blob: 9733b31a780d380fd2bfd550efe155943b0fdb34 [file] [log] [blame]
/*
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
Based on the original rt2800pci.c and rt2800usb.c.
Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
Module: rt2800lib
Abstract: rt2800 generic device routines.
*/
#include <linux/crc-ccitt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "rt2x00.h"
#include "rt2800lib.h"
#include "rt2800.h"
/*
* Register access.
* All access to the CSR registers will go through the methods
* rt2800_register_read and rt2800_register_write.
* BBP and RF register require indirect register access,
* and use the CSR registers BBPCSR and RFCSR to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
* The _lock versions must be used if you already hold the csr_mutex
*/
#define WAIT_FOR_BBP(__dev, __reg) \
rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RFCSR(__dev, __reg) \
rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
H2M_MAILBOX_CSR_OWNER, (__reg))
static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
{
/* check for rt2872 on SoC */
if (!rt2x00_is_soc(rt2x00dev) ||
!rt2x00_rt(rt2x00dev, RT2872))
return false;
/* we know for sure that these rf chipsets are used on rt305x boards */
if (rt2x00_rf(rt2x00dev, RF3020) ||
rt2x00_rf(rt2x00dev, RF3021) ||
rt2x00_rf(rt2x00dev, RF3022))
return true;
rt2x00_warn(rt2x00dev, "Unknown RF chipset on rt305x\n");
return false;
}
static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
WAIT_FOR_BBP(rt2x00dev, &reg);
}
*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RFCSR becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RFCSR becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
*/
if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
WAIT_FOR_RFCSR(rt2x00dev, &reg);
}
*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RF becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_RF(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
rt2x00_rf_write(rt2x00dev, word, value);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static const unsigned int rt2800_eeprom_map[EEPROM_WORD_COUNT] = {
[EEPROM_CHIP_ID] = 0x0000,
[EEPROM_VERSION] = 0x0001,
[EEPROM_MAC_ADDR_0] = 0x0002,
[EEPROM_MAC_ADDR_1] = 0x0003,
[EEPROM_MAC_ADDR_2] = 0x0004,
[EEPROM_NIC_CONF0] = 0x001a,
[EEPROM_NIC_CONF1] = 0x001b,
[EEPROM_FREQ] = 0x001d,
[EEPROM_LED_AG_CONF] = 0x001e,
[EEPROM_LED_ACT_CONF] = 0x001f,
[EEPROM_LED_POLARITY] = 0x0020,
[EEPROM_NIC_CONF2] = 0x0021,
[EEPROM_LNA] = 0x0022,
[EEPROM_RSSI_BG] = 0x0023,
[EEPROM_RSSI_BG2] = 0x0024,
[EEPROM_TXMIXER_GAIN_BG] = 0x0024, /* overlaps with RSSI_BG2 */
[EEPROM_RSSI_A] = 0x0025,
[EEPROM_RSSI_A2] = 0x0026,
[EEPROM_TXMIXER_GAIN_A] = 0x0026, /* overlaps with RSSI_A2 */
[EEPROM_EIRP_MAX_TX_POWER] = 0x0027,
[EEPROM_TXPOWER_DELTA] = 0x0028,
[EEPROM_TXPOWER_BG1] = 0x0029,
[EEPROM_TXPOWER_BG2] = 0x0030,
[EEPROM_TSSI_BOUND_BG1] = 0x0037,
[EEPROM_TSSI_BOUND_BG2] = 0x0038,
[EEPROM_TSSI_BOUND_BG3] = 0x0039,
[EEPROM_TSSI_BOUND_BG4] = 0x003a,
[EEPROM_TSSI_BOUND_BG5] = 0x003b,
[EEPROM_TXPOWER_A1] = 0x003c,
[EEPROM_TXPOWER_A2] = 0x0053,
[EEPROM_TSSI_BOUND_A1] = 0x006a,
[EEPROM_TSSI_BOUND_A2] = 0x006b,
[EEPROM_TSSI_BOUND_A3] = 0x006c,
[EEPROM_TSSI_BOUND_A4] = 0x006d,
[EEPROM_TSSI_BOUND_A5] = 0x006e,
[EEPROM_TXPOWER_BYRATE] = 0x006f,
[EEPROM_BBP_START] = 0x0078,
};
static const unsigned int rt2800_eeprom_map_ext[EEPROM_WORD_COUNT] = {
[EEPROM_CHIP_ID] = 0x0000,
[EEPROM_VERSION] = 0x0001,
[EEPROM_MAC_ADDR_0] = 0x0002,
[EEPROM_MAC_ADDR_1] = 0x0003,
[EEPROM_MAC_ADDR_2] = 0x0004,
[EEPROM_NIC_CONF0] = 0x001a,
[EEPROM_NIC_CONF1] = 0x001b,
[EEPROM_NIC_CONF2] = 0x001c,
[EEPROM_EIRP_MAX_TX_POWER] = 0x0020,
[EEPROM_FREQ] = 0x0022,
[EEPROM_LED_AG_CONF] = 0x0023,
[EEPROM_LED_ACT_CONF] = 0x0024,
[EEPROM_LED_POLARITY] = 0x0025,
[EEPROM_LNA] = 0x0026,
[EEPROM_EXT_LNA2] = 0x0027,
[EEPROM_RSSI_BG] = 0x0028,
[EEPROM_RSSI_BG2] = 0x0029,
[EEPROM_RSSI_A] = 0x002a,
[EEPROM_RSSI_A2] = 0x002b,
[EEPROM_TXPOWER_BG1] = 0x0030,
[EEPROM_TXPOWER_BG2] = 0x0037,
[EEPROM_EXT_TXPOWER_BG3] = 0x003e,
[EEPROM_TSSI_BOUND_BG1] = 0x0045,
[EEPROM_TSSI_BOUND_BG2] = 0x0046,
[EEPROM_TSSI_BOUND_BG3] = 0x0047,
[EEPROM_TSSI_BOUND_BG4] = 0x0048,
[EEPROM_TSSI_BOUND_BG5] = 0x0049,
[EEPROM_TXPOWER_A1] = 0x004b,
[EEPROM_TXPOWER_A2] = 0x0065,
[EEPROM_EXT_TXPOWER_A3] = 0x007f,
[EEPROM_TSSI_BOUND_A1] = 0x009a,
[EEPROM_TSSI_BOUND_A2] = 0x009b,
[EEPROM_TSSI_BOUND_A3] = 0x009c,
[EEPROM_TSSI_BOUND_A4] = 0x009d,
[EEPROM_TSSI_BOUND_A5] = 0x009e,
[EEPROM_TXPOWER_BYRATE] = 0x00a0,
};
static unsigned int rt2800_eeprom_word_index(struct rt2x00_dev *rt2x00dev,
const enum rt2800_eeprom_word word)
{
const unsigned int *map;
unsigned int index;
if (WARN_ONCE(word >= EEPROM_WORD_COUNT,
"%s: invalid EEPROM word %d\n",
wiphy_name(rt2x00dev->hw->wiphy), word))
return 0;
if (rt2x00_rt(rt2x00dev, RT3593))
map = rt2800_eeprom_map_ext;
else
map = rt2800_eeprom_map;
index = map[word];
/* Index 0 is valid only for EEPROM_CHIP_ID.
* Otherwise it means that the offset of the
* given word is not initialized in the map,
* or that the field is not usable on the
* actual chipset.
