blob: f8c36166962f304f451808daf902fbfd765df0cb [file] [log] [blame]
/*
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/err.h>
#include <linux/vmalloc.h>
#include <linux/hash.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include "hfi.h"
#include "qp.h"
#include "trace.h"
#include "sdma.h"
#define BITS_PER_PAGE (PAGE_SIZE*BITS_PER_BYTE)
#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
static unsigned int hfi1_qp_table_size = 256;
module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
MODULE_PARM_DESC(qp_table_size, "QP table size");
static void flush_tx_list(struct hfi1_qp *qp);
static int iowait_sleep(
struct sdma_engine *sde,
struct iowait *wait,
struct sdma_txreq *stx,
unsigned seq);
static void iowait_wakeup(struct iowait *wait, int reason);
static inline unsigned mk_qpn(struct hfi1_qpn_table *qpt,
struct qpn_map *map, unsigned off)
{
return (map - qpt->map) * BITS_PER_PAGE + off;
}
/*
* Convert the AETH credit code into the number of credits.
*/
static const u16 credit_table[31] = {
0, /* 0 */
1, /* 1 */
2, /* 2 */
3, /* 3 */
4, /* 4 */
6, /* 5 */
8, /* 6 */
12, /* 7 */
16, /* 8 */
24, /* 9 */
32, /* A */
48, /* B */
64, /* C */
96, /* D */
128, /* E */
192, /* F */
256, /* 10 */
384, /* 11 */
512, /* 12 */
768, /* 13 */
1024, /* 14 */
1536, /* 15 */
2048, /* 16 */
3072, /* 17 */
4096, /* 18 */
6144, /* 19 */
8192, /* 1A */
12288, /* 1B */
16384, /* 1C */
24576, /* 1D */
32768 /* 1E */
};
static void get_map_page(struct hfi1_qpn_table *qpt, struct qpn_map *map)
{
unsigned long page = get_zeroed_page(GFP_KERNEL);
/*
* Free the page if someone raced with us installing it.
*/
spin_lock(&qpt->lock);
if (map->page)
free_page(page);
else
map->page = (void *)page;
spin_unlock(&qpt->lock);
}
/*
* Allocate the next available QPN or
* zero/one for QP type IB_QPT_SMI/IB_QPT_GSI.
*/
static int alloc_qpn(struct hfi1_devdata *dd, struct hfi1_qpn_table *qpt,
enum ib_qp_type type, u8 port)
{
u32 i, offset, max_scan, qpn;
struct qpn_map *map;
u32 ret;
if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
unsigned n;
ret = type == IB_QPT_GSI;
n = 1 << (ret + 2 * (port - 1));
spin_lock(&qpt->lock);
if (qpt->flags & n)
ret = -EINVAL;
else
qpt->flags |= n;
spin_unlock(&qpt->lock);
goto bail;
}
qpn = qpt->last + qpt->incr;
if (qpn >= QPN_MAX)
qpn = qpt->incr | ((qpt->last & 1) ^ 1);
/* offset carries bit 0 */
offset = qpn & BITS_PER_PAGE_MASK;
map = &qpt->map[qpn / BITS_PER_PAGE];
max_scan = qpt->nmaps - !offset;
for (i = 0;;) {
if (unlikely(!map->page)) {
get_map_page(qpt, map);
if (unlikely(!map->page))
break;
}
do {
if (!test_and_set_bit(offset, map->page)) {
qpt->last = qpn;
ret = qpn;
goto bail;
}
offset += qpt->incr;
/*
* This qpn might be bogus if offset >= BITS_PER_PAGE.
* That is OK. It gets re-assigned below
*/
qpn = mk_qpn(qpt, map, offset);
} while (offset < BITS_PER_PAGE && qpn < QPN_MAX);
/*
* In order to keep the number of pages allocated to a
* minimum, we scan the all existing pages before increasing
* the size of the bitmap table.
*/
if (++i > max_scan) {
if (qpt->nmaps == QPNMAP_ENTRIES)
break;
map = &qpt->map[qpt->nmaps++];
/* start at incr with current bit 0 */
offset = qpt->incr | (offset & 1);
} else if (map < &qpt->map[qpt->nmaps]) {
++map;
/* start at incr with current bit 0 */
offset = qpt->incr | (offset & 1);
} else {
map = &qpt->map[0];
/* wrap to first map page, invert bit 0 */
offset = qpt->incr | ((offset & 1) ^ 1);
}
/* there can be no bits at shift and below */
WARN_ON(offset & (dd->qos_shift - 1));
qpn = mk_qpn(qpt, map, offset);
}
ret = -ENOMEM;
bail:
return ret;
}
static void free_qpn(struct hfi1_qpn_table *qpt, u32 qpn)
{
struct qpn_map *map;
map = qpt->map + qpn / BITS_PER_PAGE;
if (map->page)
clear_bit(qpn & BITS_PER_PAGE_MASK, map->page);
}
/*
* Put the QP into the hash table.
* The hash table holds a reference to the QP.
*/
static void insert_qp(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
unsigned long flags;
atomic_inc(&qp->refcount);
spin_lock_irqsave(&dev->qp_dev->qpt_lock, flags);
if (qp->ibqp.qp_num <= 1) {
rcu_assign_pointer(ibp->qp[qp->ibqp.qp_num], qp);
} else {
u32 n = qpn_hash(dev->qp_dev, qp->ibqp.qp_num);
qp->next = dev->qp_dev->qp_table[n];
rcu_assign_pointer(dev->qp_dev->qp_table[n], qp);
trace_hfi1_qpinsert(qp, n);
}
spin_unlock_irqrestore(&dev->qp_dev->qpt_lock, flags);
}
/*
* Remove the QP from the table so it can't be found asynchronously by
* the receive interrupt routine.
