| /* |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2015 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2015 Intel Corporation. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <rdma/ib_mad.h> |
| #include <rdma/ib_user_verbs.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/utsname.h> |
| #include <linux/rculist.h> |
| #include <linux/mm.h> |
| #include <linux/random.h> |
| #include <linux/vmalloc.h> |
| |
| #include "hfi.h" |
| #include "common.h" |
| #include "device.h" |
| #include "trace.h" |
| #include "qp.h" |
| #include "sdma.h" |
| |
| unsigned int hfi1_lkey_table_size = 16; |
| module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, |
| S_IRUGO); |
| MODULE_PARM_DESC(lkey_table_size, |
| "LKEY table size in bits (2^n, 1 <= n <= 23)"); |
| |
| static unsigned int hfi1_max_pds = 0xFFFF; |
| module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_pds, |
| "Maximum number of protection domains to support"); |
| |
| static unsigned int hfi1_max_ahs = 0xFFFF; |
| module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); |
| |
| unsigned int hfi1_max_cqes = 0x2FFFF; |
| module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_cqes, |
| "Maximum number of completion queue entries to support"); |
| |
| unsigned int hfi1_max_cqs = 0x1FFFF; |
| module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); |
| |
| unsigned int hfi1_max_qp_wrs = 0x3FFF; |
| module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); |
| |
| unsigned int hfi1_max_qps = 16384; |
| module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); |
| |
| unsigned int hfi1_max_sges = 0x60; |
| module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); |
| |
| unsigned int hfi1_max_mcast_grps = 16384; |
| module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_mcast_grps, |
| "Maximum number of multicast groups to support"); |
| |
| unsigned int hfi1_max_mcast_qp_attached = 16; |
| module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, |
| uint, S_IRUGO); |
| MODULE_PARM_DESC(max_mcast_qp_attached, |
| "Maximum number of attached QPs to support"); |
| |
| unsigned int hfi1_max_srqs = 1024; |
| module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); |
| |
| unsigned int hfi1_max_srq_sges = 128; |
| module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); |
| |
| unsigned int hfi1_max_srq_wrs = 0x1FFFF; |
| module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); |
| |
| static void verbs_sdma_complete( |
| struct sdma_txreq *cookie, |
| int status, |
| int drained); |
| |
| /* Length of buffer to create verbs txreq cache name */ |
| #define TXREQ_NAME_LEN 24 |
| |
| /* |
| * Note that it is OK to post send work requests in the SQE and ERR |
| * states; hfi1_do_send() will process them and generate error |
| * completions as per IB 1.2 C10-96. |
| */ |
| const int ib_hfi1_state_ops[IB_QPS_ERR + 1] = { |
| [IB_QPS_RESET] = 0, |
| [IB_QPS_INIT] = HFI1_POST_RECV_OK, |
| [IB_QPS_RTR] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK, |
| [IB_QPS_RTS] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK | |
| HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK | |
| HFI1_PROCESS_NEXT_SEND_OK, |
| [IB_QPS_SQD] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK | |
| HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK, |
| [IB_QPS_SQE] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK | |
| HFI1_POST_SEND_OK | HFI1_FLUSH_SEND, |
| [IB_QPS_ERR] = HFI1_POST_RECV_OK | HFI1_FLUSH_RECV | |
| HFI1_POST_SEND_OK | HFI1_FLUSH_SEND, |
| }; |
| |
| struct hfi1_ucontext { |
| struct ib_ucontext ibucontext; |
| }; |
| |
| static inline struct hfi1_ucontext *to_iucontext(struct ib_ucontext |
| *ibucontext) |
| { |
| return container_of(ibucontext, struct hfi1_ucontext, ibucontext); |
| } |
| |
| /* |
| * Translate ib_wr_opcode into ib_wc_opcode. |
| */ |
| const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { |
| [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, |
| [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, |
| [IB_WR_SEND] = IB_WC_SEND, |
| [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, |
| [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, |
| [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, |
| [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD |
| }; |
| |
| /* |
| * Length of header by opcode, 0 --> not supported |
| */ |
| const u8 hdr_len_by_opcode[256] = { |
| /* RC */ |
| [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, |
| [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, |
| [IB_OPCODE_RC_SEND_LAST] = 12 + 8, |
| [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, |
| [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, |
| [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, |
| [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, |
| [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, |
| [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, |
| /* UC */ |
| [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, |
| [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, |
| [IB_OPCODE_UC_SEND_LAST] = 12 + 8, |
| [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, |
| [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, |
| [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, |
| /* UD */ |
| [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, |
| [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 |
| }; |
| |
| static const opcode_handler opcode_handler_tbl[256] = { |
| /* RC */ |
| [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, |
| /* UC */ |
| [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| /* UD */ |
| [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, |
| [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, |
| /* CNP */ |
| [IB_OPCODE_CNP] = &hfi1_cnp_rcv |
| }; |
| |
| /* |
| * System image GUID. |
| */ |
| __be64 ib_hfi1_sys_image_guid; |
| |
| /** |
| * hfi1_copy_sge - copy data to SGE memory |
| * @ss: the SGE state |
| * @data: the data to copy |
| * @length: the length of the data |
| */ |
| void hfi1_copy_sge( |
| struct hfi1_sge_state *ss, |
| void *data, u32 length, |
| int release) |
| { |
| struct hfi1_sge *sge = &ss->sge; |
| |
| while (length) { |
| u32 len = sge->length; |
| |
| if (len > length) |
| len = length; |
| if (len > sge->sge_length) |
| len = sge->sge_length; |
| WARN_ON_ONCE(len == 0); |
| memcpy(sge->vaddr, data, len); |
| sge->vaddr += len; |
| sge->length -= len; |
| sge->sge_length -= len; |
| if (sge->sge_length == 0) { |
| if (release) |
| hfi1_put_mr(sge->mr); |
| if (--ss->num_sge) |
| *sge = *ss->sg_list++; |
| } else if (sge->length == 0 && sge->mr->lkey) { |
| if (++sge->n >= HFI1_SEGSZ) { |
| if (++sge->m >= sge->mr->mapsz) |
| break; |
| sge->n = 0; |
| } |
| sge->vaddr = |
| sge->mr->map[sge->m]->segs[sge->n].vaddr; |
| sge->length = |
| sge->mr->map[sge->m]->segs[sge->n].length; |
| } |
| data += len; |
| length -= len; |
| } |
| } |
| |
| /** |
| * hfi1_skip_sge - skip over SGE memory |
| * @ss: the SGE state |
| * @length: the number of bytes to skip |
| */ |
| void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release) |
| { |
| struct hfi1_sge *sge = &ss->sge; |
| |
| while (length) { |
| u32 len = sge->length; |
| |
| if (len > length) |
| len = length; |
| if (len > sge->sge_length) |
| len = sge->sge_length; |
| WARN_ON_ONCE(len == 0); |
