blob: 07594f43853d93dac0526f87b49321a29c9bcf6e [file] [log] [blame]
/* visorchipset_main.c
*
* Copyright (C) 2010 - 2015 UNISYS CORPORATION
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*/
#include <linux/acpi.h>
#include <linux/cdev.h>
#include <linux/ctype.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/nls.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/uuid.h>
#include <linux/crash_dump.h>
#include "channel_guid.h"
#include "controlvmchannel.h"
#include "controlvmcompletionstatus.h"
#include "guestlinuxdebug.h"
#include "periodic_work.h"
#include "version.h"
#include "visorbus.h"
#include "visorbus_private.h"
#include "vmcallinterface.h"
#define CURRENT_FILE_PC VISOR_CHIPSET_PC_visorchipset_main_c
#define MAX_NAME_SIZE 128
#define MAX_IP_SIZE 50
#define MAXOUTSTANDINGCHANNELCOMMAND 256
#define POLLJIFFIES_CONTROLVMCHANNEL_FAST 1
#define POLLJIFFIES_CONTROLVMCHANNEL_SLOW 100
#define MAX_CONTROLVM_PAYLOAD_BYTES (1024*128)
#define VISORCHIPSET_MMAP_CONTROLCHANOFFSET 0x00000000
#define UNISYS_SPAR_LEAF_ID 0x40000000
/* The s-Par leaf ID returns "UnisysSpar64" encoded across ebx, ecx, edx */
#define UNISYS_SPAR_ID_EBX 0x73696e55
#define UNISYS_SPAR_ID_ECX 0x70537379
#define UNISYS_SPAR_ID_EDX 0x34367261
/*
* Module parameters
*/
static int visorchipset_major;
static int visorchipset_visorbusregwait = 1; /* default is on */
static int visorchipset_holdchipsetready;
static unsigned long controlvm_payload_bytes_buffered;
static int
visorchipset_open(struct inode *inode, struct file *file)
{
unsigned minor_number = iminor(inode);
if (minor_number)
return -ENODEV;
file->private_data = NULL;
return 0;
}
static int
visorchipset_release(struct inode *inode, struct file *file)
{
return 0;
}
/* When the controlvm channel is idle for at least MIN_IDLE_SECONDS,
* we switch to slow polling mode. As soon as we get a controlvm
* message, we switch back to fast polling mode.
*/
#define MIN_IDLE_SECONDS 10
static unsigned long poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
static unsigned long most_recent_message_jiffies; /* when we got our last
* controlvm message */
static int visorbusregistered;
#define MAX_CHIPSET_EVENTS 2
static u8 chipset_events[MAX_CHIPSET_EVENTS] = { 0, 0 };
struct parser_context {
unsigned long allocbytes;
unsigned long param_bytes;
u8 *curr;
unsigned long bytes_remaining;
bool byte_stream;
char data[0];
};
static struct delayed_work periodic_controlvm_work;
static struct workqueue_struct *periodic_controlvm_workqueue;
static DEFINE_SEMAPHORE(notifier_lock);
static struct cdev file_cdev;
static struct visorchannel **file_controlvm_channel;
static struct controlvm_message_header g_chipset_msg_hdr;
static struct controlvm_message_packet g_devicechangestate_packet;
static LIST_HEAD(bus_info_list);
static LIST_HEAD(dev_info_list);
static struct visorchannel *controlvm_channel;
/* Manages the request payload in the controlvm channel */
struct visor_controlvm_payload_info {
u8 *ptr; /* pointer to base address of payload pool */
u64 offset; /* offset from beginning of controlvm
* channel to beginning of payload * pool */
u32 bytes; /* number of bytes in payload pool */
};
static struct visor_controlvm_payload_info controlvm_payload_info;
/* The following globals are used to handle the scenario where we are unable to
* offload the payload from a controlvm message due to memory requirements. In
* this scenario, we simply stash the controlvm message, then attempt to
* process it again the next time controlvm_periodic_work() runs.
*/
static struct controlvm_message controlvm_pending_msg;
static bool controlvm_pending_msg_valid;
/* This identifies a data buffer that has been received via a controlvm messages
* in a remote --> local CONTROLVM_TRANSMIT_FILE conversation.