*/
static void remove_qp(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
u32 n = qpn_hash(dev->qp_dev, qp->ibqp.qp_num);
unsigned long flags;
int removed = 1;
spin_lock_irqsave(&dev->qp_dev->qpt_lock, flags);
if (rcu_dereference_protected(ibp->qp[0],
lockdep_is_held(&dev->qp_dev->qpt_lock)) == qp) {
RCU_INIT_POINTER(ibp->qp[0], NULL);
} else if (rcu_dereference_protected(ibp->qp[1],
lockdep_is_held(&dev->qp_dev->qpt_lock)) == qp) {
RCU_INIT_POINTER(ibp->qp[1], NULL);
} else {
struct hfi1_qp *q;
struct hfi1_qp __rcu **qpp;
removed = 0;
qpp = &dev->qp_dev->qp_table[n];
for (; (q = rcu_dereference_protected(*qpp,
lockdep_is_held(&dev->qp_dev->qpt_lock)))
!= NULL;
qpp = &q->next)
if (q == qp) {
RCU_INIT_POINTER(*qpp,
rcu_dereference_protected(qp->next,
lockdep_is_held(&dev->qp_dev->qpt_lock)));
removed = 1;
trace_hfi1_qpremove(qp, n);
break;
}
}
spin_unlock_irqrestore(&dev->qp_dev->qpt_lock, flags);
if (removed) {
synchronize_rcu();
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
}
/**
* free_all_qps - check for QPs still in use
* @qpt: the QP table to empty
*
* There should not be any QPs still in use.
* Free memory for table.
*/
static unsigned free_all_qps(struct hfi1_devdata *dd)
{
struct hfi1_ibdev *dev = &dd->verbs_dev;
unsigned long flags;
struct hfi1_qp *qp;
unsigned n, qp_inuse = 0;
for (n = 0; n < dd->num_pports; n++) {
struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
if (!hfi1_mcast_tree_empty(ibp))
qp_inuse++;
rcu_read_lock();
if (rcu_dereference(ibp->qp[0]))
qp_inuse++;
if (rcu_dereference(ibp->qp[1]))
qp_inuse++;
rcu_read_unlock();
}
if (!dev->qp_dev)
goto bail;
spin_lock_irqsave(&dev->qp_dev->qpt_lock, flags);
for (n = 0; n < dev->qp_dev->qp_table_size; n++) {
qp = rcu_dereference_protected(dev->qp_dev->qp_table[n],
lockdep_is_held(&dev->qp_dev->qpt_lock));
RCU_INIT_POINTER(dev->qp_dev->qp_table[n], NULL);
for (; qp; qp = rcu_dereference_protected(qp->next,
lockdep_is_held(&dev->qp_dev->qpt_lock)))
qp_inuse++;
}
spin_unlock_irqrestore(&dev->qp_dev->qpt_lock, flags);
synchronize_rcu();
bail:
return qp_inuse;
}
/**
* reset_qp - initialize the QP state to the reset state
* @qp: the QP to reset
* @type: the QP type
*/
static void reset_qp(struct hfi1_qp *qp, enum ib_qp_type type)
{
qp->remote_qpn = 0;
qp->qkey = 0;
qp->qp_access_flags = 0;
iowait_init(
&qp->s_iowait,
1,
hfi1_do_send,
iowait_sleep,
iowait_wakeup);
qp->s_flags &= HFI1_S_SIGNAL_REQ_WR;
qp->s_hdrwords = 0;
qp->s_wqe = NULL;
qp->s_draining = 0;
qp->s_next_psn = 0;
qp->s_last_psn = 0;
qp->s_sending_psn = 0;
qp->s_sending_hpsn = 0;
qp->s_psn = 0;
qp->r_psn = 0;
qp->r_msn = 0;
if (type == IB_QPT_RC) {
qp->s_state = IB_OPCODE_RC_SEND_LAST;
qp->r_state = IB_OPCODE_RC_SEND_LAST;
} else {
qp->s_state = IB_OPCODE_UC_SEND_LAST;
qp->r_state = IB_OPCODE_UC_SEND_LAST;
}
qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
qp->r_nak_state = 0;
qp->r_aflags = 0;
qp->r_flags = 0;
qp->s_head = 0;
qp->s_tail = 0;
qp->s_cur = 0;
qp->s_acked = 0;
qp->s_last = 0;
qp->s_ssn = 1;
qp->s_lsn = 0;
clear_ahg(qp);
qp->s_mig_state = IB_MIG_MIGRATED;
memset(qp->s_ack_queue, 0, sizeof(qp->s_ack_queue));
qp->r_head_ack_queue = 0;
qp->s_tail_ack_queue = 0;
qp->s_num_rd_atomic = 0;
if (qp->r_rq.wq) {
qp->r_rq.wq->head = 0;
qp->r_rq.wq->tail = 0;
}
qp->r_sge.num_sge = 0;
}
static void clear_mr_refs(struct hfi1_qp *qp, int clr_sends)
{
unsigned n;
if (test_and_clear_bit(HFI1_R_REWIND_SGE, &qp->r_aflags))
hfi1_put_ss(&qp->s_rdma_read_sge);
hfi1_put_ss(&qp->r_sge);
if (clr_sends) {
while (qp->s_last != qp->s_head) {
struct hfi1_swqe *wqe = get_swqe_ptr(qp, qp->s_last);
unsigned i;
for (i = 0; i < wqe->wr.num_sge; i++) {
struct hfi1_sge *sge = &wqe->sg_list[i];
hfi1_put_mr(sge->mr);
}
if (qp->ibqp.qp_type == IB_QPT_UD ||
qp->ibqp.qp_type == IB_QPT_SMI ||
qp->ibqp.qp_type == IB_QPT_GSI)
atomic_dec(&to_iah(wqe->ud_wr.ah)->refcount);
if (++qp->s_last >= qp->s_size)
qp->s_last = 0;
}
if (qp->s_rdma_mr) {
hfi1_put_mr(qp->s_rdma_mr);
qp->s_rdma_mr = NULL;
}
}
if (qp->ibqp.qp_type != IB_QPT_RC)
return;
for (n = 0; n < ARRAY_SIZE(qp->s_ack_queue); n++) {
struct hfi1_ack_entry *e = &qp->s_ack_queue[n];
if (e->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST &&
e->rdma_sge.mr) {
hfi1_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
}
}
/**
* hfi1_error_qp - put a QP into the error state
* @qp: the QP to put into the error state
* @err: the receive completion error to signal if a RWQE is active
*
* Flushes both send and receive work queues.
* Returns true if last WQE event should be generated.
* The QP r_lock and s_lock should be held and interrupts disabled.
* If we are already in error state, just return.
