work_struct *work);
void hfi1_send_complete(struct hfi1_qp *qp, struct hfi1_swqe *wqe,
enum ib_wc_status status);
void hfi1_send_rc_ack(struct hfi1_ctxtdata *, struct hfi1_qp *qp, int is_fecn);
int hfi1_make_rc_req(struct hfi1_qp *qp);
int hfi1_make_uc_req(struct hfi1_qp *qp);
int hfi1_make_ud_req(struct hfi1_qp *qp);
int hfi1_register_ib_device(struct hfi1_devdata *);
void hfi1_unregister_ib_device(struct hfi1_devdata *);
void hfi1_ib_rcv(struct hfi1_packet *packet);
unsigned hfi1_get_npkeys(struct hfi1_devdata *);
int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *hdr,
u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
u32 plen, u32 dwords, u64 pbc);
int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *hdr,
u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
u32 plen, u32 dwords, u64 pbc);
struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5);
extern const enum ib_wc_opcode ib_hfi1_wc_opcode[];
extern const u8 hdr_len_by_opcode[];
extern const int ib_hfi1_state_ops[];
extern __be64 ib_hfi1_sys_image_guid; /* in network order */
extern unsigned int hfi1_lkey_table_size;
extern unsigned int hfi1_max_cqes;
extern unsigned int hfi1_max_cqs;
extern unsigned int hfi1_max_qp_wrs;
extern unsigned int hfi1_max_qps;
extern unsigned int hfi1_max_sges;
extern unsigned int hfi1_max_mcast_grps;
extern unsigned int hfi1_max_mcast_qp_attached;
extern unsigned int hfi1_max_srqs;
extern unsigned int hfi1_max_srq_sges;
extern unsigned int hfi1_max_srq_wrs;
extern const u32 ib_hfi1_rnr_table[];
extern struct ib_dma_mapping_ops hfi1_dma_mapping_ops;
#endif /* HFI1_VERBS_H */