*/
WARN_ONCE(word != EEPROM_CHIP_ID && index == 0,
"%s: invalid access of EEPROM word %d\n",
wiphy_name(rt2x00dev->hw->wiphy), word);
return index;
}
static void *rt2800_eeprom_addr(struct rt2x00_dev *rt2x00dev,
const enum rt2800_eeprom_word word)
{
unsigned int index;
index = rt2800_eeprom_word_index(rt2x00dev, word);
return rt2x00_eeprom_addr(rt2x00dev, index);
}
static void rt2800_eeprom_read(struct rt2x00_dev *rt2x00dev,
const enum rt2800_eeprom_word word, u16 *data)
{
unsigned int index;
index = rt2800_eeprom_word_index(rt2x00dev, word);
rt2x00_eeprom_read(rt2x00dev, index, data);
}
static void rt2800_eeprom_write(struct rt2x00_dev *rt2x00dev,
const enum rt2800_eeprom_word word, u16 data)
{
unsigned int index;
index = rt2800_eeprom_word_index(rt2x00dev, word);
rt2x00_eeprom_write(rt2x00dev, index, data);
}
static void rt2800_eeprom_read_from_array(struct rt2x00_dev *rt2x00dev,
const enum rt2800_eeprom_word array,
unsigned int offset,
u16 *data)
{
unsigned int index;
index = rt2800_eeprom_word_index(rt2x00dev, array);
rt2x00_eeprom_read(rt2x00dev, index + offset, data);
}
static int rt2800_enable_wlan_rt3290(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
int i, count;
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
if (rt2x00_get_field32(reg, WLAN_EN))
return 0;
rt2x00_set_field32(&reg, WLAN_GPIO_OUT_OE_BIT_ALL, 0xff);
rt2x00_set_field32(&reg, FRC_WL_ANT_SET, 1);
rt2x00_set_field32(&reg, WLAN_CLK_EN, 0);
rt2x00_set_field32(&reg, WLAN_EN, 1);
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
udelay(REGISTER_BUSY_DELAY);
count = 0;
do {
/*
* Check PLL_LD & XTAL_RDY.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, CMB_CTRL, &reg);
if (rt2x00_get_field32(reg, PLL_LD) &&
rt2x00_get_field32(reg, XTAL_RDY))
break;
udelay(REGISTER_BUSY_DELAY);
}
if (i >= REGISTER_BUSY_COUNT) {
if (count >= 10)
return -EIO;
rt2800_register_write(rt2x00dev, 0x58, 0x018);
udelay(REGISTER_BUSY_DELAY);
rt2800_register_write(rt2x00dev, 0x58, 0x418);
udelay(REGISTER_BUSY_DELAY);
rt2800_register_write(rt2x00dev, 0x58, 0x618);
udelay(REGISTER_BUSY_DELAY);
count++;
} else {
count = 0;
}
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 0);
rt2x00_set_field32(&reg, WLAN_CLK_EN, 1);
rt2x00_set_field32(&reg, WLAN_RESET, 1);
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
udelay(10);
rt2x00_set_field32(&reg, WLAN_RESET, 0);
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
udelay(10);
rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, 0x7fffffff);
} while (count != 0);
return 0;
}
void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
const u8 command, const u8 token,
const u8 arg0, const u8 arg1)
{
u32 reg;
/*
* SOC devices don't support MCU requests.
*/
if (rt2x00_is_soc(rt2x00dev))
return;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the MCU becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
reg = 0;
rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
EXPORT_SYMBOL_GPL(rt2800_mcu_request);
int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i = 0;
u32 reg;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
if (reg && reg != ~0)
return 0;
msleep(1);
}
rt2x00_err(rt2x00dev, "Unstable hardware\n");
return -EBUSY;
}
EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u32 reg;
/*
* Some devices are really slow to respond here. Wait a whole second
* before timing out.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
!rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
return 0;
msleep(10);
}
rt2x00_err(rt2x00dev, "WPDMA TX/RX busy [0x%08x]\n", reg);
return -EACCES;
}
EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_disable_wpdma);
void rt2800_get_txwi_rxwi_size(struct rt2x00_dev *rt2x00dev,
unsigned short *txwi_size,
unsigned short *rxwi_size)
{
switch (rt2x00dev->chip.rt) {
case RT3593:
*txwi_size = TXWI_DESC_SIZE_4WORDS;
*rxwi_size = RXWI_DESC_SIZE_5WORDS;
break;
case RT5592:
*txwi_size = TXWI_DESC_SIZE_5WORDS;
*rxwi_size = RXWI_DESC_SIZE_6WORDS;
break;
default:
*txwi_size = TXWI_DESC_SIZE_4WORDS;
*rxwi_size = RXWI_DESC_SIZE_4WORDS;
break;
}
}
EXPORT_SYMBOL_GPL(rt2800_get_txwi_rxwi_size);
static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
{
u16 fw_crc;
u16 crc;
/*
* The last 2 bytes in the firmware array are the crc checksum itself,
* this means that we should never pass those 2 bytes to the crc
* algorithm.
*/
fw_crc = (data[len - 2] << 8 | data[len - 1]);
/*
* Use the crc ccitt algorithm.
* This will return the same value as the legacy driver which
* used bit ordering reversion on the both the firmware bytes
* before input input as well as on the final output.
* Obviously using crc ccitt directly is much more efficient.
*/
crc = crc_ccitt(~0, data, len - 2);
/*
* There is a small difference between the crc-itu-t + bitrev and
* the crc-ccitt crc calculation. In the latter method the 2 bytes
* will be swapped, use swab16 to convert the crc to the correct
* value.
*/
crc = swab16(crc);
return fw_crc == crc;
}
int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
size_t offset = 0;
size_t fw_len;
bool multiple;
/*
* PCI(e) & SOC devices require firmware with a length
* of 8kb. USB devices require firmware files with a length
* of 4kb. Certain USB chipsets however require different firmware,
* which Ralink only provides attached to the original firmware
* file. Thus for USB devices, firmware files have a length
* which is a multiple of 4kb. The firmware for rt3290 chip also
* have a length which is a multiple of 4kb.
*/
if (rt2x00_is_usb(rt2x00dev) || rt2x00_rt(rt2x00dev, RT3290))
fw_len = 4096;
else
fw_len = 8192;
multiple = true;
/*
* Validate the firmware length
*/
if (len != fw_len && (!multiple || (len % fw_len) != 0))
return FW_BAD_LENGTH;
/*
* Check if the chipset requires one of the upper parts
* of the firmware.
*/
if (rt2x00_is_usb(rt2x00dev) &&
!rt2x00_rt(rt2x00dev, RT2860) &&
!rt2x00_rt(rt2x00dev, RT2872) &&
!rt2x00_rt(rt2x00dev, RT3070) &&
((len / fw_len) == 1))
return FW_BAD_VERSION;
/*
* 8kb firmware files must be checked as if it were
* 2 separate firmware files.
*/
while (offset < len) {
if (!rt2800_check_firmware_crc(data + offset, fw_len))
return FW_BAD_CRC;
offset += fw_len;
}
return FW_OK;
}
EXPORT_SYMBOL_GPL(rt2800_check_firmware);
int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
unsigned int i;
u32 reg;
int retval;
if (rt2x00_rt(rt2x00dev, RT3290)) {
retval = rt2800_enable_wlan_rt3290(rt2x00dev);
if (retval)
return -EBUSY;
}
/*
* If driver doesn't wake up firmware here,
* rt2800_load_firmware will hang forever when interface is up again.
*/
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
/*
* Wait for stable hardware.
*/
if (rt2800_wait_csr_ready(rt2x00dev))
return -EBUSY;
if (rt2x00_is_pci(rt2x00dev)) {
if (rt2x00_rt(rt2x00dev, RT3290) ||
rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_register_read(rt2x00dev, AUX_CTRL, &reg);
rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
}
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
}
rt2800_disable_wpdma(rt2x00dev);
/*
* Write firmware to the device.