*/
int hfi1_error_qp(struct hfi1_qp *qp, enum ib_wc_status err)
{
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
struct ib_wc wc;
int ret = 0;
if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
goto bail;
qp->state = IB_QPS_ERR;
if (qp->s_flags & (HFI1_S_TIMER | HFI1_S_WAIT_RNR)) {
qp->s_flags &= ~(HFI1_S_TIMER | HFI1_S_WAIT_RNR);
del_timer(&qp->s_timer);
}
if (qp->s_flags & HFI1_S_ANY_WAIT_SEND)
qp->s_flags &= ~HFI1_S_ANY_WAIT_SEND;
write_seqlock(&dev->iowait_lock);
if (!list_empty(&qp->s_iowait.list) && !(qp->s_flags & HFI1_S_BUSY)) {
qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
list_del_init(&qp->s_iowait.list);
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
write_sequnlock(&dev->iowait_lock);
if (!(qp->s_flags & HFI1_S_BUSY)) {
qp->s_hdrwords = 0;
if (qp->s_rdma_mr) {
hfi1_put_mr(qp->s_rdma_mr);
qp->s_rdma_mr = NULL;
}
flush_tx_list(qp);
}
/* Schedule the sending tasklet to drain the send work queue. */
if (qp->s_last != qp->s_head)
hfi1_schedule_send(qp);
clear_mr_refs(qp, 0);
memset(&wc, 0, sizeof(wc));
wc.qp = &qp->ibqp;
wc.opcode = IB_WC_RECV;
if (test_and_clear_bit(HFI1_R_WRID_VALID, &qp->r_aflags)) {
wc.wr_id = qp->r_wr_id;
wc.status = err;
hfi1_cq_enter(to_icq(qp->ibqp.recv_cq), &wc, 1);
}
wc.status = IB_WC_WR_FLUSH_ERR;
if (qp->r_rq.wq) {
struct hfi1_rwq *wq;
u32 head;
u32 tail;
spin_lock(&qp->r_rq.lock);
/* sanity check pointers before trusting them */
wq = qp->r_rq.wq;
head = wq->head;
if (head >= qp->r_rq.size)
head = 0;
tail = wq->tail;
if (tail >= qp->r_rq.size)
tail = 0;
while (tail != head) {
wc.wr_id = get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
if (++tail >= qp->r_rq.size)
tail = 0;
hfi1_cq_enter(to_icq(qp->ibqp.recv_cq), &wc, 1);
}
wq->tail = tail;
spin_unlock(&qp->r_rq.lock);
} else if (qp->ibqp.event_handler)
ret = 1;
bail:
return ret;
}
static void flush_tx_list(struct hfi1_qp *qp)
{
while (!list_empty(&qp->s_iowait.tx_head)) {
struct sdma_txreq *tx;
tx = list_first_entry(
&qp->s_iowait.tx_head,
struct sdma_txreq,
list);
list_del_init(&tx->list);
hfi1_put_txreq(
container_of(tx, struct verbs_txreq, txreq));
}
}
static void flush_iowait(struct hfi1_qp *qp)
{
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
unsigned long flags;
write_seqlock_irqsave(&dev->iowait_lock, flags);
if (!list_empty(&qp->s_iowait.list)) {
list_del_init(&qp->s_iowait.list);
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
write_sequnlock_irqrestore(&dev->iowait_lock, flags);
}
static inline int opa_mtu_enum_to_int(int mtu)
{
switch (mtu) {
case OPA_MTU_8192: return 8192;
case OPA_MTU_10240: return 10240;
default: return -1;
}
}
/**
* This function is what we would push to the core layer if we wanted to be a
* "first class citizen". Instead we hide this here and rely on Verbs ULPs
* to blindly pass the MTU enum value from the PathRecord to us.
*
* The actual flag used to determine "8k MTU" will change and is currently
* unknown.
*/
static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
{
int val = opa_mtu_enum_to_int((int)mtu);
if (val > 0)
return val;
return ib_mtu_enum_to_int(mtu);
}
/**
* hfi1_modify_qp - modify the attributes of a queue pair
* @ibqp: the queue pair who's attributes we're modifying
* @attr: the new attributes
* @attr_mask: the mask of attributes to modify
* @udata: user data for libibverbs.so
*
* Returns 0 on success, otherwise returns an errno.
*/
int hfi1_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct hfi1_ibdev *dev = to_idev(ibqp->device);
struct hfi1_qp *qp = to_iqp(ibqp);
enum ib_qp_state cur_state, new_state;
struct ib_event ev;
int lastwqe = 0;
int mig = 0;
int ret;
u32 pmtu = 0; /* for gcc warning only */
struct hfi1_devdata *dd;
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_lock);
cur_state = attr_mask & IB_QP_CUR_STATE ?
attr->cur_qp_state : qp->state;
new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
attr_mask, IB_LINK_LAYER_UNSPECIFIED))
goto inval;
if (attr_mask & IB_QP_AV) {
if (attr->ah_attr.dlid >= HFI1_MULTICAST_LID_BASE)
goto inval;
if (hfi1_check_ah(qp->ibqp.device, &attr->ah_attr))
goto inval;
}
if (attr_mask & IB_QP_ALT_PATH) {
if (attr->alt_ah_attr.dlid >= HFI1_MULTICAST_LID_BASE)
goto inval;
if (hfi1_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
goto inval;
if (attr->alt_pkey_index >= hfi1_get_npkeys(dd_from_dev(dev)))
goto inval;
}
if (attr_mask & IB_QP_PKEY_INDEX)
if (attr->pkey_index >= hfi1_get_npkeys(dd_from_dev(dev)))
goto inval;
if (attr_mask & IB_QP_MIN_RNR_TIMER)
if (attr->min_rnr_timer > 31)
goto inval;
if (attr_mask & IB_QP_PORT)
if (qp->ibqp.qp_type == IB_QPT_SMI ||
qp->ibqp.qp_type == IB_QPT_GSI ||
attr->port_num == 0 ||
attr->port_num > ibqp->device->phys_port_cnt)
goto inval;
if (attr_mask & IB_QP_DEST_QPN)
if (attr->dest_qp_num > HFI1_QPN_MASK)
goto inval;
if (attr_mask & IB_QP_RETRY_CNT)
if (attr->retry_cnt > 7)
goto inval;
if (attr_mask & IB_QP_RNR_RETRY)
if (attr->rnr_retry > 7)
goto inval;
/*
* Don't allow invalid path_mtu values. OK to set greater
* than the active mtu (or even the max_cap, if we have tuned
* that to a small mtu. We'll set qp->path_mtu
* to the lesser of requested attribute mtu and active,
* for packetizing messages.