| sge->vaddr += len; |
| sge->length -= len; |
| sge->sge_length -= len; |
| if (sge->sge_length == 0) { |
| if (release) |
| hfi1_put_mr(sge->mr); |
| if (--ss->num_sge) |
| *sge = *ss->sg_list++; |
| } else if (sge->length == 0 && sge->mr->lkey) { |
| if (++sge->n >= HFI1_SEGSZ) { |
| if (++sge->m >= sge->mr->mapsz) |
| break; |
| sge->n = 0; |
| } |
| sge->vaddr = |
| sge->mr->map[sge->m]->segs[sge->n].vaddr; |
| sge->length = |
| sge->mr->map[sge->m]->segs[sge->n].length; |
| } |
| length -= len; |
| } |
| } |
| |
| /** |
| * post_one_send - post one RC, UC, or UD send work request |
| * @qp: the QP to post on |
| * @wr: the work request to send |
| */ |
| static int post_one_send(struct hfi1_qp *qp, struct ib_send_wr *wr) |
| { |
| struct hfi1_swqe *wqe; |
| u32 next; |
| int i; |
| int j; |
| int acc; |
| struct hfi1_lkey_table *rkt; |
| struct hfi1_pd *pd; |
| struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); |
| struct hfi1_pportdata *ppd; |
| struct hfi1_ibport *ibp; |
| |
| /* IB spec says that num_sge == 0 is OK. */ |
| if (unlikely(wr->num_sge > qp->s_max_sge)) |
| return -EINVAL; |
| |
| ppd = &dd->pport[qp->port_num - 1]; |
| ibp = &ppd->ibport_data; |
| |
| /* |
| * Don't allow RDMA reads or atomic operations on UC or |
| * undefined operations. |
| * Make sure buffer is large enough to hold the result for atomics. |
| */ |
| if (qp->ibqp.qp_type == IB_QPT_UC) { |
| if ((unsigned) wr->opcode >= IB_WR_RDMA_READ) |
| return -EINVAL; |
| } else if (qp->ibqp.qp_type != IB_QPT_RC) { |
| /* Check IB_QPT_SMI, IB_QPT_GSI, IB_QPT_UD opcode */ |
| if (wr->opcode != IB_WR_SEND && |
| wr->opcode != IB_WR_SEND_WITH_IMM) |
| return -EINVAL; |
| /* Check UD destination address PD */ |
| if (qp->ibqp.pd != ud_wr(wr)->ah->pd) |
| return -EINVAL; |
| } else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD) |
| return -EINVAL; |
| else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP && |
| (wr->num_sge == 0 || |
| wr->sg_list[0].length < sizeof(u64) || |
| wr->sg_list[0].addr & (sizeof(u64) - 1))) |
| return -EINVAL; |
| else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic) |
| return -EINVAL; |
| |
| next = qp->s_head + 1; |
| if (next >= qp->s_size) |
| next = 0; |
| if (next == qp->s_last) |
| return -ENOMEM; |
| |
| rkt = &to_idev(qp->ibqp.device)->lk_table; |
| pd = to_ipd(qp->ibqp.pd); |
| wqe = get_swqe_ptr(qp, qp->s_head); |
| |
| |
| if (qp->ibqp.qp_type != IB_QPT_UC && |
| qp->ibqp.qp_type != IB_QPT_RC) |
| memcpy(&wqe->ud_wr, ud_wr(wr), sizeof(wqe->ud_wr)); |
| else if (wr->opcode == IB_WR_RDMA_WRITE_WITH_IMM || |
| wr->opcode == IB_WR_RDMA_WRITE || |
| wr->opcode == IB_WR_RDMA_READ) |
| memcpy(&wqe->rdma_wr, rdma_wr(wr), sizeof(wqe->rdma_wr)); |
| else if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP || |
| wr->opcode == IB_WR_ATOMIC_FETCH_AND_ADD) |
| memcpy(&wqe->atomic_wr, atomic_wr(wr), sizeof(wqe->atomic_wr)); |
| else |
| memcpy(&wqe->wr, wr, sizeof(wqe->wr)); |
| |
| wqe->length = 0; |
| j = 0; |
| if (wr->num_sge) { |
| acc = wr->opcode >= IB_WR_RDMA_READ ? |
| IB_ACCESS_LOCAL_WRITE : 0; |
| for (i = 0; i < wr->num_sge; i++) { |
| u32 length = wr->sg_list[i].length; |
| int ok; |
| |
| if (length == 0) |
| continue; |
| ok = hfi1_lkey_ok(rkt, pd, &wqe->sg_list[j], |
| &wr->sg_list[i], acc); |
| if (!ok) |
| goto bail_inval_free; |
| wqe->length += length; |
| j++; |
| } |
| wqe->wr.num_sge = j; |
| } |
| if (qp->ibqp.qp_type == IB_QPT_UC || |
| qp->ibqp.qp_type == IB_QPT_RC) { |
| if (wqe->length > 0x80000000U) |
| goto bail_inval_free; |
| } else { |
| struct hfi1_ah *ah = to_iah(ud_wr(wr)->ah); |
| |
| atomic_inc(&ah->refcount); |
| } |
| wqe->ssn = qp->s_ssn++; |
| qp->s_head = next; |
| |
| return 0; |
| |
| bail_inval_free: |
| /* release mr holds */ |
| while (j) { |
| struct hfi1_sge *sge = &wqe->sg_list[--j]; |
| |
| hfi1_put_mr(sge->mr); |
| } |
| return -EINVAL; |
| } |
| |
| /** |
| * post_send - post a send on a QP |
| * @ibqp: the QP to post the send on |
| * @wr: the list of work requests to post |
| * @bad_wr: the first bad WR is put here |
| * |
| * This may be called from interrupt context. |
| */ |
| static int post_send(struct ib_qp *ibqp, struct ib_send_wr *wr, |
| struct ib_send_wr **bad_wr) |
| { |
| struct hfi1_qp *qp = to_iqp(ibqp); |
| int err = 0; |
| int call_send; |
| unsigned long flags; |
| unsigned nreq = 0; |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| |
| /* Check that state is OK to post send. */ |
| if (unlikely(!(ib_hfi1_state_ops[qp->state] & HFI1_POST_SEND_OK))) { |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| return -EINVAL; |
| } |
| |
| /* sq empty and not list -> call send */ |
| call_send = qp->s_head == qp->s_last && !wr->next; |
| |
| for (; wr; wr = wr->next) { |
| err = post_one_send(qp, wr); |
| if (unlikely(err)) { |
| *bad_wr = wr; |
| goto bail; |
| } |
| nreq++; |
| } |
| bail: |
| if (nreq && !call_send) |
| hfi1_schedule_send(qp); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| if (nreq && call_send) |
| hfi1_do_send(&qp->s_iowait.iowork); |
| return err; |
| } |
| |
| /** |
| * post_receive - post a receive on a QP |
| * @ibqp: the QP to post the receive on |
| * @wr: the WR to post |
| * @bad_wr: the first bad WR is put here |
| * |
| * This may be called from interrupt context. |
| */ |
| static int post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr, |
| struct ib_recv_wr **bad_wr) |
| { |
| struct hfi1_qp *qp = to_iqp(ibqp); |
| struct hfi1_rwq *wq = qp->r_rq.wq; |
| unsigned long flags; |
| int ret; |
| |
| /* Check that state is OK to post receive. */ |
| if (!(ib_hfi1_state_ops[qp->state] & HFI1_POST_RECV_OK) || !wq) { |
| *bad_wr = wr; |
| ret = -EINVAL; |
| goto bail; |
| } |
| |
| for (; wr; wr = wr->next) { |
| struct hfi1_rwqe *wqe; |
| u32 next; |
| int i; |
| |
| if ((unsigned) wr->num_sge > qp->r_rq.max_sge) { |
| *bad_wr = wr; |
| ret = -EINVAL; |
| goto bail; |
| } |
| |
| spin_lock_irqsave(&qp->r_rq.lock, flags); |
| next = wq->head + 1; |
| if (next >= qp->r_rq.size) |
| next = 0; |
| if (next == wq->tail) { |
| spin_unlock_irqrestore(&qp->r_rq.lock, flags); |
| *bad_wr = wr; |
| ret = -ENOMEM; |
| goto bail; |
| } |
| |
| wqe = get_rwqe_ptr(&qp->r_rq, wq->head); |
| wqe->wr_id = wr->wr_id; |
| wqe->num_sge = wr->num_sge; |
| for (i = 0; i < wr->num_sge; i++) |
| wqe->sg_list[i] = wr->sg_list[i]; |
| /* Make sure queue entry is written before the head index. */ |
| smp_wmb(); |
| wq->head = next; |
| spin_unlock_irqrestore(&qp->r_rq.lock, flags); |
| } |
| ret = 0; |
| |
| bail: |
| return ret; |
| } |
| |
| /* |
| * Make sure the QP is ready and able to accept the given opcode. |
| */ |
| static inline int qp_ok(int opcode, struct hfi1_packet *packet) |
| { |
| struct hfi1_ibport *ibp; |
| |
| if (!(ib_hfi1_state_ops[packet->qp->state] & HFI1_PROCESS_RECV_OK)) |
| goto dropit; |
| if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) || |
| (opcode == IB_OPCODE_CNP)) |
| return 1; |
| dropit: |
| ibp = &packet->rcd->ppd->ibport_data; |
| ibp->n_pkt_drops++; |
| return 0; |
| } |
| |
| |
| /** |
| * hfi1_ib_rcv - process an incoming packet |
| * @packet: data packet information |
| * |
| * This is called to process an incoming packet at interrupt level. |
| * |
| * Tlen is the length of the header + data + CRC in bytes. |
| */ |
| void hfi1_ib_rcv(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| struct hfi1_ib_header *hdr = packet->hdr; |