*/
rt2800_drv_write_firmware(rt2x00dev, data, len);
/*
* Wait for device to stabilize.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
break;
msleep(1);
}
if (i == REGISTER_BUSY_COUNT) {
rt2x00_err(rt2x00dev, "PBF system register not ready\n");
return -EBUSY;
}
/*
* Disable DMA, will be reenabled later when enabling
* the radio.
*/
rt2800_disable_wpdma(rt2x00dev);
/*
* Initialize firmware.
*/
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
if (rt2x00_is_usb(rt2x00dev)) {
rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
}
msleep(1);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_load_firmware);
void rt2800_write_tx_data(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
__le32 *txwi = rt2800_drv_get_txwi(entry);
u32 word;
int i;
/*
* Initialize TX Info descriptor
*/
rt2x00_desc_read(txwi, 0, &word);
rt2x00_set_field32(&word, TXWI_W0_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
rt2x00_set_field32(&word, TXWI_W0_TS,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_AMPDU,
test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
txdesc->u.ht.mpdu_density);
rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
rt2x00_set_field32(&word, TXWI_W0_BW,
test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
rt2x00_desc_write(txwi, 0, word);
rt2x00_desc_read(txwi, 1, &word);
rt2x00_set_field32(&word, TXWI_W1_ACK,
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W1_NSEQ,
test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
txdesc->key_idx : txdesc->u.ht.wcid);
rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
txdesc->length);
rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
rt2x00_desc_write(txwi, 1, word);
/*
* Always write 0 to IV/EIV fields (word 2 and 3), hardware will insert
* the IV from the IVEIV register when TXD_W3_WIV is set to 0.
* When TXD_W3_WIV is set to 1 it will use the IV data
* from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
* crypto entry in the registers should be used to encrypt the frame.
*
* Nulify all remaining words as well, we don't know how to program them.
*/
for (i = 2; i < entry->queue->winfo_size / sizeof(__le32); i++)
_rt2x00_desc_write(txwi, i, 0);
}
EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
{
s8 rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
s8 rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
s8 rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
u16 eeprom;
u8 offset0;
u8 offset1;
u8 offset2;
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
} else {
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
}
/*
* Convert the value from the descriptor into the RSSI value
* If the value in the descriptor is 0, it is considered invalid
* and the default (extremely low) rssi value is assumed
*/
rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
/*
* mac80211 only accepts a single RSSI value. Calculating the
* average doesn't deliver a fair answer either since -60:-60 would
* be considered equally good as -50:-70 while the second is the one
* which gives less energy...
*/
rssi0 = max(rssi0, rssi1);
return (int)max(rssi0, rssi2);
}
void rt2800_process_rxwi(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
__le32 *rxwi = (__le32 *) entry->skb->data;
u32 word;
rt2x00_desc_read(rxwi, 0, &word);
rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
rt2x00_desc_read(rxwi, 1, &word);
if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
rxdesc->flags |= RX_FLAG_SHORT_GI;
if (rt2x00_get_field32(word, RXWI_W1_BW))
rxdesc->flags |= RX_FLAG_40MHZ;
/*
* Detect RX rate, always use MCS as signal type.
*/
rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
/*
* Mask of 0x8 bit to remove the short preamble flag.
*/
if (rxdesc->rate_mode == RATE_MODE_CCK)
rxdesc->signal &= ~0x8;
rt2x00_desc_read(rxwi, 2, &word);
/*
* Convert descriptor AGC value to RSSI value.
*/
rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
/*
* Remove RXWI descriptor from start of the buffer.
*/
skb_pull(entry->skb, entry->queue->winfo_size);
}
EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct txdone_entry_desc txdesc;
u32 word;
u16 mcs, real_mcs;
int aggr, ampdu;
/*
* Obtain the status about this packet.
*/
txdesc.flags = 0;
rt2x00_desc_read(txwi, 0, &word);
mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
/*
* If a frame was meant to be sent as a single non-aggregated MPDU
* but ended up in an aggregate the used tx rate doesn't correlate
* with the one specified in the TXWI as the whole aggregate is sent
* with the same rate.
*
* For example: two frames are sent to rt2x00, the first one sets
* AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
* and requests MCS15. If the hw aggregates both frames into one
* AMDPU the tx status for both frames will contain MCS7 although
* the frame was sent successfully.
*
* Hence, replace the requested rate with the real tx rate to not
* confuse the rate control algortihm by providing clearly wrong
* data.
*/
if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) {
skbdesc->tx_rate_idx = real_mcs;
mcs = real_mcs;
}
if (aggr == 1 || ampdu == 1)
__set_bit(TXDONE_AMPDU, &txdesc.flags);
/*
* Ralink has a retry mechanism using a global fallback
* table. We setup this fallback table to try the immediate
* lower rate for all rates. In the TX_STA_FIFO, the MCS field
* always contains the MCS used for the last transmission, be
* it successful or not.
*/
if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
/*
* Transmission succeeded. The number of retries is
* mcs - real_mcs
*/
__set_bit(TXDONE_SUCCESS, &txdesc.flags);
txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
} else {
/*
* Transmission failed. The number of retries is
* always 7 in this case (for a total number of 8
* frames sent).
*/
__set_bit(TXDONE_FAILURE, &txdesc.flags);
txdesc.retry = rt2x00dev->long_retry;
}
/*
* the frame was retried at least once
* -> hw used fallback rates
*/
if (txdesc.retry)
__set_bit(TXDONE_FALLBACK, &txdesc.flags);
rt2x00lib_txdone(entry, &txdesc);
}
EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
static unsigned int rt2800_hw_beacon_base(struct rt2x00_dev *rt2x00dev,
unsigned int index)
{
return HW_BEACON_BASE(index);
}
static inline u8 rt2800_get_beacon_offset(struct rt2x00_dev *rt2x00dev,
unsigned int index)
{
return BEACON_BASE_TO_OFFSET(rt2800_hw_beacon_base(rt2x00dev, index));
}
static void rt2800_update_beacons_setup(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue = rt2x00dev->bcn;
struct queue_entry *entry;
int i, bcn_num = 0;
u64 off, reg = 0;
u32 bssid_dw1;
/*
* Setup offsets of all active beacons in BCN_OFFSET{0,1} registers.
*/
for (i = 0; i < queue->limit; i++) {
entry = &queue->entries[i];
if (!test_bit(ENTRY_BCN_ENABLED, &entry->flags))
continue;
off = rt2800_get_beacon_offset(rt2x00dev, entry->entry_idx);
reg |= off << (8 * bcn_num);
bcn_num++;
}
WARN_ON_ONCE(bcn_num != rt2x00dev->intf_beaconing);
rt2800_register_write(rt2x00dev, BCN_OFFSET0, (u32) reg);
rt2800_register_write(rt2x00dev, BCN_OFFSET1, (u32) (reg >> 32));
/*
* H/W sends up to MAC_BSSID_DW1_BSS_BCN_NUM + 1 consecutive beacons.
*/
rt2800_register_read(rt2x00dev, MAC_BSSID_DW1, &bssid_dw1);
rt2x00_set_field32(&bssid_dw1, MAC_BSSID_DW1_BSS_BCN_NUM,
bcn_num > 0 ? bcn_num - 1 : 0);
rt2800_register_write(rt2x00dev, MAC_BSSID_DW1, bssid_dw1);
}
void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
unsigned int beacon_base;
unsigned int padding_len;
u32 orig_reg, reg;
const int txwi_desc_size = entry->queue->winfo_size;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
orig_reg = reg;
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
/*
* Add space for the TXWI in front of the skb.