*/
struct putfile_buffer_entry {
struct list_head next; /* putfile_buffer_entry list */
struct parser_context *parser_ctx; /* points to input data buffer */
};
/* List of struct putfile_request *, via next_putfile_request member.
* Each entry in this list identifies an outstanding TRANSMIT_FILE
* conversation.
*/
static LIST_HEAD(putfile_request_list);
/* This describes a buffer and its current state of transfer (e.g., how many
* bytes have already been supplied as putfile data, and how many bytes are
* remaining) for a putfile_request.
*/
struct putfile_active_buffer {
/* a payload from a controlvm message, containing a file data buffer */
struct parser_context *parser_ctx;
/* points within data area of parser_ctx to next byte of data */
u8 *pnext;
/* # bytes left from <pnext> to the end of this data buffer */
size_t bytes_remaining;
};
#define PUTFILE_REQUEST_SIG 0x0906101302281211
/* This identifies a single remote --> local CONTROLVM_TRANSMIT_FILE
* conversation. Structs of this type are dynamically linked into
* <Putfile_request_list>.
*/
struct putfile_request {
u64 sig; /* PUTFILE_REQUEST_SIG */
/* header from original TransmitFile request */
struct controlvm_message_header controlvm_header;
u64 file_request_number; /* from original TransmitFile request */
/* link to next struct putfile_request */
struct list_head next_putfile_request;
/* most-recent sequence number supplied via a controlvm message */
u64 data_sequence_number;
/* head of putfile_buffer_entry list, which describes the data to be
* supplied as putfile data;
* - this list is added to when controlvm messages come in that supply
* file data
* - this list is removed from via the hotplug program that is actually
* consuming these buffers to write as file data */
struct list_head input_buffer_list;
spinlock_t req_list_lock; /* lock for input_buffer_list */
/* waiters for input_buffer_list to go non-empty */
wait_queue_head_t input_buffer_wq;
/* data not yet read within current putfile_buffer_entry */
struct putfile_active_buffer active_buf;
/* <0 = failed, 0 = in-progress, >0 = successful; */
/* note that this must be set with req_list_lock, and if you set <0, */
/* it is your responsibility to also free up all of the other objects */
/* in this struct (like input_buffer_list, active_buf.parser_ctx) */
/* before releasing the lock */
int completion_status;
};
struct parahotplug_request {
struct list_head list;
int id;
unsigned long expiration;
struct controlvm_message msg;
};
static LIST_HEAD(parahotplug_request_list);
static DEFINE_SPINLOCK(parahotplug_request_list_lock); /* lock for above */
static void parahotplug_process_list(void);
/* Manages the info for a CONTROLVM_DUMP_CAPTURESTATE /
* CONTROLVM_REPORTEVENT.
*/
static struct visorchipset_busdev_notifiers busdev_notifiers;
static void bus_create_response(struct visor_device *p, int response);
static void bus_destroy_response(struct visor_device *p, int response);
static void device_create_response(struct visor_device *p, int response);
static void device_destroy_response(struct visor_device *p, int response);
static void device_resume_response(struct visor_device *p, int response);
static void visorchipset_device_pause_response(struct visor_device *p,
int response);
static struct visorchipset_busdev_responders busdev_responders = {
.bus_create = bus_create_response,
.bus_destroy = bus_destroy_response,
.device_create = device_create_response,
.device_destroy = device_destroy_response,
.device_pause = visorchipset_device_pause_response,
.device_resume = device_resume_response,
};
/* info for /dev/visorchipset */
static dev_t major_dev = -1; /**< indicates major num for device */
/* prototypes for attributes */
static ssize_t toolaction_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t toolaction_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static DEVICE_ATTR_RW(toolaction);
static ssize_t boottotool_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t boottotool_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count);
static DEVICE_ATTR_RW(boottotool);
static ssize_t error_show(struct device *dev, struct device_attribute *attr,
char *buf);
static ssize_t error_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