* Note that the QP port has to be set in INIT and MTU in RTR.
*/
if (attr_mask & IB_QP_PATH_MTU) {
int mtu, pidx = qp->port_num - 1;
dd = dd_from_dev(dev);
mtu = verbs_mtu_enum_to_int(ibqp->device, attr->path_mtu);
if (mtu == -1)
goto inval;
if (mtu > dd->pport[pidx].ibmtu)
pmtu = mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
else
pmtu = attr->path_mtu;
}
if (attr_mask & IB_QP_PATH_MIG_STATE) {
if (attr->path_mig_state == IB_MIG_REARM) {
if (qp->s_mig_state == IB_MIG_ARMED)
goto inval;
if (new_state != IB_QPS_RTS)
goto inval;
} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
if (qp->s_mig_state == IB_MIG_REARM)
goto inval;
if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
goto inval;
if (qp->s_mig_state == IB_MIG_ARMED)
mig = 1;
} else
goto inval;
}
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
if (attr->max_dest_rd_atomic > HFI1_MAX_RDMA_ATOMIC)
goto inval;
switch (new_state) {
case IB_QPS_RESET:
if (qp->state != IB_QPS_RESET) {
qp->state = IB_QPS_RESET;
flush_iowait(qp);
qp->s_flags &= ~(HFI1_S_TIMER | HFI1_S_ANY_WAIT);
spin_unlock(&qp->s_lock);
spin_unlock_irq(&qp->r_lock);
/* Stop the sending work queue and retry timer */
cancel_work_sync(&qp->s_iowait.iowork);
del_timer_sync(&qp->s_timer);
iowait_sdma_drain(&qp->s_iowait);
flush_tx_list(qp);
remove_qp(dev, qp);
wait_event(qp->wait, !atomic_read(&qp->refcount));
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_lock);
clear_mr_refs(qp, 1);
clear_ahg(qp);
reset_qp(qp, ibqp->qp_type);
}
break;
case IB_QPS_RTR:
/* Allow event to re-trigger if QP set to RTR more than once */
qp->r_flags &= ~HFI1_R_COMM_EST;
qp->state = new_state;
break;
case IB_QPS_SQD:
qp->s_draining = qp->s_last != qp->s_cur;
qp->state = new_state;
break;
case IB_QPS_SQE:
if (qp->ibqp.qp_type == IB_QPT_RC)
goto inval;
qp->state = new_state;
break;
case IB_QPS_ERR:
lastwqe = hfi1_error_qp(qp, IB_WC_WR_FLUSH_ERR);
break;
default:
qp->state = new_state;
break;
}
if (attr_mask & IB_QP_PKEY_INDEX)
qp->s_pkey_index = attr->pkey_index;
if (attr_mask & IB_QP_PORT)
qp->port_num = attr->port_num;
if (attr_mask & IB_QP_DEST_QPN)
qp->remote_qpn = attr->dest_qp_num;
if (attr_mask & IB_QP_SQ_PSN) {
qp->s_next_psn = attr->sq_psn & PSN_MODIFY_MASK;
qp->s_psn = qp->s_next_psn;
qp->s_sending_psn = qp->s_next_psn;
qp->s_last_psn = qp->s_next_psn - 1;
qp->s_sending_hpsn = qp->s_last_psn;
}
if (attr_mask & IB_QP_RQ_PSN)
qp->r_psn = attr->rq_psn & PSN_MODIFY_MASK;
if (attr_mask & IB_QP_ACCESS_FLAGS)
qp->qp_access_flags = attr->qp_access_flags;
if (attr_mask & IB_QP_AV) {
qp->remote_ah_attr = attr->ah_attr;
qp->s_srate = attr->ah_attr.static_rate;
qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
}
if (attr_mask & IB_QP_ALT_PATH) {
qp->alt_ah_attr = attr->alt_ah_attr;
qp->s_alt_pkey_index = attr->alt_pkey_index;
}
if (attr_mask & IB_QP_PATH_MIG_STATE) {
qp->s_mig_state = attr->path_mig_state;
if (mig) {
qp->remote_ah_attr = qp->alt_ah_attr;
qp->port_num = qp->alt_ah_attr.port_num;
qp->s_pkey_index = qp->s_alt_pkey_index;
qp->s_flags |= HFI1_S_AHG_CLEAR;
}
}
if (attr_mask & IB_QP_PATH_MTU) {
struct hfi1_ibport *ibp;
u8 sc, vl;
u32 mtu;
dd = dd_from_dev(dev);
ibp = &dd->pport[qp->port_num - 1].ibport_data;
sc = ibp->sl_to_sc[qp->remote_ah_attr.sl];
vl = sc_to_vlt(dd, sc);
mtu = verbs_mtu_enum_to_int(ibqp->device, pmtu);
if (vl < PER_VL_SEND_CONTEXTS)
mtu = min_t(u32, mtu, dd->vld[vl].mtu);
pmtu = mtu_to_enum(mtu, OPA_MTU_8192);
qp->path_mtu = pmtu;
qp->pmtu = mtu;
}
if (attr_mask & IB_QP_RETRY_CNT) {
qp->s_retry_cnt = attr->retry_cnt;
qp->s_retry = attr->retry_cnt;
}
if (attr_mask & IB_QP_RNR_RETRY) {
qp->s_rnr_retry_cnt = attr->rnr_retry;
qp->s_rnr_retry = attr->rnr_retry;
}
if (attr_mask & IB_QP_MIN_RNR_TIMER)
qp->r_min_rnr_timer = attr->min_rnr_timer;
if (attr_mask & IB_QP_TIMEOUT) {
qp->timeout = attr->timeout;
qp->timeout_jiffies =
usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1000UL);
}
if (attr_mask & IB_QP_QKEY)
qp->qkey = attr->qkey;
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
qp->s_max_rd_atomic = attr->max_rd_atomic;
spin_unlock(&qp->s_lock);
spin_unlock_irq(&qp->r_lock);
if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
insert_qp(dev, qp);
if (lastwqe) {
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
if (mig) {
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_PATH_MIG;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
ret = 0;
goto bail;
inval:
spin_unlock(&qp->s_lock);
spin_unlock_irq(&qp->r_lock);
ret = -EINVAL;
bail:
return ret;
}
int hfi1_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_qp_init_attr *init_attr)
{
struct hfi1_qp *qp = to_iqp(ibqp);
attr->qp_state = qp->state;
attr->cur_qp_state = attr->qp_state;
attr->path_mtu = qp->path_mtu;
attr->path_mig_state = qp->s_mig_state;
attr->qkey = qp->qkey;
attr->rq_psn = mask_psn(qp->r_psn);
attr->sq_psn = mask_psn(qp->s_next_psn);
attr->dest_qp_num = qp->remote_qpn;
attr->qp_access_flags = qp->qp_access_flags;
attr->cap.max_send_wr = qp->s_size - 1;
attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