*/
memset(skb_push(entry->skb, txwi_desc_size), 0, txwi_desc_size);
/*
* Register descriptor details in skb frame descriptor.
*/
skbdesc->flags |= SKBDESC_DESC_IN_SKB;
skbdesc->desc = entry->skb->data;
skbdesc->desc_len = txwi_desc_size;
/*
* Add the TXWI for the beacon to the skb.
*/
rt2800_write_tx_data(entry, txdesc);
/*
* Dump beacon to userspace through debugfs.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
/*
* Write entire beacon with TXWI and padding to register.
*/
padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
if (padding_len && skb_pad(entry->skb, padding_len)) {
rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
/* skb freed by skb_pad() on failure */
entry->skb = NULL;
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
return;
}
beacon_base = rt2800_hw_beacon_base(rt2x00dev, entry->entry_idx);
rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
entry->skb->len + padding_len);
__set_bit(ENTRY_BCN_ENABLED, &entry->flags);
/*
* Change global beacons settings.
*/
rt2800_update_beacons_setup(rt2x00dev);
/*
* Restore beaconing state.
*/
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
/*
* Clean up beacon skb.
*/
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2800_write_beacon);
static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
unsigned int index)
{
int i;
const int txwi_desc_size = rt2x00dev->bcn->winfo_size;
unsigned int beacon_base;
beacon_base = rt2800_hw_beacon_base(rt2x00dev, index);
/*
* For the Beacon base registers we only need to clear
* the whole TXWI which (when set to 0) will invalidate
* the entire beacon.
*/
for (i = 0; i < txwi_desc_size; i += sizeof(__le32))
rt2800_register_write(rt2x00dev, beacon_base + i, 0);
}
void rt2800_clear_beacon(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
u32 orig_reg, reg;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &orig_reg);
reg = orig_reg;
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
/*
* Clear beacon.
*/
rt2800_clear_beacon_register(rt2x00dev, entry->entry_idx);
__clear_bit(ENTRY_BCN_ENABLED, &entry->flags);
/*
* Change global beacons settings.
*/
rt2800_update_beacons_setup(rt2x00dev);
/*
* Restore beaconing state.
*/
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
}
EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
const struct rt2x00debug rt2800_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt2800_register_read,
.write = rt2800_register_write,
.flags = RT2X00DEBUGFS_OFFSET,
.word_base = CSR_REG_BASE,
.word_size = sizeof(u32),
.word_count = CSR_REG_SIZE / sizeof(u32),
},
.eeprom = {
/* NOTE: The local EEPROM access functions can't
* be used here, use the generic versions instead.
*/
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_base = EEPROM_BASE,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt2800_bbp_read,
.write = rt2800_bbp_write,
.word_base = BBP_BASE,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt2800_rf_write,
.word_base = RF_BASE,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
.rfcsr = {
.read = rt2800_rfcsr_read,
.write = rt2800_rfcsr_write,
.word_base = RFCSR_BASE,
.word_size = sizeof(u8),
.word_count = RFCSR_SIZE / sizeof(u8),
},
};
EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
if (rt2x00_rt(rt2x00dev, RT3290)) {
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
return rt2x00_get_field32(reg, WLAN_GPIO_IN_BIT0);
} else {
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
return rt2x00_get_field32(reg, GPIO_CTRL_VAL2);
}
}
EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt2800_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
unsigned int enabled = brightness != LED_OFF;
unsigned int bg_mode =
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
unsigned int polarity =
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
EEPROM_FREQ_LED_POLARITY);
unsigned int ledmode =
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
EEPROM_FREQ_LED_MODE);
u32 reg;
/* Check for SoC (SOC devices don't support MCU requests) */
if (rt2x00_is_soc(led->rt2x00dev)) {
rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
/* Set LED Polarity */
rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, polarity);
/* Set LED Mode */
if (led->type == LED_TYPE_RADIO) {
rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE,
enabled ? 3 : 0);
} else if (led->type == LED_TYPE_ASSOC) {
rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE,
enabled ? 3 : 0);
} else if (led->type == LED_TYPE_QUALITY) {
rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE,
enabled ? 3 : 0);
}
rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
} else {
if (led->type == LED_TYPE_RADIO) {
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
enabled ? 0x20 : 0);
} else if (led->type == LED_TYPE_ASSOC) {
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
} else if (led->type == LED_TYPE_QUALITY) {
/*
* The brightness is divided into 6 levels (0 - 5),
* The specs tell us the following levels:
* 0, 1 ,3, 7, 15, 31
* to determine the level in a simple way we can simply
* work with bitshifting:
* (1 << level) - 1
*/
rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
(1 << brightness / (LED_FULL / 6)) - 1,
polarity);
}
}
}
static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
struct rt2x00_led *led, enum led_type type)
{
led->rt2x00dev = rt2x00dev;
led->type = type;
led->led_dev.brightness_set = rt2800_brightness_set;
led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */
/*
* Configuration handlers.
*/
static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev,
const u8 *address,
int wcid)
{
struct mac_wcid_entry wcid_entry;
u32 offset;
offset = MAC_WCID_ENTRY(wcid);
memset(&wcid_entry, 0xff, sizeof(wcid_entry));
if (address)
memcpy(wcid_entry.mac, address, ETH_ALEN);
rt2800_register_multiwrite(rt2x00dev, offset,
&wcid_entry, sizeof(wcid_entry));
}
static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid)
{
u32 offset;
offset = MAC_WCID_ATTR_ENTRY(wcid);
rt2800_register_write(rt2x00dev, offset, 0);
}
static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev,
int wcid, u32 bssidx)
{
u32 offset = MAC_WCID_ATTR_ENTRY(wcid);
u32 reg;
/*
* The BSS Idx numbers is split in a main value of 3 bits,
* and a extended field for adding one additional bit to the value.
*/
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7));
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
(bssidx & 0x8) >> 3);
rt2800_register_write(rt2x00dev, offset, reg);
}
static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct mac_iveiv_entry iveiv_entry;
u32 offset;
u32 reg;
offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
if (crypto->cmd == SET_KEY) {
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
!!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
/*
* Both the cipher as the BSS Idx numbers are split in a main
* value of 3 bits, and a extended field for adding one additional
* bit to the value.
*/
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
(crypto->cipher & 0x7));
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
(crypto->cipher & 0x8) >> 3);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
rt2800_register_write(rt2x00dev, offset, reg);
} else {
/* Delete the cipher without touching the bssidx */
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB, 0);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER, 0);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
rt2800_register_write(rt2x00dev, offset, reg);
}
offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
memset(&iveiv_entry, 0, sizeof(iveiv_entry));
if ((crypto->cipher == CIPHER_TKIP) ||
(crypto->cipher == CIPHER_TKIP_NO_MIC) ||
(crypto->cipher == CIPHER_AES))
iveiv_entry.iv[3] |= 0x20;
iveiv_entry.iv[3] |= key->keyidx << 6;
rt2800_register_multiwrite(rt2x00dev, offset,
&iveiv_entry, sizeof(iveiv_entry));
}
int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
struct rt2x00_field32 field;
u32 offset;
u32 reg;
if (crypto->cmd == SET_KEY) {
key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
offset = SHARED_KEY_ENTRY(key->hw_key_idx);
rt2800_register_multiwrite(rt2x00dev, offset,
&key_entry, sizeof(key_entry));
}
/*
* The cipher types are stored over multiple registers
* starting with SHARED_KEY_MODE_BASE each word will have
* 32 bits and contains the cipher types for 2 bssidx each.
* Using the correct defines correctly will cause overhead,
* so just calculate the correct offset.