| u32 tlen = packet->tlen; |
| struct hfi1_pportdata *ppd = rcd->ppd; |
| struct hfi1_ibport *ibp = &ppd->ibport_data; |
| unsigned long flags; |
| u32 qp_num; |
| int lnh; |
| u8 opcode; |
| u16 lid; |
| |
| /* Check for GRH */ |
| lnh = be16_to_cpu(hdr->lrh[0]) & 3; |
| if (lnh == HFI1_LRH_BTH) |
| packet->ohdr = &hdr->u.oth; |
| else if (lnh == HFI1_LRH_GRH) { |
| u32 vtf; |
| |
| packet->ohdr = &hdr->u.l.oth; |
| if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR) |
| goto drop; |
| vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow); |
| if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) |
| goto drop; |
| packet->rcv_flags |= HFI1_HAS_GRH; |
| } else |
| goto drop; |
| |
| trace_input_ibhdr(rcd->dd, hdr); |
| |
| opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); |
| inc_opstats(tlen, &rcd->opstats->stats[opcode]); |
| |
| /* Get the destination QP number. */ |
| qp_num = be32_to_cpu(packet->ohdr->bth[1]) & HFI1_QPN_MASK; |
| lid = be16_to_cpu(hdr->lrh[1]); |
| if (unlikely((lid >= HFI1_MULTICAST_LID_BASE) && |
| (lid != HFI1_PERMISSIVE_LID))) { |
| struct hfi1_mcast *mcast; |
| struct hfi1_mcast_qp *p; |
| |
| if (lnh != HFI1_LRH_GRH) |
| goto drop; |
| mcast = hfi1_mcast_find(ibp, &hdr->u.l.grh.dgid); |
| if (mcast == NULL) |
| goto drop; |
| list_for_each_entry_rcu(p, &mcast->qp_list, list) { |
| packet->qp = p->qp; |
| spin_lock_irqsave(&packet->qp->r_lock, flags); |
| if (likely((qp_ok(opcode, packet)))) |
| opcode_handler_tbl[opcode](packet); |
| spin_unlock_irqrestore(&packet->qp->r_lock, flags); |
| } |
| /* |
| * Notify hfi1_multicast_detach() if it is waiting for us |
| * to finish. |
| */ |
| if (atomic_dec_return(&mcast->refcount) <= 1) |
| wake_up(&mcast->wait); |
| } else { |
| rcu_read_lock(); |
| packet->qp = hfi1_lookup_qpn(ibp, qp_num); |
| if (!packet->qp) { |
| rcu_read_unlock(); |
| goto drop; |
| } |
| spin_lock_irqsave(&packet->qp->r_lock, flags); |
| if (likely((qp_ok(opcode, packet)))) |
| opcode_handler_tbl[opcode](packet); |
| spin_unlock_irqrestore(&packet->qp->r_lock, flags); |
| rcu_read_unlock(); |
| } |
| return; |
| |
| drop: |
| ibp->n_pkt_drops++; |
| } |
| |
| /* |
| * This is called from a timer to check for QPs |
| * which need kernel memory in order to send a packet. |
| */ |
| static void mem_timer(unsigned long data) |
| { |
| struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data; |
| struct list_head *list = &dev->memwait; |
| struct hfi1_qp *qp = NULL; |
| struct iowait *wait; |
| unsigned long flags; |
| |
| write_seqlock_irqsave(&dev->iowait_lock, flags); |
| if (!list_empty(list)) { |
| wait = list_first_entry(list, struct iowait, list); |
| qp = container_of(wait, struct hfi1_qp, s_iowait); |
| list_del_init(&qp->s_iowait.list); |
| /* refcount held until actual wake up */ |
| if (!list_empty(list)) |
| mod_timer(&dev->mem_timer, jiffies + 1); |
| } |
| write_sequnlock_irqrestore(&dev->iowait_lock, flags); |
| |
| if (qp) |
| hfi1_qp_wakeup(qp, HFI1_S_WAIT_KMEM); |
| } |
| |
| void update_sge(struct hfi1_sge_state *ss, u32 length) |
| { |
| struct hfi1_sge *sge = &ss->sge; |
| |
| sge->vaddr += length; |
| sge->length -= length; |
| sge->sge_length -= length; |
| if (sge->sge_length == 0) { |
| if (--ss->num_sge) |
| *sge = *ss->sg_list++; |
| } else if (sge->length == 0 && sge->mr->lkey) { |
| if (++sge->n >= HFI1_SEGSZ) { |
| if (++sge->m >= sge->mr->mapsz) |
| return; |
| sge->n = 0; |
| } |
| sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; |
| sge->length = sge->mr->map[sge->m]->segs[sge->n].length; |
| } |
| } |
| |
| static noinline struct verbs_txreq *__get_txreq(struct hfi1_ibdev *dev, |
| struct hfi1_qp *qp) |
| { |
| struct verbs_txreq *tx; |
| unsigned long flags; |
| |
| tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC); |
| if (!tx) { |
| spin_lock_irqsave(&qp->s_lock, flags); |
| write_seqlock(&dev->iowait_lock); |
| if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK && |
| list_empty(&qp->s_iowait.list)) { |
| dev->n_txwait++; |
| qp->s_flags |= HFI1_S_WAIT_TX; |
| list_add_tail(&qp->s_iowait.list, &dev->txwait); |
| trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TX); |
| atomic_inc(&qp->refcount); |
| } |
| qp->s_flags &= ~HFI1_S_BUSY; |
| write_sequnlock(&dev->iowait_lock); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| tx = ERR_PTR(-EBUSY); |
| } |
| return tx; |
| } |
| |
| static inline struct verbs_txreq *get_txreq(struct hfi1_ibdev *dev, |
| struct hfi1_qp *qp) |
| { |
| struct verbs_txreq *tx; |
| |
| tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC); |
| if (!tx) { |
| /* call slow path to get the lock */ |
| tx = __get_txreq(dev, qp); |
| if (IS_ERR(tx)) |
| return tx; |
| } |
| tx->qp = qp; |
| return tx; |
| } |
| |
| void hfi1_put_txreq(struct verbs_txreq *tx) |
| { |
| struct hfi1_ibdev *dev; |
| struct hfi1_qp *qp; |
| unsigned long flags; |
| unsigned int seq; |
| |
| qp = tx->qp; |
| dev = to_idev(qp->ibqp.device); |
| |
| if (tx->mr) { |
| hfi1_put_mr(tx->mr); |
| tx->mr = NULL; |
| } |
| sdma_txclean(dd_from_dev(dev), &tx->txreq); |
| |
| /* Free verbs_txreq and return to slab cache */ |
| kmem_cache_free(dev->verbs_txreq_cache, tx); |
| |
| do { |
| seq = read_seqbegin(&dev->iowait_lock); |
| if (!list_empty(&dev->txwait)) { |
| struct iowait *wait; |
| |
| write_seqlock_irqsave(&dev->iowait_lock, flags); |
| /* Wake up first QP wanting a free struct */ |
| wait = list_first_entry(&dev->txwait, struct iowait, |
| list); |
| qp = container_of(wait, struct hfi1_qp, s_iowait); |
| list_del_init(&qp->s_iowait.list); |
| /* refcount held until actual wake up */ |
| write_sequnlock_irqrestore(&dev->iowait_lock, flags); |
| hfi1_qp_wakeup(qp, HFI1_S_WAIT_TX); |
| break; |
| } |
| } while (read_seqretry(&dev->iowait_lock, seq)); |
| } |
| |
| /* |
| * This is called with progress side lock held. |
| */ |
| /* New API */ |
| static void verbs_sdma_complete( |
| struct sdma_txreq *cookie, |
| int status, |
| int drained) |
| { |
| struct verbs_txreq *tx = |
| container_of(cookie, struct verbs_txreq, txreq); |
| struct hfi1_qp *qp = tx->qp; |
| |
| spin_lock(&qp->s_lock); |
| if (tx->wqe) |
| hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS); |
| else if (qp->ibqp.qp_type == IB_QPT_RC) { |
| struct hfi1_ib_header *hdr; |
| |
| hdr = &tx->phdr.hdr; |
| hfi1_rc_send_complete(qp, hdr); |
| } |
| if (drained) { |
| /* |
| * This happens when the send engine notes |
| * a QP in the error state and cannot |
| * do the flush work until that QP's |
| * sdma work has finished. |
| */ |
| if (qp->s_flags & HFI1_S_WAIT_DMA) { |
| qp->s_flags &= ~HFI1_S_WAIT_DMA; |
| hfi1_schedule_send(qp); |
| } |
| } |
| spin_unlock(&qp->s_lock); |
| |
| hfi1_put_txreq(tx); |
| } |
| |
| static int wait_kmem(struct hfi1_ibdev *dev, struct hfi1_qp *qp) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) { |
| write_seqlock(&dev->iowait_lock); |
| if (list_empty(&qp->s_iowait.list)) { |
| if (list_empty(&dev->memwait)) |
| mod_timer(&dev->mem_timer, jiffies + 1); |
| qp->s_flags |= HFI1_S_WAIT_KMEM; |
| list_add_tail(&qp->s_iowait.list, &dev->memwait); |
| trace_hfi1_qpsleep(qp, HFI1_S_WAIT_KMEM); |
| atomic_inc(&qp->refcount); |
| } |
| write_sequnlock(&dev->iowait_lock); |
| qp->s_flags &= ~HFI1_S_BUSY; |
| ret = -EBUSY; |
| } |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * This routine calls txadds for each sg entry. |