attr->cap.max_send_sge = qp->s_max_sge;
attr->cap.max_recv_sge = qp->r_rq.max_sge;
attr->cap.max_inline_data = 0;
attr->ah_attr = qp->remote_ah_attr;
attr->alt_ah_attr = qp->alt_ah_attr;
attr->pkey_index = qp->s_pkey_index;
attr->alt_pkey_index = qp->s_alt_pkey_index;
attr->en_sqd_async_notify = 0;
attr->sq_draining = qp->s_draining;
attr->max_rd_atomic = qp->s_max_rd_atomic;
attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
attr->min_rnr_timer = qp->r_min_rnr_timer;
attr->port_num = qp->port_num;
attr->timeout = qp->timeout;
attr->retry_cnt = qp->s_retry_cnt;
attr->rnr_retry = qp->s_rnr_retry_cnt;
attr->alt_port_num = qp->alt_ah_attr.port_num;
attr->alt_timeout = qp->alt_timeout;
init_attr->event_handler = qp->ibqp.event_handler;
init_attr->qp_context = qp->ibqp.qp_context;
init_attr->send_cq = qp->ibqp.send_cq;
init_attr->recv_cq = qp->ibqp.recv_cq;
init_attr->srq = qp->ibqp.srq;
init_attr->cap = attr->cap;
if (qp->s_flags & HFI1_S_SIGNAL_REQ_WR)
init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
else
init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
init_attr->qp_type = qp->ibqp.qp_type;
init_attr->port_num = qp->port_num;
return 0;
}
/**
* hfi1_compute_aeth - compute the AETH (syndrome + MSN)
* @qp: the queue pair to compute the AETH for
*
* Returns the AETH.
*/
__be32 hfi1_compute_aeth(struct hfi1_qp *qp)
{
u32 aeth = qp->r_msn & HFI1_MSN_MASK;
if (qp->ibqp.srq) {
/*
* Shared receive queues don't generate credits.
* Set the credit field to the invalid value.
*/
aeth |= HFI1_AETH_CREDIT_INVAL << HFI1_AETH_CREDIT_SHIFT;
} else {
u32 min, max, x;
u32 credits;
struct hfi1_rwq *wq = qp->r_rq.wq;
u32 head;
u32 tail;
/* sanity check pointers before trusting them */
head = wq->head;
if (head >= qp->r_rq.size)
head = 0;
tail = wq->tail;
if (tail >= qp->r_rq.size)
tail = 0;
/*
* Compute the number of credits available (RWQEs).
* There is a small chance that the pair of reads are
* not atomic, which is OK, since the fuzziness is
* resolved as further ACKs go out.
*/
credits = head - tail;
if ((int)credits < 0)
credits += qp->r_rq.size;
/*
* Binary search the credit table to find the code to
* use.
*/
min = 0;
max = 31;
for (;;) {
x = (min + max) / 2;
if (credit_table[x] == credits)
break;
if (credit_table[x] > credits)
max = x;
else if (min == x)
break;
else
min = x;
}
aeth |= x << HFI1_AETH_CREDIT_SHIFT;
}
return cpu_to_be32(aeth);
}
/**
* hfi1_create_qp - create a queue pair for a device
* @ibpd: the protection domain who's device we create the queue pair for
* @init_attr: the attributes of the queue pair
* @udata: user data for libibverbs.so
*
* Returns the queue pair on success, otherwise returns an errno.
*
* Called by the ib_create_qp() core verbs function.
*/
struct ib_qp *hfi1_create_qp(struct ib_pd *ibpd,
struct ib_qp_init_attr *init_attr,
struct ib_udata *udata)
{
struct hfi1_qp *qp;
int err;
struct hfi1_swqe *swq = NULL;
struct hfi1_ibdev *dev;
struct hfi1_devdata *dd;
size_t sz;
size_t sg_list_sz;
struct ib_qp *ret;
if (init_attr->cap.max_send_sge > hfi1_max_sges ||
init_attr->cap.max_send_wr > hfi1_max_qp_wrs ||
init_attr->create_flags) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
/* Check receive queue parameters if no SRQ is specified. */
if (!init_attr->srq) {
if (init_attr->cap.max_recv_sge > hfi1_max_sges ||
init_attr->cap.max_recv_wr > hfi1_max_qp_wrs) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
if (init_attr->cap.max_send_sge +
init_attr->cap.max_send_wr +
init_attr->cap.max_recv_sge +
init_attr->cap.max_recv_wr == 0) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
}
switch (init_attr->qp_type) {
case IB_QPT_SMI:
case IB_QPT_GSI:
if (init_attr->port_num == 0 ||
init_attr->port_num > ibpd->device->phys_port_cnt) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
case IB_QPT_UC:
case IB_QPT_RC:
case IB_QPT_UD:
sz = sizeof(struct hfi1_sge) *
init_attr->cap.max_send_sge +
sizeof(struct hfi1_swqe);
swq = vmalloc((init_attr->cap.max_send_wr + 1) * sz);
if (swq == NULL) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
sz = sizeof(*qp);
sg_list_sz = 0;
if (init_attr->srq) {
struct hfi1_srq *srq = to_isrq(init_attr->srq);
if (srq->rq.max_sge > 1)
sg_list_sz = sizeof(*qp->r_sg_list) *
(srq->rq.max_sge - 1);
} else if (init_attr->cap.max_recv_sge > 1)
sg_list_sz = sizeof(*qp->r_sg_list) *
(init_attr->cap.max_recv_sge - 1);
qp = kzalloc(sz + sg_list_sz, GFP_KERNEL);
if (!qp) {
ret = ERR_PTR(-ENOMEM);
goto bail_swq;
}
RCU_INIT_POINTER(qp->next, NULL);
qp->s_hdr = kzalloc(sizeof(*qp->s_hdr), GFP_KERNEL);
if (!qp->s_hdr) {
ret = ERR_PTR(-ENOMEM);
goto bail_qp;
}
qp->timeout_jiffies =
usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1000UL);
if (init_attr->srq)
sz = 0;
else {
qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
sizeof(struct hfi1_rwqe);
qp->r_rq.wq = vmalloc_user(sizeof(struct hfi1_rwq) +
qp->r_rq.size * sz);
if (!qp->r_rq.wq) {
ret = ERR_PTR(-ENOMEM);
goto bail_qp;
}
}
/*
* ib_create_qp() will initialize qp->ibqp
* except for qp->ibqp.qp_num.
