blob: 0669c63281ea01a93ef9794f9731b424b6afd28e [file] [log] [blame]
/*
* Contains CPU feature definitions
*
* Copyright (C) 2015 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) "CPU features: " fmt
#include <linux/bsearch.h>
#include <linux/sort.h>
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);
#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT \
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif
DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
{ \
.sign = SIGNED, \
.strict = STRICT, \
.type = TYPE, \
.shift = SHIFT, \
.width = WIDTH, \
.safe_val = SAFE_VAL, \
}
/* Define a feature with signed values */
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
/* Define a feature with unsigned value */
#define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
#define ARM64_FTR_END \
{ \
.width = 0, \
}
static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
/* Linux doesn't care about the EL3 */
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
/* Linux shouldn't care about secure memory */
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
/*
* Differing PARange is fine as long as all peripherals and memory are mapped
* within the minimum PARange of all CPUs
*/
U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_ctr[] = {
U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
/*
* Linux can handle differing I-cache policies. Userspace JITs will
* make use of *minLine
*/
U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_mmfr0[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0), /* InnerShr */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_mvfr2[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_dczid[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_isar5[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_mmfr4[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_id_pfr0[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
ARM64_FTR_END,
};
/*
* Common ftr bits for a 32bit register with all hidden, strict
* attributes, with 4bit feature fields and a default safe value of
* 0. Covers the following 32bit registers:
* id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
*/
static struct arm64_ftr_bits ftr_generic_32bits[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_generic[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_generic32[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
ARM64_FTR_END,
};
static struct arm64_ftr_bits ftr_aa64raz[] = {
ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
ARM64_FTR_END,
};
#define ARM64_FTR_REG(id, table) \
{ \
.sys_id = id, \
.name = #id, \
.ftr_bits = &((table)[0]), \
}
static struct arm64_ftr_reg arm64_ftr_regs[] = {
/* Op1 = 0, CRn = 0, CRm = 1 */
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
/* Op1 = 0, CRn = 0, CRm = 2 */
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
/* Op1 = 0, CRn = 0, CRm = 3 */
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
/* Op1 = 0, CRn = 0, CRm = 4 */
ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
/* Op1 = 0, CRn = 0, CRm = 5 */
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
/* Op1 = 0, CRn = 0, CRm = 6 */
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
/* Op1 = 0, CRn = 0, CRm = 7 */
ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
/* Op1 = 3, CRn = 0, CRm = 0 */
ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
/* Op1 = 3, CRn = 14, CRm = 0 */
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
};
static int search_cmp_ftr_reg(const void *id, const void *regp)
{
return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
}
/*
* get_arm64_ftr_reg - Lookup a feature register entry using its
* sys_reg() encoding. With the array arm64_ftr_regs sorted in the
* ascending order of sys_id , we use binary search to find a matching
* entry.
*
* returns - Upon success, matching ftr_reg entry for id.
* - NULL on failure. It is upto the caller to decide
* the impact of a failure.
*/
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
return bsearch((const void *)(unsigned long)sys_id,
arm64_ftr_regs,
ARRAY_SIZE(arm64_ftr_regs),
sizeof(arm64_ftr_regs[0]),
search_cmp_ftr_reg);
}
static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
{
u64 mask = arm64_ftr_mask(ftrp);
reg &= ~mask;
reg |= (ftr_val << ftrp->shift) & mask;
return reg;
}
static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
{
s64 ret = 0;
switch (ftrp->type) {
case FTR_EXACT:
ret = ftrp->safe_val;
break;
case FTR_LOWER_SAFE:
ret = new < cur ? new : cur;
break;
case FTR_HIGHER_SAFE:
ret = new > cur ? new : cur;
break;
default:
BUG();
}
return ret;
}
static int __init sort_cmp_ftr_regs(const void *a, const void *b)
{
return ((const struct arm64_ftr_reg *)a)->sys_id -
((const struct arm64_ftr_reg *)b)->sys_id;
}
static void __init swap_ftr_regs(void *a, void *b, int size)
{
struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
*(struct arm64_ftr_reg *)b = tmp;
}
static void __init sort_ftr_regs(void)
{
/* Keep the array sorted so that we can do the binary search */
sort(arm64_ftr_regs,
ARRAY_SIZE(arm64_ftr_regs),
sizeof(arm64_ftr_regs[0]),
sort_cmp_ftr_regs,
swap_ftr_regs);
}
/*
* Initialise the CPU feature register from Boot CPU values.
* Also initiliases the strict_mask for the register.