*/
field.bit_offset = 4 * (key->hw_key_idx % 8);
field.bit_mask = 0x7 << field.bit_offset;
offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, field,
(crypto->cmd == SET_KEY) * crypto->cipher);
rt2800_register_write(rt2x00dev, offset, reg);
/*
* Update WCID information
*/
rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx);
rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx,
crypto->bssidx);
rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
u32 offset;
if (crypto->cmd == SET_KEY) {
/*
* Allow key configuration only for STAs that are
* known by the hw.
*/
if (crypto->wcid > WCID_END)
return -ENOSPC;
key->hw_key_idx = crypto->wcid;
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
rt2800_register_multiwrite(rt2x00dev, offset,
&key_entry, sizeof(key_entry));
}
/*
* Update WCID information
*/
rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
int rt2800_sta_add(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
int wcid;
struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
/*
* Search for the first free WCID entry and return the corresponding
* index.
*/
wcid = find_first_zero_bit(drv_data->sta_ids, STA_IDS_SIZE) + WCID_START;
/*
* Store selected wcid even if it is invalid so that we can
* later decide if the STA is uploaded into the hw.
*/
sta_priv->wcid = wcid;
/*
* No space left in the device, however, we can still communicate
* with the STA -> No error.
*/
if (wcid > WCID_END)
return 0;
__set_bit(wcid - WCID_START, drv_data->sta_ids);
/*
* Clean up WCID attributes and write STA address to the device.
*/
rt2800_delete_wcid_attr(rt2x00dev, wcid);
rt2800_config_wcid(rt2x00dev, sta->addr, wcid);
rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid,
rt2x00lib_get_bssidx(rt2x00dev, vif));
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_sta_add);
int rt2800_sta_remove(struct rt2x00_dev *rt2x00dev, int wcid)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
if (wcid > WCID_END)
return 0;
/*
* Remove WCID entry, no need to clean the attributes as they will
* get renewed when the WCID is reused.
*/
rt2800_config_wcid(rt2x00dev, NULL, wcid);
__clear_bit(wcid - WCID_START, drv_data->sta_ids);
return 0;
}
EXPORT_SYMBOL_GPL(rt2800_sta_remove);
void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags)
{
u32 reg;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
!(filter_flags & FIF_FCSFAIL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
!(filter_flags & FIF_PLCPFAIL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
!(filter_flags & FIF_ALLMULTI));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
!(filter_flags & FIF_PSPOLL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
!(filter_flags & FIF_CONTROL));
rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_config_filter);
void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf, const unsigned int flags)
{
u32 reg;
bool update_bssid = false;
if (flags & CONFIG_UPDATE_TYPE) {
/*
* Enable synchronisation.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
if (conf->sync == TSF_SYNC_AP_NONE) {
/*
* Tune beacon queue transmit parameters for AP mode
*/
rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 0);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 1);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
} else {
rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 4);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 2);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
}
}
if (flags & CONFIG_UPDATE_MAC) {
if (flags & CONFIG_UPDATE_TYPE &&
conf->sync == TSF_SYNC_AP_NONE) {
/*
* The BSSID register has to be set to our own mac
* address in AP mode.
*/
memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
update_bssid = true;
}
if (!is_zero_ether_addr((const u8 *)conf->mac)) {
reg = le32_to_cpu(conf->mac[1]);
rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
conf->mac[1] = cpu_to_le32(reg);
}
rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
conf->mac, sizeof(conf->mac));
}
if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
reg = le32_to_cpu(conf->bssid[1]);
rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
conf->bssid[1] = cpu_to_le32(reg);
}
rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
conf->bssid, sizeof(conf->bssid));
}
}
EXPORT_SYMBOL_GPL(rt2800_config_intf);
static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp)
{
bool any_sta_nongf = !!(erp->ht_opmode &
IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
u32 reg;
/* default protection rate for HT20: OFDM 24M */
mm20_rate = gf20_rate = 0x4004;
/* default protection rate for HT40: duplicate OFDM 24M */
mm40_rate = gf40_rate = 0x4084;
switch (protection) {
case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
/*
* All STAs in this BSS are HT20/40 but there might be
* STAs not supporting greenfield mode.
* => Disable protection for HT transmissions.
*/
mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
/*
* All STAs in this BSS are HT20 or HT20/40 but there
* might be STAs not supporting greenfield mode.
* => Protect all HT40 transmissions.
*/
mm20_mode = gf20_mode = 0;
mm40_mode = gf40_mode = 2;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
/*
* Nonmember protection:
* According to 802.11n we _should_ protect all
* HT transmissions (but we don't have to).
*
* But if cts_protection is enabled we _shall_ protect
* all HT transmissions using a CCK rate.
*
* And if any station is non GF we _shall_ protect
* GF transmissions.
*
* We decide to protect everything
* -> fall through to mixed mode.
*/
case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
/*
* Legacy STAs are present
* => Protect all HT transmissions.
*/
mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
/*
* If erp protection is needed we have to protect HT
* transmissions with CCK 11M long preamble.
*/
if (erp->cts_protection) {
/* don't duplicate RTS/CTS in CCK mode */
mm20_rate = mm40_rate = 0x0003;
gf20_rate = gf40_rate = 0x0003;
}
break;
}
/* check for STAs not supporting greenfield mode */
if (any_sta_nongf)
gf20_mode = gf40_mode = 2;
/* Update HT protection config */
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
}
void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
u32 changed)
{
u32 reg;
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
!!erp->short_preamble);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
!!erp->short_preamble);
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
erp->cts_protection ? 2 : 0);
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
}
if (changed & BSS_CHANGED_BASIC_RATES) {
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
erp->basic_rates);
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
erp->slot_time);
rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
}
if (changed & BSS_CHANGED_BEACON_INT) {
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
erp->beacon_int * 16);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
if (changed & BSS_CHANGED_HT)
rt2800_config_ht_opmode(rt2x00dev, erp);
}
EXPORT_SYMBOL_GPL(rt2800_config_erp);
static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 eeprom;
u8 led_ctrl, led_g_mode, led_r_mode;
rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
rt2x00_set_field32(&reg, GPIO_SWITCH_0, 1);
rt2x00_set_field32(&reg, GPIO_SWITCH_1, 1);
} else {
rt2x00_set_field32(&reg, GPIO_SWITCH_0, 0);
rt2x00_set_field32(&reg, GPIO_SWITCH_1, 0);
}
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
rt2800_register_read(rt2x00dev, LED_CFG, &reg);
led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0;
led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3;
if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) ||
led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) {
rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE);
if (led_ctrl == 0 || led_ctrl > 0x40) {
rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, led_g_mode);
rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, led_r_mode);
rt2800_register_write(rt2x00dev, LED_CFG, reg);
} else {
rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff,
(led_g_mode << 2) | led_r_mode, 1);
}
}
}
static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
enum antenna ant)
{
u32 reg;
u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
if (rt2x00_is_pci(rt2x00dev)) {
rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
} else if (rt2x00_is_usb(rt2x00dev))
rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
eesk_pin, 0);
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, gpio_bit3);
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
}
void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
{
u8 r1;
u8 r3;
u16 eeprom;
rt2800_bbp_read(rt2x00dev, 1, &r1);
rt2800_bbp_read(rt2x00dev, 3, &r3);
if (rt2x00_rt(rt2x00dev, RT3572) &&
rt2x00_has_cap_bt_coexist(rt2x00dev))
rt2800_config_3572bt_ant(rt2x00dev);
/*
* Configure the TX antenna.
*/
switch (ant->tx_chain_num) {
case 1:
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
break;
case 2:
if (rt2x00_rt(rt2x00dev, RT3572) &&
rt2x00_has_cap_bt_coexist(rt2x00dev))
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1);
else
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
break;
case 3:
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
break;
}
/*
* Configure the RX antenna.