static DEVICE_ATTR_RW(error);
static ssize_t textid_show(struct device *dev, struct device_attribute *attr,
char *buf);
static ssize_t textid_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
static DEVICE_ATTR_RW(textid);
static ssize_t remaining_steps_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t remaining_steps_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static DEVICE_ATTR_RW(remaining_steps);
static ssize_t chipsetready_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static DEVICE_ATTR_WO(chipsetready);
static ssize_t devicedisabled_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static DEVICE_ATTR_WO(devicedisabled);
static ssize_t deviceenabled_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static DEVICE_ATTR_WO(deviceenabled);
static struct attribute *visorchipset_install_attrs[] = {
&dev_attr_toolaction.attr,
&dev_attr_boottotool.attr,
&dev_attr_error.attr,
&dev_attr_textid.attr,
&dev_attr_remaining_steps.attr,
NULL
};
static struct attribute_group visorchipset_install_group = {
.name = "install",
.attrs = visorchipset_install_attrs
};
static struct attribute *visorchipset_guest_attrs[] = {
&dev_attr_chipsetready.attr,
NULL
};
static struct attribute_group visorchipset_guest_group = {
.name = "guest",
.attrs = visorchipset_guest_attrs
};
static struct attribute *visorchipset_parahotplug_attrs[] = {
&dev_attr_devicedisabled.attr,
&dev_attr_deviceenabled.attr,
NULL
};
static struct attribute_group visorchipset_parahotplug_group = {
.name = "parahotplug",
.attrs = visorchipset_parahotplug_attrs
};
static const struct attribute_group *visorchipset_dev_groups[] = {
&visorchipset_install_group,
&visorchipset_guest_group,
&visorchipset_parahotplug_group,
NULL
};
static void visorchipset_dev_release(struct device *dev)
{
}
/* /sys/devices/platform/visorchipset */
static struct platform_device visorchipset_platform_device = {
.name = "visorchipset",
.id = -1,
.dev.groups = visorchipset_dev_groups,
.dev.release = visorchipset_dev_release,
};
/* Function prototypes */
static void controlvm_respond(struct controlvm_message_header *msg_hdr,
int response);
static void controlvm_respond_chipset_init(
struct controlvm_message_header *msg_hdr, int response,
enum ultra_chipset_feature features);
static void controlvm_respond_physdev_changestate(
struct controlvm_message_header *msg_hdr, int response,
struct spar_segment_state state);
static void parser_done(struct parser_context *ctx);
static struct parser_context *
parser_init_byte_stream(u64 addr, u32 bytes, bool local, bool *retry)
{
int allocbytes = sizeof(struct parser_context) + bytes;
struct parser_context *rc = NULL;
struct parser_context *ctx = NULL;
if (retry)
*retry = false;
/*
* alloc an 0 extra byte to ensure payload is
* '\0'-terminated
*/
allocbytes++;
if ((controlvm_payload_bytes_buffered + bytes)
> MAX_CONTROLVM_PAYLOAD_BYTES) {
if (retry)
*retry = true;
rc = NULL;
goto cleanup;
}
ctx = kzalloc(allocbytes, GFP_KERNEL|__GFP_NORETRY);
if (!ctx) {
if (retry)
*retry = true;
rc = NULL;
goto cleanup;
}
ctx->allocbytes = allocbytes;
ctx->param_bytes = bytes;
ctx->curr = NULL;
ctx->bytes_remaining = 0;
ctx->byte_stream = false;
if (local) {
void *p;
if (addr > virt_to_phys(high_memory - 1)) {
rc = NULL;
goto cleanup;
}
p = __va((unsigned long) (addr));
memcpy(ctx->data, p, bytes);
} else {
void *mapping;
if (!request_mem_region(addr, bytes, "visorchipset")) {
rc = NULL;
goto cleanup;
}
mapping = memremap(addr, bytes, MEMREMAP_WB);
if (!mapping) {
release_mem_region(addr, bytes);
rc = NULL;
goto cleanup;
}
memcpy(ctx->data, mapping, bytes);
release_mem_region(addr, bytes);
memunmap(mapping);
}
ctx->byte_stream = true;
rc = ctx;
cleanup:
if (rc) {
controlvm_payload_bytes_buffered += ctx->param_bytes;
} else {
if (ctx) {
parser_done(ctx);
ctx = NULL;
}
}
return rc;
}
static uuid_le
parser_id_get(struct parser_context *ctx)
{
struct spar_controlvm_parameters_header *phdr = NULL;
if (ctx == NULL)
return NULL_UUID_LE;
phdr = (struct spar_controlvm_parameters_header *)(ctx->data);
return phdr->id;
}
/** Describes the state from the perspective of which controlvm messages have
* been received for a bus or device.