*/
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
u64 val = 0;
u64 strict_mask = ~0x0ULL;
struct arm64_ftr_bits *ftrp;
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
BUG_ON(!reg);
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
s64 ftr_new = arm64_ftr_value(ftrp, new);
val = arm64_ftr_set_value(ftrp, val, ftr_new);
if (!ftrp->strict)
strict_mask &= ~arm64_ftr_mask(ftrp);
}
reg->sys_val = val;
reg->strict_mask = strict_mask;
}
void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
/* Before we start using the tables, make sure it is sorted */
sort_ftr_regs();
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
}
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
{
struct arm64_ftr_bits *ftrp;
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
s64 ftr_new = arm64_ftr_value(ftrp, new);
if (ftr_cur == ftr_new)
continue;
/* Find a safe value */
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
}
}
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
{
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
BUG_ON(!regp);
update_cpu_ftr_reg(regp, val);
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
return 0;
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
regp->name, boot, cpu, val);
return 1;
}
/*
* Update system wide CPU feature registers with the values from a
* non-boot CPU. Also performs SANITY checks to make sure that there
* aren't any insane variations from that of the boot CPU.
*/
void update_cpu_features(int cpu,
struct cpuinfo_arm64 *info,
struct cpuinfo_arm64 *boot)
{
int taint = 0;
/*
* The kernel can handle differing I-cache policies, but otherwise
* caches should look identical. Userspace JITs will make use of
* *minLine.
*/
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
info->reg_ctr, boot->reg_ctr);
/*
* Userspace may perform DC ZVA instructions. Mismatched block sizes
* could result in too much or too little memory being zeroed if a
* process is preempted and migrated between CPUs.
*/
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
info->reg_dczid, boot->reg_dczid);
/* If different, timekeeping will be broken (especially with KVM) */
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
info->reg_cntfrq, boot->reg_cntfrq);
/*
* The kernel uses self-hosted debug features and expects CPUs to
* support identical debug features. We presently need CTX_CMPs, WRPs,
* and BRPs to be identical.
* ID_AA64DFR1 is currently RES0.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
/*
* Even in big.LITTLE, processors should be identical instruction-set
* wise.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
/*
* Differing PARange support is fine as long as all peripherals and
* memory are mapped within the minimum PARange of all CPUs.
* Linux should not care about secure memory.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
/*
* EL3 is not our concern.
* ID_AA64PFR1 is currently RES0.
*/
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
/*
* If we have AArch32, we care about 32-bit features for compat. These
* registers should be RES0 otherwise.
*/
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
info->reg_id_dfr0, boot->reg_id_dfr0);
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
info->reg_id_isar0, boot->reg_id_isar0);
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
info->reg_id_isar1, boot->reg_id_isar1);
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
info->reg_id_isar2, boot->reg_id_isar2);
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
info->reg_id_isar3, boot->reg_id_isar3);
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
info->reg_id_isar4, boot->reg_id_isar4);
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
info->reg_id_isar5, boot->reg_id_isar5);
/*
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
* ACTLR formats could differ across CPUs and therefore would have to
* be trapped for virtualization anyway.
*/
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
info->reg_id_mmfr0, boot->reg_id_mmfr0);
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
info->reg_id_mmfr1, boot->reg_id_mmfr1);
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
info->reg_id_mmfr2, boot->reg_id_mmfr2);
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
info->reg_id_mmfr3, boot->reg_id_mmfr3);
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
info->reg_id_pfr0, boot->reg_id_pfr0);
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
info->reg_id_pfr1, boot->reg_id_pfr1);
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
info->reg_mvfr0, boot->reg_mvfr0);
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
info->reg_mvfr1, boot->reg_mvfr1);
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
info->reg_mvfr2, boot->reg_mvfr2);
/*
* Mismatched CPU features are a recipe for disaster. Don't even
* pretend to support them.