| * |
| * Add failures will revert the sge cursor |
| */ |
| static int build_verbs_ulp_payload( |
| struct sdma_engine *sde, |
| struct hfi1_sge_state *ss, |
| u32 length, |
| struct verbs_txreq *tx) |
| { |
| struct hfi1_sge *sg_list = ss->sg_list; |
| struct hfi1_sge sge = ss->sge; |
| u8 num_sge = ss->num_sge; |
| u32 len; |
| int ret = 0; |
| |
| while (length) { |
| len = ss->sge.length; |
| if (len > length) |
| len = length; |
| if (len > ss->sge.sge_length) |
| len = ss->sge.sge_length; |
| WARN_ON_ONCE(len == 0); |
| ret = sdma_txadd_kvaddr( |
| sde->dd, |
| &tx->txreq, |
| ss->sge.vaddr, |
| len); |
| if (ret) |
| goto bail_txadd; |
| update_sge(ss, len); |
| length -= len; |
| } |
| return ret; |
| bail_txadd: |
| /* unwind cursor */ |
| ss->sge = sge; |
| ss->num_sge = num_sge; |
| ss->sg_list = sg_list; |
| return ret; |
| } |
| |
| /* |
| * Build the number of DMA descriptors needed to send length bytes of data. |
| * |
| * NOTE: DMA mapping is held in the tx until completed in the ring or |
| * the tx desc is freed without having been submitted to the ring |
| * |
| * This routine insures the following all the helper routine |
| * calls succeed. |
| */ |
| /* New API */ |
| static int build_verbs_tx_desc( |
| struct sdma_engine *sde, |
| struct hfi1_sge_state *ss, |
| u32 length, |
| struct verbs_txreq *tx, |
| struct ahg_ib_header *ahdr, |
| u64 pbc) |
| { |
| int ret = 0; |
| struct hfi1_pio_header *phdr; |
| u16 hdrbytes = tx->hdr_dwords << 2; |
| |
| phdr = &tx->phdr; |
| if (!ahdr->ahgcount) { |
| ret = sdma_txinit_ahg( |
| &tx->txreq, |
| ahdr->tx_flags, |
| hdrbytes + length, |
| ahdr->ahgidx, |
| 0, |
| NULL, |
| 0, |
| verbs_sdma_complete); |
| if (ret) |
| goto bail_txadd; |
| phdr->pbc = cpu_to_le64(pbc); |
| memcpy(&phdr->hdr, &ahdr->ibh, hdrbytes - sizeof(phdr->pbc)); |
| /* add the header */ |
| ret = sdma_txadd_kvaddr( |
| sde->dd, |
| &tx->txreq, |
| &tx->phdr, |
| tx->hdr_dwords << 2); |
| if (ret) |
| goto bail_txadd; |
| } else { |
| struct hfi1_other_headers *sohdr = &ahdr->ibh.u.oth; |
| struct hfi1_other_headers *dohdr = &phdr->hdr.u.oth; |
| |
| /* needed in rc_send_complete() */ |
| phdr->hdr.lrh[0] = ahdr->ibh.lrh[0]; |
| if ((be16_to_cpu(phdr->hdr.lrh[0]) & 3) == HFI1_LRH_GRH) { |
| sohdr = &ahdr->ibh.u.l.oth; |
| dohdr = &phdr->hdr.u.l.oth; |
| } |
| /* opcode */ |
| dohdr->bth[0] = sohdr->bth[0]; |
| /* PSN/ACK */ |
| dohdr->bth[2] = sohdr->bth[2]; |
| ret = sdma_txinit_ahg( |
| &tx->txreq, |
| ahdr->tx_flags, |
| length, |
| ahdr->ahgidx, |
| ahdr->ahgcount, |
| ahdr->ahgdesc, |
| hdrbytes, |
| verbs_sdma_complete); |
| if (ret) |
| goto bail_txadd; |
| } |
| |
| /* add the ulp payload - if any. ss can be NULL for acks */ |
| if (ss) |
| ret = build_verbs_ulp_payload(sde, ss, length, tx); |
| bail_txadd: |
| return ret; |
| } |
| |
| int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *ahdr, |
| u32 hdrwords, struct hfi1_sge_state *ss, u32 len, |
| u32 plen, u32 dwords, u64 pbc) |
| { |
| struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); |
| struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| struct verbs_txreq *tx; |
| struct sdma_txreq *stx; |
| u64 pbc_flags = 0; |
| struct sdma_engine *sde; |
| u8 sc5 = qp->s_sc; |
| int ret; |
| |
| if (!list_empty(&qp->s_iowait.tx_head)) { |
| stx = list_first_entry( |
| &qp->s_iowait.tx_head, |
| struct sdma_txreq, |
| list); |
| list_del_init(&stx->list); |
| tx = container_of(stx, struct verbs_txreq, txreq); |
| ret = sdma_send_txreq(tx->sde, &qp->s_iowait, stx); |
| if (unlikely(ret == -ECOMM)) |
| goto bail_ecomm; |
| return ret; |
| } |
| |
| tx = get_txreq(dev, qp); |
| if (IS_ERR(tx)) |
| goto bail_tx; |
| |
| if (!qp->s_hdr->sde) { |
| tx->sde = sde = qp_to_sdma_engine(qp, sc5); |
| if (!sde) |
| goto bail_no_sde; |
| } else |
| tx->sde = sde = qp->s_hdr->sde; |
| |
| if (likely(pbc == 0)) { |
| u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); |
| /* No vl15 here */ |
| /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ |
| pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT; |
| |
| pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen); |
| } |
| tx->wqe = qp->s_wqe; |
| tx->mr = qp->s_rdma_mr; |
| if (qp->s_rdma_mr) |
| qp->s_rdma_mr = NULL; |
| tx->hdr_dwords = hdrwords + 2; |
| ret = build_verbs_tx_desc(sde, ss, len, tx, ahdr, pbc); |
| if (unlikely(ret)) |
| goto bail_build; |
| trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh); |
| ret = sdma_send_txreq(sde, &qp->s_iowait, &tx->txreq); |
| if (unlikely(ret == -ECOMM)) |
| goto bail_ecomm; |
| return ret; |
| |
| bail_no_sde: |
| hfi1_put_txreq(tx); |
| bail_ecomm: |
| /* The current one got "sent" */ |
| return 0; |
| bail_build: |
| /* kmalloc or mapping fail */ |
| hfi1_put_txreq(tx); |
| return wait_kmem(dev, qp); |
| bail_tx: |
| return PTR_ERR(tx); |
| } |
| |
| /* |
| * If we are now in the error state, return zero to flush the |
| * send work request. |
| */ |
| static int no_bufs_available(struct hfi1_qp *qp, struct send_context *sc) |
| { |
| struct hfi1_devdata *dd = sc->dd; |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* |
| * Note that as soon as want_buffer() is called and |
| * possibly before it returns, sc_piobufavail() |
| * could be called. Therefore, put QP on the I/O wait list before |
| * enabling the PIO avail interrupt. |
| */ |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) { |
| write_seqlock(&dev->iowait_lock); |
| if (list_empty(&qp->s_iowait.list)) { |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| int was_empty; |
| |
| dev->n_piowait++; |
| qp->s_flags |= HFI1_S_WAIT_PIO; |
| was_empty = list_empty(&sc->piowait); |
| list_add_tail(&qp->s_iowait.list, &sc->piowait); |
| trace_hfi1_qpsleep(qp, HFI1_S_WAIT_PIO); |
| atomic_inc(&qp->refcount); |
| /* counting: only call wantpiobuf_intr if first user */ |
| if (was_empty) |
| hfi1_sc_wantpiobuf_intr(sc, 1); |
| } |
| write_sequnlock(&dev->iowait_lock); |
| qp->s_flags &= ~HFI1_S_BUSY; |
| ret = -EBUSY; |
| } |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| return ret; |
| } |
| |
| struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); |
| struct hfi1_pportdata *ppd = dd->pport + (qp->port_num - 1); |
| u8 vl; |
| |
| vl = sc_to_vlt(dd, sc5); |
| if (vl >= ppd->vls_supported && vl != 15) |
| return NULL; |
| return dd->vld[vl].sc; |
| } |
| |
| int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *ahdr, |
| u32 hdrwords, struct hfi1_sge_state *ss, u32 len, |
| u32 plen, u32 dwords, u64 pbc) |
| { |
| struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| u32 *hdr = (u32 *)&ahdr->ibh; |
| u64 pbc_flags = 0; |
| u32 sc5; |
| unsigned long flags = 0; |
| struct send_context *sc; |
| struct pio_buf *pbuf; |
| int wc_status = IB_WC_SUCCESS; |
| |
| /* vl15 special case taken care of in ud.c */ |
| sc5 = qp->s_sc; |
| sc = qp_to_send_context(qp, sc5); |
| |
| if (!sc) |
| return -EINVAL; |
| if (likely(pbc == 0)) { |
| u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); |
| /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ |
| pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT; |
| pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen); |
| } |
| pbuf = sc_buffer_alloc(sc, plen, NULL, NULL); |
| if (unlikely(pbuf == NULL)) { |
| if (ppd->host_link_state != HLS_UP_ACTIVE) { |
| /* |
| * If we have filled the PIO buffers to capacity and are |