*/
switch (ant->rx_chain_num) {
case 1:
if (rt2x00_rt(rt2x00dev, RT3070) ||
rt2x00_rt(rt2x00dev, RT3090) ||
rt2x00_rt(rt2x00dev, RT3352) ||
rt2x00_rt(rt2x00dev, RT3390)) {
rt2800_eeprom_read(rt2x00dev,
EEPROM_NIC_CONF1, &eeprom);
if (rt2x00_get_field16(eeprom,
EEPROM_NIC_CONF1_ANT_DIVERSITY))
rt2800_set_ant_diversity(rt2x00dev,
rt2x00dev->default_ant.rx);
}
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
break;
case 2:
if (rt2x00_rt(rt2x00dev, RT3572) &&
rt2x00_has_cap_bt_coexist(rt2x00dev)) {
rt2x00_set_field8(&r3, BBP3_RX_ADC, 1);
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA,
rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B);
} else {
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
}
break;
case 3:
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
break;
}
rt2800_bbp_write(rt2x00dev, 3, r3);
rt2800_bbp_write(rt2x00dev, 1, r1);
if (rt2x00_rt(rt2x00dev, RT3593)) {
if (ant->rx_chain_num == 1)
rt2800_bbp_write(rt2x00dev, 86, 0x00);
else
rt2800_bbp_write(rt2x00dev, 86, 0x46);
}
}
EXPORT_SYMBOL_GPL(rt2800_config_ant);
static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u16 eeprom;
short lna_gain;
if (libconf->rf.channel <= 14) {
rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
} else if (libconf->rf.channel <= 64) {
rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
} else if (libconf->rf.channel <= 128) {
if (rt2x00_rt(rt2x00dev, RT3593)) {
rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom,
EEPROM_EXT_LNA2_A1);
} else {
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom,
EEPROM_RSSI_BG2_LNA_A1);
}
} else {
if (rt2x00_rt(rt2x00dev, RT3593)) {
rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom,
EEPROM_EXT_LNA2_A2);
} else {
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom,
EEPROM_RSSI_A2_LNA_A2);
}
}
rt2x00dev->lna_gain = lna_gain;
}
#define FREQ_OFFSET_BOUND 0x5f
static void rt2800_adjust_freq_offset(struct rt2x00_dev *rt2x00dev)
{
u8 freq_offset, prev_freq_offset;
u8 rfcsr, prev_rfcsr;
freq_offset = rt2x00_get_field8(rt2x00dev->freq_offset, RFCSR17_CODE);
freq_offset = min_t(u8, freq_offset, FREQ_OFFSET_BOUND);
rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
prev_rfcsr = rfcsr;
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, freq_offset);
if (rfcsr == prev_rfcsr)
return;
if (rt2x00_is_usb(rt2x00dev)) {
rt2800_mcu_request(rt2x00dev, MCU_FREQ_OFFSET, 0xff,
freq_offset, prev_rfcsr);
return;
}
prev_freq_offset = rt2x00_get_field8(prev_rfcsr, RFCSR17_CODE);
while (prev_freq_offset != freq_offset) {
if (prev_freq_offset < freq_offset)
prev_freq_offset++;
else
prev_freq_offset--;
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, prev_freq_offset);
rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
usleep_range(1000, 1500);
}
}
static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
if (rt2x00dev->default_ant.tx_chain_num == 1)
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
if (rt2x00dev->default_ant.rx_chain_num == 1) {
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
} else if (rt2x00dev->default_ant.rx_chain_num == 2)
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
if (rf->channel > 14) {
/*
* When TX power is below 0, we should increase it by 7 to
* make it a positive value (Minimum value is -7).
* However this means that values between 0 and 7 have
* double meaning, and we should set a 7DBm boost flag.
*/
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
(info->default_power1 >= 0));
if (info->default_power1 < 0)
info->default_power1 += 7;
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
(info->default_power2 >= 0));
if (info->default_power2 < 0)
info->default_power2 += 7;
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
} else {
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
}
rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
}
static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u8 rfcsr, calib_tx, calib_rx;
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR3_K, rf->rf3);
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
rt2x00dev->default_ant.rx_chain_num <= 1);
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD,
rt2x00dev->default_ant.rx_chain_num <= 2);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
rt2x00dev->default_ant.tx_chain_num <= 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD,
rt2x00dev->default_ant.tx_chain_num <= 2);
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
if (rt2x00_rt(rt2x00dev, RT3390)) {
calib_tx = conf_is_ht40(conf) ? 0x68 : 0x4f;
calib_rx = conf_is_ht40(conf) ? 0x6f : 0x4f;
} else {
if (conf_is_ht40(conf)) {
calib_tx = drv_data->calibration_bw40;
calib_rx = drv_data->calibration_bw40;
} else {
calib_tx = drv_data->calibration_bw20;
calib_rx = drv_data->calibration_bw20;
}
}
rt2800_rfcsr_read(rt2x00dev, 24, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR24_TX_CALIB, calib_tx);
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR31_RX_CALIB, calib_rx);
rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
msleep(1);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
}
static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u8 rfcsr;
u32 reg;
if (rf->channel <= 14) {
rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
} else {
rt2800_bbp_write(rt2x00dev, 25, 0x09);
rt2800_bbp_write(rt2x00dev, 26, 0xff);
}
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2);
else
rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 5, &rfcsr);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2);
rt2800_rfcsr_write(rt2x00dev, 5, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3);
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
info->default_power1);
} else {
rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7);
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
(info->default_power1 & 0x3) |
((info->default_power1 & 0xC) << 1));
}
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3);
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
info->default_power2);
} else {
rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7);
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
(info->default_power2 & 0x3) |
((info->default_power2 & 0xC) << 1));
}
rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
}
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
} else {
switch (rt2x00dev->default_ant.tx_chain_num) {
case 1:
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
case 2:
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
break;
}
switch (rt2x00dev->default_ant.rx_chain_num) {
case 1:
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
case 2:
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
break;
}
}
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
if (conf_is_ht40(conf)) {
rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw40);
rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw40);
} else {
rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw20);
rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw20);
}
if (rf->channel <= 14) {
rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
rfcsr = 0x4c;
rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
drv_data->txmixer_gain_24g);
rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
} else {
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_BIT2, 1);
rt2x00_set_field8(&rfcsr, RFCSR7_BIT3, 0);
rt2x00_set_field8(&rfcsr, RFCSR7_BIT4, 1);
rt2x00_set_field8(&rfcsr, RFCSR7_BITS67, 0);
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
rt2800_rfcsr_write(rt2x00dev, 15, 0x43);
rfcsr = 0x7a;
rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
drv_data->txmixer_gain_5g);
rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
if (rf->channel <= 64) {
rt2800_rfcsr_write(rt2x00dev, 19, 0xb7);
rt2800_rfcsr_write(rt2x00dev, 20, 0xf6);
rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
} else if (rf->channel <= 128) {
rt2800_rfcsr_write(rt2x00dev, 19, 0x74);
rt2800_rfcsr_write(rt2x00dev, 20, 0xf4);
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
} else {
rt2800_rfcsr_write(rt2x00dev, 19, 0x72);
rt2800_rfcsr_write(rt2x00dev, 20, 0xf3);
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
}
rt2800_rfcsr_write(rt2x00dev, 26, 0x87);
rt2800_rfcsr_write(rt2x00dev, 27, 0x01);
rt2800_rfcsr_write(rt2x00dev, 29, 0x9f);
}
rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);
if (rf->channel <= 14)
rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
else
rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 0);
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
}
static void rt2800_config_channel_rf3053(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u8 txrx_agc_fc;
u8 txrx_h20m;
u8 rfcsr;
u8 bbp;
const bool txbf_enabled = false; /* TODO */
/* TODO: use TX{0,1,2}FinePowerControl values from EEPROM */
rt2800_bbp_read(rt2x00dev, 109, &bbp);
rt2x00_set_field8(&bbp, BBP109_TX0_POWER, 0);
rt2x00_set_field8(&bbp, BBP109_TX1_POWER, 0);
rt2800_bbp_write(rt2x00dev, 109, bbp);
rt2800_bbp_read(rt2x00dev, 110, &bbp);
rt2x00_set_field8(&bbp, BBP110_TX2_POWER, 0);
rt2800_bbp_write(rt2x00dev, 110, bbp);
if (rf->channel <= 14) {
/* Restore BBP 25 & 26 for 2.4 GHz */
rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
} else {
/* Hard code BBP 25 & 26 for 5GHz */
/* Enable IQ Phase correction */
rt2800_bbp_write(rt2x00dev, 25, 0x09);
/* Setup IQ Phase correction value */
rt2800_bbp_write(rt2x00dev, 26, 0xff);
}
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3 & 0xf);
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR11_R, (rf->rf2 & 0x3));
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR11_PLL_IDOH, 1);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 2);
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 53, &rfcsr);
if (rf->channel <= 14) {
rfcsr = 0;
rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
info->default_power1 & 0x1f);
} else {
if (rt2x00_is_usb(rt2x00dev))
rfcsr = 0x40;
rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
((info->default_power1 & 0x18) << 1) |
(info->default_power1 & 7));
}
rt2800_rfcsr_write(rt2x00dev, 53, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 55, &rfcsr);
if (rf->channel <= 14) {
rfcsr = 0;
rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
info->default_power2 & 0x1f);
} else {
if (rt2x00_is_usb(rt2x00dev))
rfcsr = 0x40;
rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
((info->default_power2 & 0x18) << 1) |
(info->default_power2 & 7));
}
rt2800_rfcsr_write(rt2x00dev, 55, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 54, &rfcsr);
if (rf->channel <= 14) {
rfcsr = 0;
rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
info->default_power3 & 0x1f);
} else {
if (rt2x00_is_usb(rt2x00dev))
rfcsr = 0x40;
rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
((info->default_power3 & 0x18) << 1) |
(info->default_power3 & 7));
}
rt2800_rfcsr_write(rt2x00dev, 54, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
switch (rt2x00dev->default_ant.tx_chain_num) {
case 3:
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
/* fallthrough */
case 2:
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
/* fallthrough */
case 1:
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
break;
}
switch (rt2x00dev->default_ant.rx_chain_num) {
case 3:
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
/* fallthrough */
case 2:
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
/* fallthrough */
case 1:
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
break;
}
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_adjust_freq_offset(rt2x00dev);
if (conf_is_ht40(conf)) {
txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw40,
RFCSR24_TX_AGC_FC);
txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw40,
RFCSR24_TX_H20M);
} else {
txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw20,
RFCSR24_TX_AGC_FC);
txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw20,
RFCSR24_TX_H20M);
}
/* NOTE: the reference driver does not writes the new value
* back to RFCSR 32
*/
rt2800_rfcsr_read(rt2x00dev, 32, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR32_TX_AGC_FC, txrx_agc_fc);
if (rf->channel <= 14)
rfcsr = 0xa0;
else
rfcsr = 0x80;
rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, txrx_h20m);
rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, txrx_h20m);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
/* Band selection */
rt2800_rfcsr_read(rt2x00dev, 36, &rfcsr);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 0);
rt2800_rfcsr_write(rt2x00dev, 36, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 34, &rfcsr);
if (rf->channel <= 14)
rfcsr = 0x3c;
else
rfcsr = 0x20;
rt2800_rfcsr_write(rt2x00dev, 34, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
if (rf->channel <= 14)
rfcsr = 0x1a;
else
rfcsr = 0x12;
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
if (rf->channel >= 1 && rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
else if (rf->channel >= 36 && rf->channel <= 64)
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
else if (rf->channel >= 100 && rf->channel <= 128)
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
else
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
if (rf->channel <= 14) {
rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
} else {
rt2800_rfcsr_write(rt2x00dev, 10, 0xd8);
rt2800_rfcsr_write(rt2x00dev, 13, 0x23);
}
rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR51_BITS01, 1);
rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 5);
rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 3);
} else {
rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 4);
rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 2);
}
rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 3);
else
rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 2);
if (txbf_enabled)
rt2x00_set_field8(&rfcsr, RFCSR49_TX_DIV, 1);
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO1_EN, 0);
rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 57, &rfcsr);
if (rf->channel <= 14)
rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x1b);
else
rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x0f);
rt2800_rfcsr_write(rt2x00dev, 57, rfcsr);
if (rf->channel <= 14) {
rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
} else {
rt2800_rfcsr_write(rt2x00dev, 44, 0x9b);
rt2800_rfcsr_write(rt2x00dev, 52, 0x05);
}
/* Initiate VCO calibration */
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
if (rf->channel <= 14) {
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
} else {
rt2x00_set_field8(&rfcsr, RFCSR3_BIT1, 1);
rt2x00_set_field8(&rfcsr, RFCSR3_BIT2, 1);
rt2x00_set_field8(&rfcsr, RFCSR3_BIT3, 1);
rt2x00_set_field8(&rfcsr, RFCSR3_BIT4, 1);
rt2x00_set_field8(&rfcsr, RFCSR3_BIT5, 1);
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
}
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
if (rf->channel >= 1 && rf->channel <= 14) {
rfcsr = 0x23;
if (txbf_enabled)
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
} else if (rf->channel >= 36 && rf->channel <= 64) {
rfcsr = 0x36;
if (txbf_enabled)
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
rt2800_rfcsr_write(rt2x00dev, 39, 0x36);
rt2800_rfcsr_write(rt2x00dev, 45, 0xeb);
} else if (rf->channel >= 100 && rf->channel <= 128) {
rfcsr = 0x32;
if (txbf_enabled)
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 45, 0xb3);
} else {
rfcsr = 0x30;
if (txbf_enabled)
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 45, 0x9b);
}
}
#define POWER_BOUND 0x27
#define POWER_BOUND_5G 0x2b
static void rt2800_config_channel_rf3290(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr;