*/
spin_lock_init(&qp->r_lock);
spin_lock_init(&qp->s_lock);
spin_lock_init(&qp->r_rq.lock);
atomic_set(&qp->refcount, 0);
init_waitqueue_head(&qp->wait);
init_timer(&qp->s_timer);
qp->s_timer.data = (unsigned long)qp;
INIT_LIST_HEAD(&qp->rspwait);
qp->state = IB_QPS_RESET;
qp->s_wq = swq;
qp->s_size = init_attr->cap.max_send_wr + 1;
qp->s_max_sge = init_attr->cap.max_send_sge;
if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
qp->s_flags = HFI1_S_SIGNAL_REQ_WR;
dev = to_idev(ibpd->device);
dd = dd_from_dev(dev);
err = alloc_qpn(dd, &dev->qp_dev->qpn_table, init_attr->qp_type,
init_attr->port_num);
if (err < 0) {
ret = ERR_PTR(err);
vfree(qp->r_rq.wq);
goto bail_qp;
}
qp->ibqp.qp_num = err;
qp->port_num = init_attr->port_num;
reset_qp(qp, init_attr->qp_type);
break;
default:
/* Don't support raw QPs */
ret = ERR_PTR(-ENOSYS);
goto bail;
}
init_attr->cap.max_inline_data = 0;
/*
* Return the address of the RWQ as the offset to mmap.
* See hfi1_mmap() for details.
*/
if (udata && udata->outlen >= sizeof(__u64)) {
if (!qp->r_rq.wq) {
__u64 offset = 0;
err = ib_copy_to_udata(udata, &offset,
sizeof(offset));
if (err) {
ret = ERR_PTR(err);
goto bail_ip;
}
} else {
u32 s = sizeof(struct hfi1_rwq) + qp->r_rq.size * sz;
qp->ip = hfi1_create_mmap_info(dev, s,
ibpd->uobject->context,
qp->r_rq.wq);
if (!qp->ip) {
ret = ERR_PTR(-ENOMEM);
goto bail_ip;
}
err = ib_copy_to_udata(udata, &(qp->ip->offset),
sizeof(qp->ip->offset));
if (err) {
ret = ERR_PTR(err);
goto bail_ip;
}
}
}
spin_lock(&dev->n_qps_lock);
if (dev->n_qps_allocated == hfi1_max_qps) {
spin_unlock(&dev->n_qps_lock);
ret = ERR_PTR(-ENOMEM);
goto bail_ip;
}
dev->n_qps_allocated++;
spin_unlock(&dev->n_qps_lock);
if (qp->ip) {
spin_lock_irq(&dev->pending_lock);
list_add(&qp->ip->pending_mmaps, &dev->pending_mmaps);
spin_unlock_irq(&dev->pending_lock);
}
ret = &qp->ibqp;
/*
* We have our QP and its good, now keep track of what types of opcodes
* can be processed on this QP. We do this by keeping track of what the
* 3 high order bits of the opcode are.
*/
switch (init_attr->qp_type) {
case IB_QPT_SMI:
case IB_QPT_GSI:
case IB_QPT_UD:
qp->allowed_ops = IB_OPCODE_UD_SEND_ONLY & OPCODE_QP_MASK;
break;
case IB_QPT_RC:
qp->allowed_ops = IB_OPCODE_RC_SEND_ONLY & OPCODE_QP_MASK;
break;
case IB_QPT_UC:
qp->allowed_ops = IB_OPCODE_UC_SEND_ONLY & OPCODE_QP_MASK;
break;
default:
ret = ERR_PTR(-EINVAL);
goto bail_ip;
}
goto bail;
bail_ip:
if (qp->ip)
kref_put(&qp->ip->ref, hfi1_release_mmap_info);
else
vfree(qp->r_rq.wq);
free_qpn(&dev->qp_dev->qpn_table, qp->ibqp.qp_num);
bail_qp:
kfree(qp->s_hdr);
kfree(qp);
bail_swq:
vfree(swq);
bail:
return ret;
}
/**
* hfi1_destroy_qp - destroy a queue pair
* @ibqp: the queue pair to destroy
*
* Returns 0 on success.
*
* Note that this can be called while the QP is actively sending or
* receiving!
