blob: 20b878d35ea2eca2929d14af75243f360e330a59 [file] [log] [blame]
/*
* sca3000_ring.c -- support VTI sca3000 series accelerometers via SPI
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
*
*/
#include <linux/interrupt.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include "../ring_hw.h"
#include "sca3000.h"
/* RFC / future work
*
* The internal ring buffer doesn't actually change what it holds depending
* on which signals are enabled etc, merely whether you can read them.
* As such the scan mode selection is somewhat different than for a software
* ring buffer and changing it actually covers any data already in the buffer.
* Currently scan elements aren't configured so it doesn't matter.
*/
static int sca3000_read_data(struct sca3000_state *st,
u8 reg_address_high,
u8 **rx_p,
int len)
{
int ret;
struct spi_transfer xfer[2] = {
{
.len = 1,
.tx_buf = st->tx,
}, {
.len = len,
}
};
*rx_p = kmalloc(len, GFP_KERNEL);
if (*rx_p == NULL) {
ret = -ENOMEM;
goto error_ret;
}
xfer[1].rx_buf = *rx_p;
st->tx[0] = SCA3000_READ_REG(reg_address_high);
ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
if (ret) {
dev_err(get_device(&st->us->dev), "problem reading register");
goto error_free_rx;
}
return 0;
error_free_rx:
kfree(*rx_p);
error_ret:
return ret;
}
/**
* sca3000_read_first_n_hw_rb() - main ring access, pulls data from ring
* @r: the ring
* @count: number of samples to try and pull
* @data: output the actual samples pulled from the hw ring
*
* Currently does not provide timestamps. As the hardware doesn't add them they
* can only be inferred approximately from ring buffer events such as 50% full
* and knowledge of when buffer was last emptied. This is left to userspace.
**/
static int sca3000_read_first_n_hw_rb(struct iio_buffer *r,
size_t count, char __user *buf)
{
struct iio_hw_buffer *hw_ring = iio_to_hw_buf(r);
struct iio_dev *indio_dev = hw_ring->private;
struct sca3000_state *st = iio_priv(indio_dev);
u8 *rx;
int ret, i, num_available, num_read = 0;
int bytes_per_sample = 1;
if (st->bpse == 11)
bytes_per_sample = 2;
mutex_lock(&st->lock);
if (count % bytes_per_sample) {
ret = -EINVAL;
goto error_ret;
}
ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_BUF_COUNT, 1);
if (ret)
goto error_ret;
else
num_available = st->rx[0];
/*
* num_available is the total number of samples available
* i.e. number of time points * number of channels.
*/
if (count > num_available * bytes_per_sample)
num_read = num_available * bytes_per_sample;
else
num_read = count;
ret = sca3000_read_data(st,
SCA3000_REG_ADDR_RING_OUT,
&rx, num_read);
if (ret)
goto error_ret;
for (i = 0; i < num_read / sizeof(u16); i++)
*(((u16 *)rx) + i) = be16_to_cpup((__be16 *)rx + i);
if (copy_to_user(buf, rx, num_read))
ret = -EFAULT;
kfree(rx);
r->stufftoread = 0;
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : num_read;
}
static size_t sca3000_ring_buf_data_available(struct iio_buffer *r)
{
return r->stufftoread ? r->watermark : 0;
}
/**
* sca3000_query_ring_int() is the hardware ring status interrupt enabled
**/
static ssize_t sca3000_query_ring_int(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret, val;
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct sca3000_state *st = iio_priv(indio_dev);
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
val = st->rx[0];
mutex_unlock(&st->lock);
if (ret)
return ret;
return sprintf(buf, "%d\n", !!(val & this_attr->address));
}
/**
* sca3000_set_ring_int() set state of ring status interrupt
**/
static ssize_t sca3000_set_ring_int(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct sca3000_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
u8 val;
int ret;
mutex_lock(&st->lock);
ret = kstrtou8(buf, 10, &val);
if (ret)
goto error_ret;
ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
if (ret)
goto error_ret;
if (val)
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_INT_MASK,
st->rx[0] | this_attr->address);
else
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_INT_MASK,
st->rx[0] & ~this_attr->address);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static IIO_DEVICE_ATTR(50_percent, S_IRUGO | S_IWUSR,
sca3000_query_ring_int,
sca3000_set_ring_int,
SCA3000_INT_MASK_RING_HALF);
static IIO_DEVICE_ATTR(75_percent, S_IRUGO | S_IWUSR,
sca3000_query_ring_int,
sca3000_set_ring_int,
SCA3000_INT_MASK_RING_THREE_QUARTER);
static ssize_t sca3000_show_buffer_scale(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct sca3000_state *st = iio_priv(indio_dev);
return sprintf(buf, "0.%06d\n", 4 * st->info->scale);
}
static IIO_DEVICE_ATTR(in_accel_scale,
S_IRUGO,
sca3000_show_buffer_scale,
NULL,
0);
/*
* Ring buffer attributes
* This device is a bit unusual in that the sampling frequency and bpse
* only apply to the ring buffer. At all times full rate and accuracy
* is available via direct reading from registers.