| * not in an active state this request is not going to |
| * go out to so just complete it with an error or else a |
| * ULP or the core may be stuck waiting. |
| */ |
| hfi1_cdbg( |
| PIO, |
| "alloc failed. state not active, completing"); |
| wc_status = IB_WC_GENERAL_ERR; |
| goto pio_bail; |
| } else { |
| /* |
| * This is a normal occurrence. The PIO buffs are full |
| * up but we are still happily sending, well we could be |
| * so lets continue to queue the request. |
| */ |
| hfi1_cdbg(PIO, "alloc failed. state active, queuing"); |
| return no_bufs_available(qp, sc); |
| } |
| } |
| |
| if (len == 0) { |
| pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); |
| } else { |
| if (ss) { |
| seg_pio_copy_start(pbuf, pbc, hdr, hdrwords*4); |
| while (len) { |
| void *addr = ss->sge.vaddr; |
| u32 slen = ss->sge.length; |
| |
| if (slen > len) |
| slen = len; |
| update_sge(ss, slen); |
| seg_pio_copy_mid(pbuf, addr, slen); |
| len -= slen; |
| } |
| seg_pio_copy_end(pbuf); |
| } |
| } |
| |
| trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh); |
| |
| if (qp->s_rdma_mr) { |
| hfi1_put_mr(qp->s_rdma_mr); |
| qp->s_rdma_mr = NULL; |
| } |
| |
| pio_bail: |
| if (qp->s_wqe) { |
| spin_lock_irqsave(&qp->s_lock, flags); |
| hfi1_send_complete(qp, qp->s_wqe, wc_status); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } else if (qp->ibqp.qp_type == IB_QPT_RC) { |
| spin_lock_irqsave(&qp->s_lock, flags); |
| hfi1_rc_send_complete(qp, &ahdr->ibh); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } |
| return 0; |
| } |
| |
| /* |
| * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent |
| * being an entry from the ingress partition key table), return 0 |
| * otherwise. Use the matching criteria for egress partition keys |
| * specified in the OPAv1 spec., section 9.1l.7. |
| */ |
| static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) |
| { |
| u16 mkey = pkey & PKEY_LOW_15_MASK; |
| u16 ment = ent & PKEY_LOW_15_MASK; |
| |
| if (mkey == ment) { |
| /* |
| * If pkey[15] is set (full partition member), |
| * is bit 15 in the corresponding table element |
| * clear (limited member)? |
| */ |
| if (pkey & PKEY_MEMBER_MASK) |
| return !!(ent & PKEY_MEMBER_MASK); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * egress_pkey_check - return 0 if hdr's pkey matches according to the |
| * criteria in the OPAv1 spec., section 9.11.7. |
| */ |
| static inline int egress_pkey_check(struct hfi1_pportdata *ppd, |
| struct hfi1_ib_header *hdr, |
| struct hfi1_qp *qp) |
| { |
| struct hfi1_other_headers *ohdr; |
| struct hfi1_devdata *dd; |
| int i = 0; |
| u16 pkey; |
| u8 lnh, sc5 = qp->s_sc; |
| |
| if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) |
| return 0; |
| |
| /* locate the pkey within the headers */ |
| lnh = be16_to_cpu(hdr->lrh[0]) & 3; |
| if (lnh == HFI1_LRH_GRH) |
| ohdr = &hdr->u.l.oth; |
| else |
| ohdr = &hdr->u.oth; |
| |
| pkey = (u16)be32_to_cpu(ohdr->bth[0]); |
| |
| /* If SC15, pkey[0:14] must be 0x7fff */ |
| if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) |
| goto bad; |
| |
| |
| /* Is the pkey = 0x0, or 0x8000? */ |
| if ((pkey & PKEY_LOW_15_MASK) == 0) |
| goto bad; |
| |
| /* The most likely matching pkey has index qp->s_pkey_index */ |
| if (unlikely(!egress_pkey_matches_entry(pkey, |
| ppd->pkeys[qp->s_pkey_index]))) { |
| /* no match - try the entire table */ |
| for (; i < MAX_PKEY_VALUES; i++) { |
| if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) |
| break; |
| } |
| } |
| |
| if (i < MAX_PKEY_VALUES) |
| return 0; |
| bad: |
| incr_cntr64(&ppd->port_xmit_constraint_errors); |
| dd = ppd->dd; |
| if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) { |
| u16 slid = be16_to_cpu(hdr->lrh[3]); |
| |
| dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK; |
| dd->err_info_xmit_constraint.slid = slid; |
| dd->err_info_xmit_constraint.pkey = pkey; |
| } |
| return 1; |
| } |
| |
| /** |
| * hfi1_verbs_send - send a packet |
| * @qp: the QP to send on |
| * @ahdr: the packet header |
| * @hdrwords: the number of 32-bit words in the header |
| * @ss: the SGE to send |
| * @len: the length of the packet in bytes |
| * |
| * Return zero if packet is sent or queued OK. |
| * Return non-zero and clear qp->s_flags HFI1_S_BUSY otherwise. |
| */ |
| int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr, |
| u32 hdrwords, struct hfi1_sge_state *ss, u32 len) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); |
| u32 plen; |
| int ret; |
| int pio = 0; |
| unsigned long flags = 0; |
| u32 dwords = (len + 3) >> 2; |
| |
| /* |
| * VL15 packets (IB_QPT_SMI) will always use PIO, so we |
| * can defer SDMA restart until link goes ACTIVE without |
| * worrying about just how we got there. |
| */ |
| if ((qp->ibqp.qp_type == IB_QPT_SMI) || |
| !(dd->flags & HFI1_HAS_SEND_DMA)) |
| pio = 1; |
| |
| ret = egress_pkey_check(dd->pport, &ahdr->ibh, qp); |
| if (unlikely(ret)) { |
| /* |
| * The value we are returning here does not get propagated to |
| * the verbs caller. Thus we need to complete the request with |
| * error otherwise the caller could be sitting waiting on the |
| * completion event. Only do this for PIO. SDMA has its own |
| * mechanism for handling the errors. So for SDMA we can just |
| * return. |
| */ |
| if (pio) { |
| hfi1_cdbg(PIO, "%s() Failed. Completing with err", |
| __func__); |
| spin_lock_irqsave(&qp->s_lock, flags); |
| hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * Calculate the send buffer trigger address. |
| * The +2 counts for the pbc control qword |
| */ |
| plen = hdrwords + dwords + 2; |
| |
| if (pio) { |
| ret = dd->process_pio_send( |
| qp, ahdr, hdrwords, ss, len, plen, dwords, 0); |
| } else { |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(dd, "CONFIG SDMA %s:%d %s()\n", |
| slashstrip(__FILE__), __LINE__, __func__); |
| dd_dev_err(dd, "SDMA hdrwords = %u, len = %u\n", hdrwords, len); |
| #endif |
| ret = dd->process_dma_send( |
| qp, ahdr, hdrwords, ss, len, plen, dwords, 0); |
| } |
| |
| return ret; |
| } |
| |
| static int query_device(struct ib_device *ibdev, |
| struct ib_device_attr *props, |
| struct ib_udata *uhw) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(ibdev); |
| struct hfi1_ibdev *dev = to_idev(ibdev); |
| |
| if (uhw->inlen || uhw->outlen) |
| return -EINVAL; |
| memset(props, 0, sizeof(*props)); |
| |
| props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | |
| IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | |
| IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | |
| IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE; |
| |
| props->page_size_cap = PAGE_SIZE; |
| props->vendor_id = |
| dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; |
| props->vendor_part_id = dd->pcidev->device; |
| props->hw_ver = dd->minrev; |
| props->sys_image_guid = ib_hfi1_sys_image_guid; |
| props->max_mr_size = ~0ULL; |
| props->max_qp = hfi1_max_qps; |
| props->max_qp_wr = hfi1_max_qp_wrs; |
| props->max_sge = hfi1_max_sges; |
| props->max_sge_rd = hfi1_max_sges; |
| props->max_cq = hfi1_max_cqs; |
| props->max_ah = hfi1_max_ahs; |
| props->max_cqe = hfi1_max_cqes; |
| props->max_mr = dev->lk_table.max; |
| props->max_fmr = dev->lk_table.max; |
| props->max_map_per_fmr = 32767; |
| props->max_pd = hfi1_max_pds; |
| props->max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; |