*/
int hfi1_destroy_qp(struct ib_qp *ibqp)
{
struct hfi1_qp *qp = to_iqp(ibqp);
struct hfi1_ibdev *dev = to_idev(ibqp->device);
/* Make sure HW and driver activity is stopped. */
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_lock);
if (qp->state != IB_QPS_RESET) {
qp->state = IB_QPS_RESET;
flush_iowait(qp);
qp->s_flags &= ~(HFI1_S_TIMER | HFI1_S_ANY_WAIT);
spin_unlock(&qp->s_lock);
spin_unlock_irq(&qp->r_lock);
cancel_work_sync(&qp->s_iowait.iowork);
del_timer_sync(&qp->s_timer);
iowait_sdma_drain(&qp->s_iowait);
flush_tx_list(qp);
remove_qp(dev, qp);
wait_event(qp->wait, !atomic_read(&qp->refcount));
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_lock);
clear_mr_refs(qp, 1);
clear_ahg(qp);
}
spin_unlock(&qp->s_lock);
spin_unlock_irq(&qp->r_lock);
/* all user's cleaned up, mark it available */
free_qpn(&dev->qp_dev->qpn_table, qp->ibqp.qp_num);
spin_lock(&dev->n_qps_lock);
dev->n_qps_allocated--;
spin_unlock(&dev->n_qps_lock);
if (qp->ip)
kref_put(&qp->ip->ref, hfi1_release_mmap_info);
else
vfree(qp->r_rq.wq);
vfree(qp->s_wq);
kfree(qp->s_hdr);
kfree(qp);
return 0;
}
/**
* init_qpn_table - initialize the QP number table for a device
* @qpt: the QPN table
*/
static int init_qpn_table(struct hfi1_devdata *dd, struct hfi1_qpn_table *qpt)
{
u32 offset, qpn, i;
struct qpn_map *map;
int ret = 0;
spin_lock_init(&qpt->lock);
qpt->last = 0;
qpt->incr = 1 << dd->qos_shift;
/* insure we don't assign QPs from KDETH 64K window */
qpn = kdeth_qp << 16;
qpt->nmaps = qpn / BITS_PER_PAGE;
/* This should always be zero */
offset = qpn & BITS_PER_PAGE_MASK;
map = &qpt->map[qpt->nmaps];
dd_dev_info(dd, "Reserving QPNs for KDETH window from 0x%x to 0x%x\n",
qpn, qpn + 65535);
for (i = 0; i < 65536; i++) {
if (!map->page) {
get_map_page(qpt, map);
if (!map->page) {
ret = -ENOMEM;
break;
}
}
set_bit(offset, map->page);
offset++;
if (offset == BITS_PER_PAGE) {
/* next page */
qpt->nmaps++;
map++;
offset = 0;
}
}
return ret;
}
/**
* free_qpn_table - free the QP number table for a device
* @qpt: the QPN table
*/
static void free_qpn_table(struct hfi1_qpn_table *qpt)
{
int i;
for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
free_page((unsigned long) qpt->map[i].page);
}
/**
* hfi1_get_credit - flush the send work queue of a QP
* @qp: the qp who's send work queue to flush
* @aeth: the Acknowledge Extended Transport Header
*
* The QP s_lock should be held.
*/
void hfi1_get_credit(struct hfi1_qp *qp, u32 aeth)
{
u32 credit = (aeth >> HFI1_AETH_CREDIT_SHIFT) & HFI1_AETH_CREDIT_MASK;
/*
* If the credit is invalid, we can send
* as many packets as we like. Otherwise, we have to
* honor the credit field.
*/
if (credit == HFI1_AETH_CREDIT_INVAL) {
if (!(qp->s_flags & HFI1_S_UNLIMITED_CREDIT)) {
qp->s_flags |= HFI1_S_UNLIMITED_CREDIT;
if (qp->s_flags & HFI1_S_WAIT_SSN_CREDIT) {
qp->s_flags &= ~HFI1_S_WAIT_SSN_CREDIT;
hfi1_schedule_send(qp);
}
}
} else if (!(qp->s_flags & HFI1_S_UNLIMITED_CREDIT)) {
/* Compute new LSN (i.e., MSN + credit) */
credit = (aeth + credit_table[credit]) & HFI1_MSN_MASK;
if (cmp_msn(credit, qp->s_lsn) > 0) {
qp->s_lsn = credit;
if (qp->s_flags & HFI1_S_WAIT_SSN_CREDIT) {
qp->s_flags &= ~HFI1_S_WAIT_SSN_CREDIT;
hfi1_schedule_send(qp);
}
}
}
}
void hfi1_qp_wakeup(struct hfi1_qp *qp, u32 flag)
{
unsigned long flags;
spin_lock_irqsave(&qp->s_lock, flags);
if (qp->s_flags & flag) {
qp->s_flags &= ~flag;
trace_hfi1_qpwakeup(qp, flag);
hfi1_schedule_send(qp);
}
spin_unlock_irqrestore(&qp->s_lock, flags);
/* Notify hfi1_destroy_qp() if it is waiting. */
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
static int iowait_sleep(
struct sdma_engine *sde,
struct iowait *wait,
struct sdma_txreq *stx,
unsigned seq)
{
struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
struct hfi1_qp *qp;
unsigned long flags;
int ret = 0;
struct hfi1_ibdev *dev;
qp = tx->qp;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
/*
* If we couldn't queue the DMA request, save the info
* and try again later rather than destroying the
* buffer and undoing the side effects of the copy.