*/
enum PARSER_WHICH_STRING {
PARSERSTRING_INITIATOR,
PARSERSTRING_TARGET,
PARSERSTRING_CONNECTION,
PARSERSTRING_NAME, /* TODO: only PARSERSTRING_NAME is used ? */
};
static void
parser_param_start(struct parser_context *ctx,
enum PARSER_WHICH_STRING which_string)
{
struct spar_controlvm_parameters_header *phdr = NULL;
if (ctx == NULL)
goto Away;
phdr = (struct spar_controlvm_parameters_header *)(ctx->data);
switch (which_string) {
case PARSERSTRING_INITIATOR:
ctx->curr = ctx->data + phdr->initiator_offset;
ctx->bytes_remaining = phdr->initiator_length;
break;
case PARSERSTRING_TARGET:
ctx->curr = ctx->data + phdr->target_offset;
ctx->bytes_remaining = phdr->target_length;
break;
case PARSERSTRING_CONNECTION:
ctx->curr = ctx->data + phdr->connection_offset;
ctx->bytes_remaining = phdr->connection_length;
break;
case PARSERSTRING_NAME:
ctx->curr = ctx->data + phdr->name_offset;
ctx->bytes_remaining = phdr->name_length;
break;
default:
break;
}
Away:
return;
}
static void parser_done(struct parser_context *ctx)
{
if (!ctx)
return;
controlvm_payload_bytes_buffered -= ctx->param_bytes;
kfree(ctx);
}
static void *
parser_string_get(struct parser_context *ctx)
{
u8 *pscan;
unsigned long nscan;
int value_length = -1;
void *value = NULL;
int i;
if (!ctx)
return NULL;
pscan = ctx->curr;
nscan = ctx->bytes_remaining;
if (nscan == 0)
return NULL;
if (!pscan)
return NULL;
for (i = 0, value_length = -1; i < nscan; i++)
if (pscan[i] == '\0') {
value_length = i;
break;
}
if (value_length < 0) /* '\0' was not included in the length */
value_length = nscan;
value = kmalloc(value_length + 1, GFP_KERNEL|__GFP_NORETRY);
if (value == NULL)
return NULL;
if (value_length > 0)
memcpy(value, pscan, value_length);
((u8 *) (value))[value_length] = '\0';
return value;
}
static ssize_t toolaction_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 tool_action;
visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
tool_action), &tool_action, sizeof(u8));
return scnprintf(buf, PAGE_SIZE, "%u\n", tool_action);
}
static ssize_t toolaction_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u8 tool_action;
int ret;
if (kstrtou8(buf, 10, &tool_action))
return -EINVAL;
ret = visorchannel_write(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
tool_action),
&tool_action, sizeof(u8));
if (ret)
return ret;
return count;
}
static ssize_t boottotool_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efi_spar_indication efi_spar_indication;
visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
efi_spar_ind), &efi_spar_indication,
sizeof(struct efi_spar_indication));
return scnprintf(buf, PAGE_SIZE, "%u\n",
efi_spar_indication.boot_to_tool);
}
static ssize_t boottotool_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int val, ret;
struct efi_spar_indication efi_spar_indication;
if (kstrtoint(buf, 10, &val))
return -EINVAL;
efi_spar_indication.boot_to_tool = val;
ret = visorchannel_write(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
efi_spar_ind), &(efi_spar_indication),
sizeof(struct efi_spar_indication));
if (ret)
return ret;
return count;
}
static ssize_t error_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
u32 error;
visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
installation_error),
&error, sizeof(u32));
return scnprintf(buf, PAGE_SIZE, "%i\n", error);
}
static ssize_t error_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
u32 error;
int ret;
if (kstrtou32(buf, 10, &error))
return -EINVAL;
ret = visorchannel_write(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
installation_error),