*/
static const struct attribute *sca3000_ring_attributes[] = {
&iio_dev_attr_50_percent.dev_attr.attr,
&iio_dev_attr_75_percent.dev_attr.attr,
&iio_dev_attr_in_accel_scale.dev_attr.attr,
NULL,
};
static struct iio_buffer *sca3000_rb_allocate(struct iio_dev *indio_dev)
{
struct iio_buffer *buf;
struct iio_hw_buffer *ring;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
return NULL;
ring->private = indio_dev;
buf = &ring->buf;
buf->stufftoread = 0;
buf->length = 64;
buf->attrs = sca3000_ring_attributes;
iio_buffer_init(buf);
return buf;
}
static void sca3000_ring_release(struct iio_buffer *r)
{
kfree(iio_to_hw_buf(r));
}
static const struct iio_buffer_access_funcs sca3000_ring_access_funcs = {
.read_first_n = &sca3000_read_first_n_hw_rb,
.data_available = sca3000_ring_buf_data_available,
.release = sca3000_ring_release,
.modes = INDIO_BUFFER_HARDWARE,
};
int sca3000_configure_ring(struct iio_dev *indio_dev)
{
struct iio_buffer *buffer;
buffer = sca3000_rb_allocate(indio_dev);
if (!buffer)
return -ENOMEM;
indio_dev->modes |= INDIO_BUFFER_HARDWARE;
indio_dev->buffer->access = &sca3000_ring_access_funcs;
iio_device_attach_buffer(indio_dev, buffer);
return 0;
}
void sca3000_unconfigure_ring(struct iio_dev *indio_dev)
{
iio_buffer_put(indio_dev->buffer);
}
static inline
int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
if (ret)
goto error_ret;
if (state) {
dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_MODE,
(st->rx[0] | SCA3000_RING_BUF_ENABLE));
} else
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_MODE,
(st->rx[0] & ~SCA3000_RING_BUF_ENABLE));
error_ret:
mutex_unlock(&st->lock);
return ret;
}
/**
* sca3000_hw_ring_preenable() hw ring buffer preenable function
*
* Very simple enable function as the chip will allows normal reads
* during ring buffer operation so as long as it is indeed running
* before we notify the core, the precise ordering does not matter.
**/
static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
{
return __sca3000_hw_ring_state_set(indio_dev, 1);
}
static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
{
return __sca3000_hw_ring_state_set(indio_dev, 0);
}
static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
.preenable = &sca3000_hw_ring_preenable,
.postdisable = &sca3000_hw_ring_postdisable,
};
void sca3000_register_ring_funcs(struct iio_dev *indio_dev)
{
indio_dev->setup_ops = &sca3000_ring_setup_ops;
}
/**
* sca3000_ring_int_process() ring specific interrupt handling.
*
* This is only split from the main interrupt handler so as to
* reduce the amount of code if the ring buffer is not enabled.
**/
void sca3000_ring_int_process(u8 val, struct iio_buffer *ring)
{
if (val & (SCA3000_INT_STATUS_THREE_QUARTERS |
SCA3000_INT_STATUS_HALF)) {
ring->stufftoread = true;
wake_up_interruptible(&ring->pollq);
}
}