| props->max_qp_init_rd_atom = 255; |
| /* props->max_res_rd_atom */ |
| props->max_srq = hfi1_max_srqs; |
| props->max_srq_wr = hfi1_max_srq_wrs; |
| props->max_srq_sge = hfi1_max_srq_sges; |
| /* props->local_ca_ack_delay */ |
| props->atomic_cap = IB_ATOMIC_GLOB; |
| props->max_pkeys = hfi1_get_npkeys(dd); |
| props->max_mcast_grp = hfi1_max_mcast_grps; |
| props->max_mcast_qp_attach = hfi1_max_mcast_qp_attached; |
| props->max_total_mcast_qp_attach = props->max_mcast_qp_attach * |
| props->max_mcast_grp; |
| |
| return 0; |
| } |
| |
| static inline u16 opa_speed_to_ib(u16 in) |
| { |
| u16 out = 0; |
| |
| if (in & OPA_LINK_SPEED_25G) |
| out |= IB_SPEED_EDR; |
| if (in & OPA_LINK_SPEED_12_5G) |
| out |= IB_SPEED_FDR; |
| |
| return out; |
| } |
| |
| /* |
| * Convert a single OPA link width (no multiple flags) to an IB value. |
| * A zero OPA link width means link down, which means the IB width value |
| * is a don't care. |
| */ |
| static inline u16 opa_width_to_ib(u16 in) |
| { |
| switch (in) { |
| case OPA_LINK_WIDTH_1X: |
| /* map 2x and 3x to 1x as they don't exist in IB */ |
| case OPA_LINK_WIDTH_2X: |
| case OPA_LINK_WIDTH_3X: |
| return IB_WIDTH_1X; |
| default: /* link down or unknown, return our largest width */ |
| case OPA_LINK_WIDTH_4X: |
| return IB_WIDTH_4X; |
| } |
| } |
| |
| static int query_port(struct ib_device *ibdev, u8 port, |
| struct ib_port_attr *props) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(ibdev); |
| struct hfi1_ibport *ibp = to_iport(ibdev, port); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| u16 lid = ppd->lid; |
| |
| memset(props, 0, sizeof(*props)); |
| props->lid = lid ? lid : 0; |
| props->lmc = ppd->lmc; |
| props->sm_lid = ibp->sm_lid; |
| props->sm_sl = ibp->sm_sl; |
| /* OPA logical states match IB logical states */ |
| props->state = driver_lstate(ppd); |
| props->phys_state = hfi1_ibphys_portstate(ppd); |
| props->port_cap_flags = ibp->port_cap_flags; |
| props->gid_tbl_len = HFI1_GUIDS_PER_PORT; |
| props->max_msg_sz = 0x80000000; |
| props->pkey_tbl_len = hfi1_get_npkeys(dd); |
| props->bad_pkey_cntr = ibp->pkey_violations; |
| props->qkey_viol_cntr = ibp->qkey_violations; |
| props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); |
| /* see rate_show() in ib core/sysfs.c */ |
| props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active); |
| props->max_vl_num = ppd->vls_supported; |
| props->init_type_reply = 0; |
| |
| /* Once we are a "first class" citizen and have added the OPA MTUs to |
| * the core we can advertise the larger MTU enum to the ULPs, for now |
| * advertise only 4K. |
| * |
| * Those applications which are either OPA aware or pass the MTU enum |
| * from the Path Records to us will get the new 8k MTU. Those that |
| * attempt to process the MTU enum may fail in various ways. |
| */ |
| props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? |
| 4096 : hfi1_max_mtu), IB_MTU_4096); |
| props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : |
| mtu_to_enum(ppd->ibmtu, IB_MTU_2048); |
| props->subnet_timeout = ibp->subnet_timeout; |
| |
| return 0; |
| } |
| |
| static int port_immutable(struct ib_device *ibdev, u8 port_num, |
| struct ib_port_immutable *immutable) |
| { |
| struct ib_port_attr attr; |
| int err; |
| |
| err = query_port(ibdev, port_num, &attr); |
| if (err) |
| return err; |
| |
| memset(immutable, 0, sizeof(*immutable)); |
| |
| immutable->pkey_tbl_len = attr.pkey_tbl_len; |
| immutable->gid_tbl_len = attr.gid_tbl_len; |
| immutable->core_cap_flags = RDMA_CORE_PORT_INTEL_OPA; |
| immutable->max_mad_size = OPA_MGMT_MAD_SIZE; |
| |
| return 0; |
| } |
| |
| static int modify_device(struct ib_device *device, |
| int device_modify_mask, |
| struct ib_device_modify *device_modify) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(device); |
| unsigned i; |
| int ret; |
| |
| if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | |
| IB_DEVICE_MODIFY_NODE_DESC)) { |
| ret = -EOPNOTSUPP; |
| goto bail; |
| } |
| |
| if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { |
| memcpy(device->node_desc, device_modify->node_desc, 64); |
| for (i = 0; i < dd->num_pports; i++) { |
| struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; |
| |
| hfi1_node_desc_chg(ibp); |
| } |
| } |
| |
| if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { |
| ib_hfi1_sys_image_guid = |
| cpu_to_be64(device_modify->sys_image_guid); |
| for (i = 0; i < dd->num_pports; i++) { |
| struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; |
| |
| hfi1_sys_guid_chg(ibp); |
| } |
| } |
| |
| ret = 0; |
| |
| bail: |
| return ret; |
| } |
| |
| static int modify_port(struct ib_device *ibdev, u8 port, |
| int port_modify_mask, struct ib_port_modify *props) |
| { |
| struct hfi1_ibport *ibp = to_iport(ibdev, port); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| int ret = 0; |
| |
| ibp->port_cap_flags |= props->set_port_cap_mask; |
| ibp->port_cap_flags &= ~props->clr_port_cap_mask; |
| if (props->set_port_cap_mask || props->clr_port_cap_mask) |
| hfi1_cap_mask_chg(ibp); |
| if (port_modify_mask & IB_PORT_SHUTDOWN) { |
| set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, |
| OPA_LINKDOWN_REASON_UNKNOWN); |
| ret = set_link_state(ppd, HLS_DN_DOWNDEF); |
| } |
| if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR) |
| ibp->qkey_violations = 0; |
| return ret; |
| } |
| |
| static int query_gid(struct ib_device *ibdev, u8 port, |
| int index, union ib_gid *gid) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(ibdev); |
| int ret = 0; |
| |
| if (!port || port > dd->num_pports) |
| ret = -EINVAL; |
| else { |
| struct hfi1_ibport *ibp = to_iport(ibdev, port); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| |
| gid->global.subnet_prefix = ibp->gid_prefix; |
| if (index == 0) |
| gid->global.interface_id = cpu_to_be64(ppd->guid); |
| else if (index < HFI1_GUIDS_PER_PORT) |
| gid->global.interface_id = ibp->guids[index - 1]; |
| else |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static struct ib_pd *alloc_pd(struct ib_device *ibdev, |
| struct ib_ucontext *context, |
| struct ib_udata *udata) |
| { |
| struct hfi1_ibdev *dev = to_idev(ibdev); |
| struct hfi1_pd *pd; |
| struct ib_pd *ret; |
| |
| /* |
| * This is actually totally arbitrary. Some correctness tests |
| * assume there's a maximum number of PDs that can be allocated. |
| * We don't actually have this limit, but we fail the test if |
| * we allow allocations of more than we report for this value. |
| */ |
| |
| pd = kmalloc(sizeof(*pd), GFP_KERNEL); |
| if (!pd) { |
| ret = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| spin_lock(&dev->n_pds_lock); |
| if (dev->n_pds_allocated == hfi1_max_pds) { |
| spin_unlock(&dev->n_pds_lock); |
| kfree(pd); |
| ret = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| dev->n_pds_allocated++; |
| spin_unlock(&dev->n_pds_lock); |
| |
| /* ib_alloc_pd() will initialize pd->ibpd. */ |
| pd->user = udata != NULL; |
| |
| ret = &pd->ibpd; |
| |
| bail: |
| return ret; |
| } |
| |
| static int dealloc_pd(struct ib_pd *ibpd) |
| { |
| struct hfi1_pd *pd = to_ipd(ibpd); |
| struct hfi1_ibdev *dev = to_idev(ibpd->device); |
| |
| spin_lock(&dev->n_pds_lock); |
| dev->n_pds_allocated--; |
| spin_unlock(&dev->n_pds_lock); |
| |
| kfree(pd); |
| |
| return 0; |
| } |
| |
| /* |
| * convert ah port,sl to sc |
| */ |
| u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah) |