*/
WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
"Unsupported CPU feature variation.\n");
}
u64 read_system_reg(u32 id)
{
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
/* We shouldn't get a request for an unsupported register */
BUG_ON(!regp);
return regp->sys_val;
}
#include <linux/irqchip/arm-gic-v3.h>
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
int val = cpuid_feature_extract_field(reg, entry->field_pos);
return val >= entry->min_field_value;
}
static bool
has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
{
u64 val;
val = read_system_reg(entry->sys_reg);
return feature_matches(val, entry);
}
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
{
bool has_sre;
if (!has_cpuid_feature(entry))
return false;
has_sre = gic_enable_sre();
if (!has_sre)
pr_warn_once("%s present but disabled by higher exception level\n",
entry->desc);
return has_sre;
}
static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "GIC system register CPU interface",
.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
.matches = has_useable_gicv3_cpuif,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.field_pos = ID_AA64PFR0_GIC_SHIFT,
.min_field_value = 1,
},
#ifdef CONFIG_ARM64_PAN
{
.desc = "Privileged Access Never",
.capability = ARM64_HAS_PAN,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64MMFR1_EL1,
.field_pos = ID_AA64MMFR1_PAN_SHIFT,
.min_field_value = 1,
.enable = cpu_enable_pan,
},
#endif /* CONFIG_ARM64_PAN */
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
{
.desc = "LSE atomic instructions",
.capability = ARM64_HAS_LSE_ATOMICS,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR0_EL1,
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
.min_field_value = 2,
},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
{},
};
#define HWCAP_CAP(reg, field, min_value, type, cap) \
{ \
.desc = #cap, \
.matches = has_cpuid_feature, \
.sys_reg = reg, \
.field_pos = field, \
.min_field_value = min_value, \
.hwcap_type = type, \
.hwcap = cap, \
}
static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
#ifdef CONFIG_COMPAT
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
#endif
{},
};
static void cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
{
switch (cap->hwcap_type) {
case CAP_HWCAP:
elf_hwcap |= cap->hwcap;
break;
#ifdef CONFIG_COMPAT
case CAP_COMPAT_HWCAP:
compat_elf_hwcap |= (u32)cap->hwcap;
break;
case CAP_COMPAT_HWCAP2:
compat_elf_hwcap2 |= (u32)cap->hwcap;
break;
#endif
default:
WARN_ON(1);
break;
}
}
/* Check if we have a particular HWCAP enabled */
static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
{
bool rc;
switch (cap->hwcap_type) {
case CAP_HWCAP:
rc = (elf_hwcap & cap->hwcap) != 0;
break;
#ifdef CONFIG_COMPAT
case CAP_COMPAT_HWCAP:
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
break;
case CAP_COMPAT_HWCAP2:
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
break;
#endif
default:
WARN_ON(1);
rc = false;
}
return rc;
}
static void setup_cpu_hwcaps(void)
{
int i;
const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
for (i = 0; hwcaps[i].desc; i++)
if (hwcaps[i].matches(&hwcaps[i]))
cap_set_hwcap(&hwcaps[i]);
}
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
const char *info)
{
int i;
for (i = 0; caps[i].desc; i++) {
if (!caps[i].matches(&caps[i]))
continue;
if (!cpus_have_cap(caps[i].capability))
pr_info("%s %s\n", info, caps[i].desc);
cpus_set_cap(caps[i].capability);
}
}
/*
* Run through the enabled capabilities and enable() it on all active
* CPUs
*/
static void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
{
int i;
for (i = 0; caps[i].desc; i++)
if (caps[i].enable && cpus_have_cap(caps[i].capability))
on_each_cpu(caps[i].enable, NULL, true);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Flag to indicate if we have computed the system wide
* capabilities based on the boot time active CPUs. This
* will be used to determine if a new booting CPU should
* go through the verification process to make sure that it
* supports the system capabilities, without using a hotplug
* notifier.