*/
/* Make a common routine? */
dev = &sde->dd->verbs_dev;
list_add_tail(&stx->list, &wait->tx_head);
write_seqlock(&dev->iowait_lock);
if (sdma_progress(sde, seq, stx))
goto eagain;
if (list_empty(&qp->s_iowait.list)) {
struct hfi1_ibport *ibp =
to_iport(qp->ibqp.device, qp->port_num);
ibp->n_dmawait++;
qp->s_flags |= HFI1_S_WAIT_DMA_DESC;
list_add_tail(&qp->s_iowait.list, &sde->dmawait);
trace_hfi1_qpsleep(qp, HFI1_S_WAIT_DMA_DESC);
atomic_inc(&qp->refcount);
}
write_sequnlock(&dev->iowait_lock);
qp->s_flags &= ~HFI1_S_BUSY;
spin_unlock_irqrestore(&qp->s_lock, flags);
ret = -EBUSY;
} else {
spin_unlock_irqrestore(&qp->s_lock, flags);
hfi1_put_txreq(tx);
}
return ret;
eagain:
write_sequnlock(&dev->iowait_lock);
spin_unlock_irqrestore(&qp->s_lock, flags);
list_del_init(&stx->list);
return -EAGAIN;
}
static void iowait_wakeup(struct iowait *wait, int reason)
{
struct hfi1_qp *qp = container_of(wait, struct hfi1_qp, s_iowait);
WARN_ON(reason != SDMA_AVAIL_REASON);
hfi1_qp_wakeup(qp, HFI1_S_WAIT_DMA_DESC);
}
int hfi1_qp_init(struct hfi1_ibdev *dev)
{
struct hfi1_devdata *dd = dd_from_dev(dev);
int i;
int ret = -ENOMEM;
/* allocate parent object */
dev->qp_dev = kzalloc(sizeof(*dev->qp_dev), GFP_KERNEL);
if (!dev->qp_dev)
goto nomem;
/* allocate hash table */
dev->qp_dev->qp_table_size = hfi1_qp_table_size;
dev->qp_dev->qp_table_bits = ilog2(hfi1_qp_table_size);
dev->qp_dev->qp_table =
kmalloc(dev->qp_dev->qp_table_size *
sizeof(*dev->qp_dev->qp_table),
GFP_KERNEL);
if (!dev->qp_dev->qp_table)
goto nomem;
for (i = 0; i < dev->qp_dev->qp_table_size; i++)
RCU_INIT_POINTER(dev->qp_dev->qp_table[i], NULL);
spin_lock_init(&dev->qp_dev->qpt_lock);
/* initialize qpn map */
ret = init_qpn_table(dd, &dev->qp_dev->qpn_table);
if (ret)
goto nomem;
return ret;
nomem:
if (dev->qp_dev) {
kfree(dev->qp_dev->qp_table);
free_qpn_table(&dev->qp_dev->qpn_table);
kfree(dev->qp_dev);
}
return ret;
}
void hfi1_qp_exit(struct hfi1_ibdev *dev)
{
struct hfi1_devdata *dd = dd_from_dev(dev);
u32 qps_inuse;
qps_inuse = free_all_qps(dd);
if (qps_inuse)
dd_dev_err(dd, "QP memory leak! %u still in use\n",
qps_inuse);
if (dev->qp_dev) {
kfree(dev->qp_dev->qp_table);
free_qpn_table(&dev->qp_dev->qpn_table);
kfree(dev->qp_dev);
}
}
/**
*
* qp_to_sdma_engine - map a qp to a send engine
* @qp: the QP
* @sc5: the 5 bit sc
*
* Return:
* A send engine for the qp or NULL for SMI type qp.
*/
struct sdma_engine *qp_to_sdma_engine(struct hfi1_qp *qp, u8 sc5)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct sdma_engine *sde;
if (!(dd->flags & HFI1_HAS_SEND_DMA))
return NULL;
switch (qp->ibqp.qp_type) {
case IB_QPT_UC:
case IB_QPT_RC:
break;
case IB_QPT_SMI:
return NULL;
default:
break;
}
sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
return sde;
}
struct qp_iter {
struct hfi1_ibdev *dev;
struct hfi1_qp *qp;
int specials;
int n;
};
struct qp_iter *qp_iter_init(struct hfi1_ibdev *dev)
{
struct qp_iter *iter;
iter = kzalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return NULL;
iter->dev = dev;
iter->specials = dev->ibdev.phys_port_cnt * 2;
if (qp_iter_next(iter)) {
kfree(iter);
return NULL;
}
return iter;
}
int qp_iter_next(struct qp_iter *iter)
{
struct hfi1_ibdev *dev = iter->dev;
int n = iter->n;
int ret = 1;
struct hfi1_qp *pqp = iter->qp;
struct hfi1_qp *qp;
/*
* The approach is to consider the special qps
* as an additional table entries before the
* real hash table. Since the qp code sets
* the qp->next hash link to NULL, this works just fine.
*
* iter->specials is 2 * # ports
*
* n = 0..iter->specials is the special qp indices
*
* n = iter->specials..dev->qp_dev->qp_table_size+iter->specials are
* the potential hash bucket entries
*
*/
for (; n < dev->qp_dev->qp_table_size + iter->specials; n++) {
if (pqp) {
qp = rcu_dereference(pqp->next);
} else {
if (n < iter->specials) {
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
int pidx;
pidx = n % dev->ibdev.phys_port_cnt;
ppd = &dd_from_dev(dev)->pport[pidx];
ibp = &ppd->ibport_data;
if (!(n & 1))
qp = rcu_dereference(ibp->qp[0]);
else
qp = rcu_dereference(ibp->qp[1]);
} else {
qp = rcu_dereference(
dev->qp_dev->qp_table[
(n - iter->specials)]);
}
}
pqp = qp;
if (qp) {
iter->qp = qp;
iter->n = n;
return 0;
}
}
return ret;
}
static const char * const qp_type_str[] = {
"SMI", "GSI", "RC", "UC", "UD",
};
static int qp_idle(struct hfi1_qp *qp)
{
return
qp->s_last == qp->s_acked &&
qp->s_acked == qp->s_cur &&
qp->s_cur == qp->s_tail &&
qp->s_tail == qp->s_head;
}
void qp_iter_print(struct seq_file *s, struct qp_iter *iter)
{
struct hfi1_swqe *wqe;
struct hfi1_qp *qp = iter->qp;
struct sdma_engine *sde;
sde = qp_to_sdma_engine(qp, qp->s_sc);
wqe = get_swqe_ptr(qp, qp->s_last);
seq_printf(s,
"N %d %s QP%u R %u %s %u %u %u f=%x %u %u %u %u %u PSN %x %x %x %x %x (%u %u %u %u %u %u) QP%u LID %x SL %u MTU %d %u %u %u SDE %p,%u\n",
iter->n,
qp_idle(qp) ? "I" : "B",
qp->ibqp.qp_num,
atomic_read(&qp->refcount),
qp_type_str[qp->ibqp.qp_type],
qp->state,
wqe ? wqe->wr.opcode : 0,
qp->s_hdrwords,
qp->s_flags,
atomic_read(&qp->s_iowait.sdma_busy),
!list_empty(&qp->s_iowait.list),
qp->timeout,
wqe ? wqe->ssn : 0,
qp->s_lsn,
qp->s_last_psn,
qp->s_psn, qp->s_next_psn,
qp->s_sending_psn, qp->s_sending_hpsn,
qp->s_last, qp->s_acked, qp->s_cur,
qp->s_tail, qp->s_head, qp->s_size,
qp->remote_qpn,
qp->remote_ah_attr.dlid,
qp->remote_ah_attr.sl,
qp->pmtu,
qp->s_retry_cnt,
qp->timeout,
qp->s_rnr_retry_cnt,
sde,
sde ? sde->this_idx : 0);
}
void qp_comm_est(struct hfi1_qp *qp)
{
qp->r_flags |= HFI1_R_COMM_EST;
if (qp->ibqp.event_handler) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_COMM_EST;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
}