| { |
| struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num); |
| |
| return ibp->sl_to_sc[ah->sl]; |
| } |
| |
| int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr) |
| { |
| struct hfi1_ibport *ibp; |
| struct hfi1_pportdata *ppd; |
| struct hfi1_devdata *dd; |
| u8 sc5; |
| |
| /* A multicast address requires a GRH (see ch. 8.4.1). */ |
| if (ah_attr->dlid >= HFI1_MULTICAST_LID_BASE && |
| ah_attr->dlid != HFI1_PERMISSIVE_LID && |
| !(ah_attr->ah_flags & IB_AH_GRH)) |
| goto bail; |
| if ((ah_attr->ah_flags & IB_AH_GRH) && |
| ah_attr->grh.sgid_index >= HFI1_GUIDS_PER_PORT) |
| goto bail; |
| if (ah_attr->dlid == 0) |
| goto bail; |
| if (ah_attr->port_num < 1 || |
| ah_attr->port_num > ibdev->phys_port_cnt) |
| goto bail; |
| if (ah_attr->static_rate != IB_RATE_PORT_CURRENT && |
| ib_rate_to_mbps(ah_attr->static_rate) < 0) |
| goto bail; |
| if (ah_attr->sl >= OPA_MAX_SLS) |
| goto bail; |
| /* test the mapping for validity */ |
| ibp = to_iport(ibdev, ah_attr->port_num); |
| ppd = ppd_from_ibp(ibp); |
| sc5 = ibp->sl_to_sc[ah_attr->sl]; |
| dd = dd_from_ppd(ppd); |
| if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) |
| goto bail; |
| return 0; |
| bail: |
| return -EINVAL; |
| } |
| |
| /** |
| * create_ah - create an address handle |
| * @pd: the protection domain |
| * @ah_attr: the attributes of the AH |
| * |
| * This may be called from interrupt context. |
| */ |
| static struct ib_ah *create_ah(struct ib_pd *pd, |
| struct ib_ah_attr *ah_attr) |
| { |
| struct hfi1_ah *ah; |
| struct ib_ah *ret; |
| struct hfi1_ibdev *dev = to_idev(pd->device); |
| unsigned long flags; |
| |
| if (hfi1_check_ah(pd->device, ah_attr)) { |
| ret = ERR_PTR(-EINVAL); |
| goto bail; |
| } |
| |
| ah = kmalloc(sizeof(*ah), GFP_ATOMIC); |
| if (!ah) { |
| ret = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| spin_lock_irqsave(&dev->n_ahs_lock, flags); |
| if (dev->n_ahs_allocated == hfi1_max_ahs) { |
| spin_unlock_irqrestore(&dev->n_ahs_lock, flags); |
| kfree(ah); |
| ret = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| dev->n_ahs_allocated++; |
| spin_unlock_irqrestore(&dev->n_ahs_lock, flags); |
| |
| /* ib_create_ah() will initialize ah->ibah. */ |
| ah->attr = *ah_attr; |
| atomic_set(&ah->refcount, 0); |
| |
| ret = &ah->ibah; |
| |
| bail: |
| return ret; |
| } |
| |
| struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid) |
| { |
| struct ib_ah_attr attr; |
| struct ib_ah *ah = ERR_PTR(-EINVAL); |
| struct hfi1_qp *qp0; |
| |
| memset(&attr, 0, sizeof(attr)); |
| attr.dlid = dlid; |
| attr.port_num = ppd_from_ibp(ibp)->port; |
| rcu_read_lock(); |
| qp0 = rcu_dereference(ibp->qp[0]); |
| if (qp0) |
| ah = ib_create_ah(qp0->ibqp.pd, &attr); |
| rcu_read_unlock(); |
| return ah; |
| } |
| |
| /** |
| * destroy_ah - destroy an address handle |
| * @ibah: the AH to destroy |
| * |
| * This may be called from interrupt context. |
| */ |
| static int destroy_ah(struct ib_ah *ibah) |
| { |
| struct hfi1_ibdev *dev = to_idev(ibah->device); |
| struct hfi1_ah *ah = to_iah(ibah); |
| unsigned long flags; |
| |
| if (atomic_read(&ah->refcount) != 0) |
| return -EBUSY; |
| |
| spin_lock_irqsave(&dev->n_ahs_lock, flags); |
| dev->n_ahs_allocated--; |
| spin_unlock_irqrestore(&dev->n_ahs_lock, flags); |
| |
| kfree(ah); |
| |
| return 0; |
| } |
| |
| static int modify_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr) |
| { |
| struct hfi1_ah *ah = to_iah(ibah); |
| |
| if (hfi1_check_ah(ibah->device, ah_attr)) |
| return -EINVAL; |
| |
| ah->attr = *ah_attr; |
| |
| return 0; |
| } |
| |
| static int query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr) |
| { |
| struct hfi1_ah *ah = to_iah(ibah); |
| |
| *ah_attr = ah->attr; |
| |
| return 0; |
| } |
| |
| /** |
| * hfi1_get_npkeys - return the size of the PKEY table for context 0 |
| * @dd: the hfi1_ib device |
| */ |
| unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) |
| { |
| return ARRAY_SIZE(dd->pport[0].pkeys); |
| } |
| |
| static int query_pkey(struct ib_device *ibdev, u8 port, u16 index, |
| u16 *pkey) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(ibdev); |
| int ret; |
| |
| if (index >= hfi1_get_npkeys(dd)) { |
| ret = -EINVAL; |
| goto bail; |
| } |
| |
| *pkey = hfi1_get_pkey(to_iport(ibdev, port), index); |
| ret = 0; |
| |
| bail: |
| return ret; |
| } |
| |
| /** |
| * alloc_ucontext - allocate a ucontest |
| * @ibdev: the infiniband device |
| * @udata: not used by the driver |
| */ |
| |
| static struct ib_ucontext *alloc_ucontext(struct ib_device *ibdev, |
| struct ib_udata *udata) |
| { |
| struct hfi1_ucontext *context; |
| struct ib_ucontext *ret; |
| |
| context = kmalloc(sizeof(*context), GFP_KERNEL); |
| if (!context) { |
| ret = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| ret = &context->ibucontext; |
| |
| bail: |
| return ret; |
| } |
| |
| static int dealloc_ucontext(struct ib_ucontext *context) |
| { |
| kfree(to_iucontext(context)); |
| return 0; |
| } |
| |
| static void init_ibport(struct hfi1_pportdata *ppd) |
| { |
| struct hfi1_ibport *ibp = &ppd->ibport_data; |
| size_t sz = ARRAY_SIZE(ibp->sl_to_sc); |
| int i; |
| |
| for (i = 0; i < sz; i++) { |
| ibp->sl_to_sc[i] = i; |
| ibp->sc_to_sl[i] = i; |
| } |
| |
| spin_lock_init(&ibp->lock); |
| /* Set the prefix to the default value (see ch. 4.1.1) */ |
| ibp->gid_prefix = IB_DEFAULT_GID_PREFIX; |
| ibp->sm_lid = 0; |
| /* Below should only set bits defined in OPA PortInfo.CapabilityMask */ |
| ibp->port_cap_flags = IB_PORT_AUTO_MIGR_SUP | |
| IB_PORT_CAP_MASK_NOTICE_SUP; |
| ibp->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; |
| ibp->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; |
| ibp->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; |
| ibp->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; |
| ibp->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; |
| |
| RCU_INIT_POINTER(ibp->qp[0], NULL); |
| RCU_INIT_POINTER(ibp->qp[1], NULL); |
| } |
| |
| static void verbs_txreq_kmem_cache_ctor(void *obj) |
| { |
| struct verbs_txreq *tx = obj; |
| |
| memset(tx, 0, sizeof(*tx)); |
| } |
| |
| /** |
| * hfi1_register_ib_device - register our device with the infiniband core |
| * @dd: the device data structure |
| * Return 0 if successful, errno if unsuccessful. |
| */ |
| int hfi1_register_ib_device(struct hfi1_devdata *dd) |
| { |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| struct ib_device *ibdev = &dev->ibdev; |
| struct hfi1_pportdata *ppd = dd->pport; |
| unsigned i, lk_tab_size; |
| int ret; |
| size_t lcpysz = IB_DEVICE_NAME_MAX; |
| u16 descq_cnt; |
| char buf[TXREQ_NAME_LEN]; |
| |
| ret = hfi1_qp_init(dev); |
| if (ret) |
| goto err_qp_init; |
| |
| |
| for (i = 0; i < dd->num_pports; i++) |
| init_ibport(ppd + i); |
| |
| /* Only need to initialize non-zero fields. */ |
| spin_lock_init(&dev->n_pds_lock); |
| spin_lock_init(&dev->n_ahs_lock); |
| spin_lock_init(&dev->n_cqs_lock); |
| spin_lock_init(&dev->n_qps_lock); |
| spin_lock_init(&dev->n_srqs_lock); |
| spin_lock_init(&dev->n_mcast_grps_lock); |
| init_timer(&dev->mem_timer); |
| dev->mem_timer.function = mem_timer; |
| dev->mem_timer.data = (unsigned long) dev; |
| |
| /* |
| * The top hfi1_lkey_table_size bits are used to index the |
| * table. The lower 8 bits can be owned by the user (copied from |
| * the LKEY). The remaining bits act as a generation number or tag. |