&error, sizeof(u32));
if (ret)
return ret;
return count;
}
static ssize_t textid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
u32 text_id;
visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
installation_text_id),
&text_id, sizeof(u32));
return scnprintf(buf, PAGE_SIZE, "%i\n", text_id);
}
static ssize_t textid_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
u32 text_id;
int ret;
if (kstrtou32(buf, 10, &text_id))
return -EINVAL;
ret = visorchannel_write(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
installation_text_id),
&text_id, sizeof(u32));
if (ret)
return ret;
return count;
}
static ssize_t remaining_steps_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u16 remaining_steps;
visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
installation_remaining_steps),
&remaining_steps, sizeof(u16));
return scnprintf(buf, PAGE_SIZE, "%hu\n", remaining_steps);
}
static ssize_t remaining_steps_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u16 remaining_steps;
int ret;
if (kstrtou16(buf, 10, &remaining_steps))
return -EINVAL;
ret = visorchannel_write(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
installation_remaining_steps),
&remaining_steps, sizeof(u16));
if (ret)
return ret;
return count;
}
struct visor_busdev {
u32 bus_no;
u32 dev_no;
};
static int match_visorbus_dev_by_id(struct device *dev, void *data)
{
struct visor_device *vdev = to_visor_device(dev);
struct visor_busdev *id = data;
u32 bus_no = id->bus_no;
u32 dev_no = id->dev_no;
if ((vdev->chipset_bus_no == bus_no) &&
(vdev->chipset_dev_no == dev_no))
return 1;
return 0;
}
struct visor_device *visorbus_get_device_by_id(u32 bus_no, u32 dev_no,
struct visor_device *from)
{
struct device *dev;
struct device *dev_start = NULL;
struct visor_device *vdev = NULL;
struct visor_busdev id = {
.bus_no = bus_no,
.dev_no = dev_no
};
if (from)
dev_start = &from->device;
dev = bus_find_device(&visorbus_type, dev_start, (void *)&id,
match_visorbus_dev_by_id);
if (dev)
vdev = to_visor_device(dev);
return vdev;
}
EXPORT_SYMBOL(visorbus_get_device_by_id);
static u8
check_chipset_events(void)
{
int i;
u8 send_msg = 1;
/* Check events to determine if response should be sent */
for (i = 0; i < MAX_CHIPSET_EVENTS; i++)
send_msg &= chipset_events[i];
return send_msg;
}
static void
clear_chipset_events(void)
{
int i;
/* Clear chipset_events */
for (i = 0; i < MAX_CHIPSET_EVENTS; i++)
chipset_events[i] = 0;
}
void
visorchipset_register_busdev(
struct visorchipset_busdev_notifiers *notifiers,
struct visorchipset_busdev_responders *responders,
struct ultra_vbus_deviceinfo *driver_info)
{
down(&notifier_lock);
if (!notifiers) {
memset(&busdev_notifiers, 0,
sizeof(busdev_notifiers));
visorbusregistered = 0; /* clear flag */
} else {
busdev_notifiers = *notifiers;
visorbusregistered = 1; /* set flag */
}
if (responders)
*responders = busdev_responders;
if (driver_info)
bus_device_info_init(driver_info, "chipset", "visorchipset",
VERSION, NULL);
up(&notifier_lock);
}
EXPORT_SYMBOL_GPL(visorchipset_register_busdev);
static void
chipset_init(struct controlvm_message *inmsg)
{
static int chipset_inited;
enum ultra_chipset_feature features = 0;
int rc = CONTROLVM_RESP_SUCCESS;
POSTCODE_LINUX_2(CHIPSET_INIT_ENTRY_PC, POSTCODE_SEVERITY_INFO);
if (chipset_inited) {
rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
goto cleanup;
}
chipset_inited = 1;
POSTCODE_LINUX_2(CHIPSET_INIT_EXIT_PC, POSTCODE_SEVERITY_INFO);
/* Set features to indicate we support parahotplug (if Command
* also supports it). */
features =
inmsg->cmd.init_chipset.