*/
static bool sys_caps_initialised;
static inline void set_sys_caps_initialised(void)
{
sys_caps_initialised = true;
}
/*
* __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
*/
static u64 __raw_read_system_reg(u32 sys_id)
{
switch (sys_id) {
case SYS_ID_PFR0_EL1: return (u64)read_cpuid(ID_PFR0_EL1);
case SYS_ID_PFR1_EL1: return (u64)read_cpuid(ID_PFR1_EL1);
case SYS_ID_DFR0_EL1: return (u64)read_cpuid(ID_DFR0_EL1);
case SYS_ID_MMFR0_EL1: return (u64)read_cpuid(ID_MMFR0_EL1);
case SYS_ID_MMFR1_EL1: return (u64)read_cpuid(ID_MMFR1_EL1);
case SYS_ID_MMFR2_EL1: return (u64)read_cpuid(ID_MMFR2_EL1);
case SYS_ID_MMFR3_EL1: return (u64)read_cpuid(ID_MMFR3_EL1);
case SYS_ID_ISAR0_EL1: return (u64)read_cpuid(ID_ISAR0_EL1);
case SYS_ID_ISAR1_EL1: return (u64)read_cpuid(ID_ISAR1_EL1);
case SYS_ID_ISAR2_EL1: return (u64)read_cpuid(ID_ISAR2_EL1);
case SYS_ID_ISAR3_EL1: return (u64)read_cpuid(ID_ISAR3_EL1);
case SYS_ID_ISAR4_EL1: return (u64)read_cpuid(ID_ISAR4_EL1);
case SYS_ID_ISAR5_EL1: return (u64)read_cpuid(ID_ISAR4_EL1);
case SYS_MVFR0_EL1: return (u64)read_cpuid(MVFR0_EL1);
case SYS_MVFR1_EL1: return (u64)read_cpuid(MVFR1_EL1);
case SYS_MVFR2_EL1: return (u64)read_cpuid(MVFR2_EL1);
case SYS_ID_AA64PFR0_EL1: return (u64)read_cpuid(ID_AA64PFR0_EL1);
case SYS_ID_AA64PFR1_EL1: return (u64)read_cpuid(ID_AA64PFR0_EL1);
case SYS_ID_AA64DFR0_EL1: return (u64)read_cpuid(ID_AA64DFR0_EL1);
case SYS_ID_AA64DFR1_EL1: return (u64)read_cpuid(ID_AA64DFR0_EL1);
case SYS_ID_AA64MMFR0_EL1: return (u64)read_cpuid(ID_AA64MMFR0_EL1);
case SYS_ID_AA64MMFR1_EL1: return (u64)read_cpuid(ID_AA64MMFR1_EL1);
case SYS_ID_AA64ISAR0_EL1: return (u64)read_cpuid(ID_AA64ISAR0_EL1);
case SYS_ID_AA64ISAR1_EL1: return (u64)read_cpuid(ID_AA64ISAR1_EL1);
case SYS_CNTFRQ_EL0: return (u64)read_cpuid(CNTFRQ_EL0);
case SYS_CTR_EL0: return (u64)read_cpuid(CTR_EL0);
case SYS_DCZID_EL0: return (u64)read_cpuid(DCZID_EL0);
default:
BUG();
return 0;
}
}
/*
* Park the CPU which doesn't have the capability as advertised
* by the system.
*/
static void fail_incapable_cpu(char *cap_type,
const struct arm64_cpu_capabilities *cap)
{
int cpu = smp_processor_id();
pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
/* Mark this CPU absent */
set_cpu_present(cpu, 0);
/* Check if we can park ourselves */
if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
cpu_ops[cpu]->cpu_die(cpu);
asm(
"1: wfe\n"
" wfi\n"
" b 1b");
}
/*
* Run through the enabled system capabilities and enable() it on this CPU.
* The capabilities were decided based on the available CPUs at the boot time.
* Any new CPU should match the system wide status of the capability. If the
* new CPU doesn't have a capability which the system now has enabled, we
* cannot do anything to fix it up and could cause unexpected failures. So
* we park the CPU.
*/
void verify_local_cpu_capabilities(void)
{
int i;
const struct arm64_cpu_capabilities *caps;
/*
* If we haven't computed the system capabilities, there is nothing
* to verify.
*/
if (!sys_caps_initialised)
return;
caps = arm64_features;
for (i = 0; caps[i].desc; i++) {
if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
continue;
/*
* If the new CPU misses an advertised feature, we cannot proceed
* further, park the cpu.
*/
if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
fail_incapable_cpu("arm64_features", &caps[i]);
if (caps[i].enable)
caps[i].enable(NULL);
}
for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
if (!cpus_have_hwcap(&caps[i]))
continue;
if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
fail_incapable_cpu("arm64_hwcaps", &caps[i]);
}
}
#else /* !CONFIG_HOTPLUG_CPU */
static inline void set_sys_caps_initialised(void)
{
}
#endif /* CONFIG_HOTPLUG_CPU */
static void setup_feature_capabilities(void)
{
update_cpu_capabilities(arm64_features, "detected feature:");
enable_cpu_capabilities(arm64_features);
}
void __init setup_cpu_features(void)
{
u32 cwg;
int cls;
/* Set the CPU feature capabilies */
setup_feature_capabilities();
setup_cpu_hwcaps();
/* Advertise that we have computed the system capabilities */
set_sys_caps_initialised();
/*
* Check for sane CTR_EL0.CWG value.
*/
cwg = cache_type_cwg();
cls = cache_line_size();
if (!cwg)
pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
cls);
if (L1_CACHE_BYTES < cls)
pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
L1_CACHE_BYTES, cls);
}