| */ |
| spin_lock_init(&dev->lk_table.lock); |
| dev->lk_table.max = 1 << hfi1_lkey_table_size; |
| /* ensure generation is at least 4 bits (keys.c) */ |
| if (hfi1_lkey_table_size > MAX_LKEY_TABLE_BITS) { |
| dd_dev_warn(dd, "lkey bits %u too large, reduced to %u\n", |
| hfi1_lkey_table_size, MAX_LKEY_TABLE_BITS); |
| hfi1_lkey_table_size = MAX_LKEY_TABLE_BITS; |
| } |
| lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table); |
| dev->lk_table.table = (struct hfi1_mregion __rcu **) |
| vmalloc(lk_tab_size); |
| if (dev->lk_table.table == NULL) { |
| ret = -ENOMEM; |
| goto err_lk; |
| } |
| RCU_INIT_POINTER(dev->dma_mr, NULL); |
| for (i = 0; i < dev->lk_table.max; i++) |
| RCU_INIT_POINTER(dev->lk_table.table[i], NULL); |
| INIT_LIST_HEAD(&dev->pending_mmaps); |
| spin_lock_init(&dev->pending_lock); |
| seqlock_init(&dev->iowait_lock); |
| dev->mmap_offset = PAGE_SIZE; |
| spin_lock_init(&dev->mmap_offset_lock); |
| INIT_LIST_HEAD(&dev->txwait); |
| INIT_LIST_HEAD(&dev->memwait); |
| |
| descq_cnt = sdma_get_descq_cnt(); |
| |
| snprintf(buf, sizeof(buf), "hfi1_%u_vtxreq_cache", dd->unit); |
| /* SLAB_HWCACHE_ALIGN for AHG */ |
| dev->verbs_txreq_cache = kmem_cache_create(buf, |
| sizeof(struct verbs_txreq), |
| 0, SLAB_HWCACHE_ALIGN, |
| verbs_txreq_kmem_cache_ctor); |
| if (!dev->verbs_txreq_cache) { |
| ret = -ENOMEM; |
| goto err_verbs_txreq; |
| } |
| |
| /* |
| * The system image GUID is supposed to be the same for all |
| * HFIs in a single system but since there can be other |
| * device types in the system, we can't be sure this is unique. |
| */ |
| if (!ib_hfi1_sys_image_guid) |
| ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid); |
| lcpysz = strlcpy(ibdev->name, class_name(), lcpysz); |
| strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz); |
| ibdev->owner = THIS_MODULE; |
| ibdev->node_guid = cpu_to_be64(ppd->guid); |
| ibdev->uverbs_abi_ver = HFI1_UVERBS_ABI_VERSION; |
| ibdev->uverbs_cmd_mask = |
| (1ull << IB_USER_VERBS_CMD_GET_CONTEXT) | |
| (1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) | |
| (1ull << IB_USER_VERBS_CMD_QUERY_PORT) | |
| (1ull << IB_USER_VERBS_CMD_ALLOC_PD) | |
| (1ull << IB_USER_VERBS_CMD_DEALLOC_PD) | |
| (1ull << IB_USER_VERBS_CMD_CREATE_AH) | |
| (1ull << IB_USER_VERBS_CMD_MODIFY_AH) | |
| (1ull << IB_USER_VERBS_CMD_QUERY_AH) | |
| (1ull << IB_USER_VERBS_CMD_DESTROY_AH) | |
| (1ull << IB_USER_VERBS_CMD_REG_MR) | |
| (1ull << IB_USER_VERBS_CMD_DEREG_MR) | |
| (1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | |
| (1ull << IB_USER_VERBS_CMD_CREATE_CQ) | |
| (1ull << IB_USER_VERBS_CMD_RESIZE_CQ) | |
| (1ull << IB_USER_VERBS_CMD_DESTROY_CQ) | |
| (1ull << IB_USER_VERBS_CMD_POLL_CQ) | |
| (1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ) | |
| (1ull << IB_USER_VERBS_CMD_CREATE_QP) | |
| (1ull << IB_USER_VERBS_CMD_QUERY_QP) | |
| (1ull << IB_USER_VERBS_CMD_MODIFY_QP) | |
| (1ull << IB_USER_VERBS_CMD_DESTROY_QP) | |
| (1ull << IB_USER_VERBS_CMD_POST_SEND) | |
| (1ull << IB_USER_VERBS_CMD_POST_RECV) | |
| (1ull << IB_USER_VERBS_CMD_ATTACH_MCAST) | |
| (1ull << IB_USER_VERBS_CMD_DETACH_MCAST) | |
| (1ull << IB_USER_VERBS_CMD_CREATE_SRQ) | |
| (1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) | |
| (1ull << IB_USER_VERBS_CMD_QUERY_SRQ) | |
| (1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) | |
| (1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV); |
| ibdev->node_type = RDMA_NODE_IB_CA; |
| ibdev->phys_port_cnt = dd->num_pports; |
| ibdev->num_comp_vectors = 1; |
| ibdev->dma_device = &dd->pcidev->dev; |
| ibdev->query_device = query_device; |
| ibdev->modify_device = modify_device; |
| ibdev->query_port = query_port; |
| ibdev->modify_port = modify_port; |
| ibdev->query_pkey = query_pkey; |
| ibdev->query_gid = query_gid; |
| ibdev->alloc_ucontext = alloc_ucontext; |
| ibdev->dealloc_ucontext = dealloc_ucontext; |
| ibdev->alloc_pd = alloc_pd; |
| ibdev->dealloc_pd = dealloc_pd; |
| ibdev->create_ah = create_ah; |
| ibdev->destroy_ah = destroy_ah; |
| ibdev->modify_ah = modify_ah; |
| ibdev->query_ah = query_ah; |
| ibdev->create_srq = hfi1_create_srq; |
| ibdev->modify_srq = hfi1_modify_srq; |
| ibdev->query_srq = hfi1_query_srq; |
| ibdev->destroy_srq = hfi1_destroy_srq; |
| ibdev->create_qp = hfi1_create_qp; |
| ibdev->modify_qp = hfi1_modify_qp; |
| ibdev->query_qp = hfi1_query_qp; |
| ibdev->destroy_qp = hfi1_destroy_qp; |
| ibdev->post_send = post_send; |
| ibdev->post_recv = post_receive; |
| ibdev->post_srq_recv = hfi1_post_srq_receive; |
| ibdev->create_cq = hfi1_create_cq; |
| ibdev->destroy_cq = hfi1_destroy_cq; |
| ibdev->resize_cq = hfi1_resize_cq; |
| ibdev->poll_cq = hfi1_poll_cq; |
| ibdev->req_notify_cq = hfi1_req_notify_cq; |
| ibdev->get_dma_mr = hfi1_get_dma_mr; |
| ibdev->reg_phys_mr = hfi1_reg_phys_mr; |
| ibdev->reg_user_mr = hfi1_reg_user_mr; |
| ibdev->dereg_mr = hfi1_dereg_mr; |
| ibdev->alloc_mr = hfi1_alloc_mr; |
| ibdev->alloc_fmr = hfi1_alloc_fmr; |
| ibdev->map_phys_fmr = hfi1_map_phys_fmr; |
| ibdev->unmap_fmr = hfi1_unmap_fmr; |
| ibdev->dealloc_fmr = hfi1_dealloc_fmr; |
| ibdev->attach_mcast = hfi1_multicast_attach; |
| ibdev->detach_mcast = hfi1_multicast_detach; |
| ibdev->process_mad = hfi1_process_mad; |
| ibdev->mmap = hfi1_mmap; |
| ibdev->dma_ops = &hfi1_dma_mapping_ops; |
| ibdev->get_port_immutable = port_immutable; |
| |
| strncpy(ibdev->node_desc, init_utsname()->nodename, |
| sizeof(ibdev->node_desc)); |
| |
| ret = ib_register_device(ibdev, hfi1_create_port_files); |
| if (ret) |
| goto err_reg; |
| |
| ret = hfi1_create_agents(dev); |
| if (ret) |
| goto err_agents; |
| |
| ret = hfi1_verbs_register_sysfs(dd); |
| if (ret) |
| goto err_class; |
| |
| goto bail; |
| |
| err_class: |
| hfi1_free_agents(dev); |
| err_agents: |
| ib_unregister_device(ibdev); |
| err_reg: |
| err_verbs_txreq: |
| kmem_cache_destroy(dev->verbs_txreq_cache); |
| vfree(dev->lk_table.table); |
| err_lk: |
| hfi1_qp_exit(dev); |
| err_qp_init: |
| dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); |
| bail: |
| return ret; |
| } |
| |
| void hfi1_unregister_ib_device(struct hfi1_devdata *dd) |
| { |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| struct ib_device *ibdev = &dev->ibdev; |
| |
| hfi1_verbs_unregister_sysfs(dd); |
| |
| hfi1_free_agents(dev); |
| |
| ib_unregister_device(ibdev); |
| |
| if (!list_empty(&dev->txwait)) |
| dd_dev_err(dd, "txwait list not empty!\n"); |
| if (!list_empty(&dev->memwait)) |
| dd_dev_err(dd, "memwait list not empty!\n"); |
| if (dev->dma_mr) |
| dd_dev_err(dd, "DMA MR not NULL!\n"); |
| |
| hfi1_qp_exit(dev); |
| del_timer_sync(&dev->mem_timer); |
| kmem_cache_destroy(dev->verbs_txreq_cache); |
| vfree(dev->lk_table.table); |
| } |
| |
| /* |
| * This must be called with s_lock held. |
| */ |
| void hfi1_schedule_send(struct hfi1_qp *qp) |
| { |
| if (hfi1_send_ok(qp)) { |
| struct hfi1_ibport *ibp = |
| to_iport(qp->ibqp.device, qp->port_num); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| |
| iowait_schedule(&qp->s_iowait, ppd->hfi1_wq); |
| } |
| } |
| |
| void hfi1_cnp_rcv(struct hfi1_packet *packet) |
| { |
| struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; |
| |
| if (packet->qp->ibqp.qp_type == IB_QPT_UC) |
| hfi1_uc_rcv(packet); |
| else if (packet->qp->ibqp.qp_type == IB_QPT_UD) |
| hfi1_ud_rcv(packet); |
| else |
| ibp->n_pkt_drops++; |
| } |