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
if (info->default_power1 > POWER_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
rt2800_adjust_freq_offset(rt2x00dev);
if (rf->channel <= 14) {
if (rf->channel == 6)
rt2800_bbp_write(rt2x00dev, 68, 0x0c);
else
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
if (rf->channel >= 1 && rf->channel <= 6)
rt2800_bbp_write(rt2x00dev, 59, 0x0f);
else if (rf->channel >= 7 && rf->channel <= 11)
rt2800_bbp_write(rt2x00dev, 59, 0x0e);
else if (rf->channel >= 12 && rf->channel <= 14)
rt2800_bbp_write(rt2x00dev, 59, 0x0d);
}
}
static void rt2800_config_channel_rf3322(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr;
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
if (info->default_power1 > POWER_BOUND)
rt2800_rfcsr_write(rt2x00dev, 47, POWER_BOUND);
else
rt2800_rfcsr_write(rt2x00dev, 47, info->default_power1);
if (info->default_power2 > POWER_BOUND)
rt2800_rfcsr_write(rt2x00dev, 48, POWER_BOUND);
else
rt2800_rfcsr_write(rt2x00dev, 48, info->default_power2);
rt2800_adjust_freq_offset(rt2x00dev);
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
if ( rt2x00dev->default_ant.tx_chain_num == 2 )
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
if ( rt2x00dev->default_ant.rx_chain_num == 2 )
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
else
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 31, 80);
}
static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr;
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
if (info->default_power1 > POWER_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
if (rt2x00_rt(rt2x00dev, RT5392)) {
rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
if (info->default_power2 > POWER_BOUND)
rt2x00_set_field8(&rfcsr, RFCSR50_TX, POWER_BOUND);
else
rt2x00_set_field8(&rfcsr, RFCSR50_TX,
info->default_power2);
rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
}
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
if (rt2x00_rt(rt2x00dev, RT5392)) {
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
}
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
rt2800_adjust_freq_offset(rt2x00dev);
if (rf->channel <= 14) {
int idx = rf->channel-1;
if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
/* r55/r59 value array of channel 1~14 */
static const char r55_bt_rev[] = {0x83, 0x83,
0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
static const char r59_bt_rev[] = {0x0e, 0x0e,
0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
rt2800_rfcsr_write(rt2x00dev, 55,
r55_bt_rev[idx]);
rt2800_rfcsr_write(rt2x00dev, 59,
r59_bt_rev[idx]);
} else {
static const char r59_bt[] = {0x8b, 0x8b, 0x8b,
0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
0x88, 0x88, 0x86, 0x85, 0x84};
rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
}
} else {
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
static const char r55_nonbt_rev[] = {0x23, 0x23,
0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
static const char r59_nonbt_rev[] = {0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
rt2800_rfcsr_write(rt2x00dev, 55,
r55_nonbt_rev[idx]);
rt2800_rfcsr_write(rt2x00dev, 59,
r59_nonbt_rev[idx]);
} else if (rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392)) {
static const char r59_non_bt[] = {0x8f, 0x8f,
0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
rt2800_rfcsr_write(rt2x00dev, 59,
r59_non_bt[idx]);
}
}
}
}
static void rt2800_config_channel_rf55xx(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr, ep_reg;
u32 reg;
int power_bound;
/* TODO */
const bool is_11b = false;
const bool is_type_ep = false;
rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL,
(rf->channel > 14 || conf_is_ht40(conf)) ? 5 : 0);
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
/* Order of values on rf_channel entry: N, K, mod, R */
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1 & 0xff);
rt2800_rfcsr_read(rt2x00dev, 9, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR9_K, rf->rf2 & 0xf);
rt2x00_set_field8(&rfcsr, RFCSR9_N, (rf->rf1 & 0x100) >> 8);
rt2x00_set_field8(&rfcsr, RFCSR9_MOD, ((rf->rf3 - 8) & 0x4) >> 2);
rt2800_rfcsr_write(rt2x00dev, 9, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf4 - 1);
rt2x00_set_field8(&rfcsr, RFCSR11_MOD, (rf->rf3 - 8) & 0x3);
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
if (rf->channel <= 14) {
rt2800_rfcsr_write(rt2x00dev, 10, 0x90);
/* FIXME: RF11 owerwrite ? */
rt2800_rfcsr_write(rt2x00dev, 11, 0x4A);
rt2800_rfcsr_write(rt2x00dev, 12, 0x52);
rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
rt2800_rfcsr_write(rt2x00dev, 24, 0x4A);
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
rt2800_rfcsr_write(rt2x00dev, 36, 0x80);
rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
rt2800_rfcsr_write(rt2x00dev, 39, 0x1B);
rt2800_rfcsr_write(rt2x00dev, 40, 0x0D);
rt2800_rfcsr_write(rt2x00dev, 41, 0x9B);
rt2800_rfcsr_write(rt2x00dev, 42, 0xD5);
rt2800_rfcsr_write(rt2x00dev, 43, 0x72);
rt2800_rfcsr_write(rt2x00dev, 44, 0x0E);
rt2800_rfcsr_write(rt2x00dev, 45, 0xA2);
rt2800_rfcsr_write(rt2x00dev, 46, 0x6B);
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
rt2800_rfcsr_write(rt2x00dev, 51, 0x3E);
rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
rt2800_rfcsr_write(rt2x00dev, 56, 0xA1);
rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
/* TODO RF27 <- tssi */
rfcsr = rf->channel <= 10 ? 0x07 : 0x06;
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 59, rfcsr);
if (is_11b) {
/* CCK */
rt2800_rfcsr_write(rt2x00dev, 31, 0xF8);
rt2800_rfcsr_write(rt2x00dev, 32, 0xC0);
if (is_type_ep)
rt2800_rfcsr_write(rt2x00dev, 55, 0x06);
else
rt2800_rfcsr_write(rt2x00dev, 55, 0x47);
} else {
/* OFDM */
if (is_type_ep)
rt2800_rfcsr_write(rt2x00dev, 55, 0x03);
else
rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
}
power_bound = POWER_BOUND;
ep_reg = 0x2;
} else {
rt2800_rfcsr_write(rt2x00dev, 10, 0x97);
/* FIMXE: RF11 overwrite */
rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
rt2800_rfcsr_write(rt2x00dev, 25, 0xBF);
rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
rt2800_rfcsr_write(rt2x00dev, 37, 0x04);
rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
rt2800_rfcsr_write(rt2x00dev, 40, 0x42);
rt2800_rfcsr_write(rt2x00dev, 41, 0xBB);
rt2800_rfcsr_write(rt2x00dev, 42, 0xD7);
rt2800_rfcsr_write(rt2x00dev, 45, 0x41);
rt2800_rfcsr_write(rt2x00dev, 48, 0x00);
rt2800_rfcsr_write(rt2x00dev, 57, 0x77);
rt2800_rfcsr_write(rt2x00dev, 60, 0x05);
rt2800_rfcsr_write(rt2x00dev, 61, 0x01);
/* TODO RF27 <- tssi */
if (rf->channel >= 36 && rf->channel <= 64) {
rt2800_rfcsr_write(rt2x00dev, 12, 0x2E);
rt2800_rfcsr_write(rt2x00dev, 13, 0x22);
rt2800_rfcsr_write(rt2x00dev, 22, 0x60);
rt2800_rfcsr_write(rt2x00dev, 23, 0x7F);
if (rf->channel <= 50)
rt2800_rfcsr_write(rt2x00dev, 24, 0x09);
else if (rf->channel >= 52)
rt2800_rfcsr_write(rt2x00dev, 24, 0x07);
rt2800_rfcsr_write(rt2x00dev, 39, 0x1C);
rt2800_rfcsr_write(rt2x00dev, 43, 0x5B);
rt2800_rfcsr_write(rt2x00dev, 44, 0X40);
rt2800_rfcsr_write(rt2x00dev, 46, 0X00);
rt2800_rfcsr_write(rt2x00dev, 51, 0xFE);
rt2800_rfcsr_write(rt2x00dev, 52, 0x0C);
rt2800_rfcsr_write(rt2x00dev, 54, 0xF8);
if (rf->channel <= 50) {
rt2800_rfcsr_write(rt2x00dev, 55, 0x06),
rt2800_rfcsr_write(rt2x00dev, 56, 0xD3);
} else if (rf->channel >= 52) {
rt2800_rfcsr_write(rt2x00dev, 55, 0x04);
rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
}
rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
rt2800_rfcsr_write(rt2x00dev, 59, 0x7F);
rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
} else if (rf->channel >= 100 && rf->channel <= 165) {
rt2800_rfcsr_write(rt2x00dev, 12, 0x0E);
rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
if (rf->channel <= 153) {
rt2800_rfcsr_write(rt2x00dev, 23, 0x3C);
rt2800_rfcsr_write(rt2x00dev, 24, 0x06);
} else if (rf->channel >= 155)