features & ULTRA_CHIPSET_FEATURE_PARA_HOTPLUG;
/* Set the "reply" bit so Command knows this is a
* features-aware driver. */
features |= ULTRA_CHIPSET_FEATURE_REPLY;
cleanup:
if (inmsg->hdr.flags.response_expected)
controlvm_respond_chipset_init(&inmsg->hdr, rc, features);
}
static void
controlvm_init_response(struct controlvm_message *msg,
struct controlvm_message_header *msg_hdr, int response)
{
memset(msg, 0, sizeof(struct controlvm_message));
memcpy(&msg->hdr, msg_hdr, sizeof(struct controlvm_message_header));
msg->hdr.payload_bytes = 0;
msg->hdr.payload_vm_offset = 0;
msg->hdr.payload_max_bytes = 0;
if (response < 0) {
msg->hdr.flags.failed = 1;
msg->hdr.completion_status = (u32) (-response);
}
}
static void
controlvm_respond(struct controlvm_message_header *msg_hdr, int response)
{
struct controlvm_message outmsg;
controlvm_init_response(&outmsg, msg_hdr, response);
if (outmsg.hdr.flags.test_message == 1)
return;
if (!visorchannel_signalinsert(controlvm_channel,
CONTROLVM_QUEUE_REQUEST, &outmsg)) {
return;
}
}
static void
controlvm_respond_chipset_init(struct controlvm_message_header *msg_hdr,
int response,
enum ultra_chipset_feature features)
{
struct controlvm_message outmsg;
controlvm_init_response(&outmsg, msg_hdr, response);
outmsg.cmd.init_chipset.features = features;
if (!visorchannel_signalinsert(controlvm_channel,
CONTROLVM_QUEUE_REQUEST, &outmsg)) {
return;
}
}
static void controlvm_respond_physdev_changestate(
struct controlvm_message_header *msg_hdr, int response,
struct spar_segment_state state)
{
struct controlvm_message outmsg;
controlvm_init_response(&outmsg, msg_hdr, response);
outmsg.cmd.device_change_state.state = state;
outmsg.cmd.device_change_state.flags.phys_device = 1;
if (!visorchannel_signalinsert(controlvm_channel,
CONTROLVM_QUEUE_REQUEST, &outmsg)) {
return;
}
}
enum crash_obj_type {
CRASH_DEV,
CRASH_BUS,
};
static void
bus_responder(enum controlvm_id cmd_id,
struct controlvm_message_header *pending_msg_hdr,
int response)
{
if (pending_msg_hdr == NULL)
return; /* no controlvm response needed */
if (pending_msg_hdr->id != (u32)cmd_id)
return;
controlvm_respond(pending_msg_hdr, response);
}
static void
device_changestate_responder(enum controlvm_id cmd_id,
struct visor_device *p, int response,
struct spar_segment_state response_state)
{
struct controlvm_message outmsg;
u32 bus_no = p->chipset_bus_no;
u32 dev_no = p->chipset_dev_no;
if (p->pending_msg_hdr == NULL)
return; /* no controlvm response needed */
if (p->pending_msg_hdr->id != cmd_id)
return;
controlvm_init_response(&outmsg, p->pending_msg_hdr, response);
outmsg.cmd.device_change_state.bus_no = bus_no;
outmsg.cmd.device_change_state.dev_no = dev_no;
outmsg.cmd.device_change_state.state = response_state;
if (!visorchannel_signalinsert(controlvm_channel,
CONTROLVM_QUEUE_REQUEST, &outmsg))
return;
}
static void
device_responder(enum controlvm_id cmd_id,
struct controlvm_message_header *pending_msg_hdr,
int response)
{
if (pending_msg_hdr == NULL)
return; /* no controlvm response needed */
if (pending_msg_hdr->id != (u32)cmd_id)
return;
controlvm_respond(pending_msg_hdr, response);
}
static void
bus_epilog(struct visor_device *bus_info,
u32 cmd, struct controlvm_message_header *msg_hdr,
int response, bool need_response)
{
bool notified = false;
struct controlvm_message_header *pmsg_hdr = NULL;
if (!bus_info) {
/* relying on a valid passed in response code */
/* be lazy and re-use msg_hdr for this failure, is this ok?? */
pmsg_hdr = msg_hdr;
goto away;
}
if (bus_info->pending_msg_hdr) {
/* only non-NULL if dev is still waiting on a response */
response = -CONTROLVM_RESP_ERROR_MESSAGE_ID_INVALID_FOR_CLIENT;
pmsg_hdr = bus_info->pending_msg_hdr;
goto away;
}
if (need_response) {
pmsg_hdr = kzalloc(sizeof(*pmsg_hdr), GFP_KERNEL);
if (!pmsg_hdr) {
response = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
goto away;
}
memcpy(pmsg_hdr, msg_hdr,
sizeof(struct controlvm_message_header));
bus_info->pending_msg_hdr = pmsg_hdr;
}
down(&notifier_lock);
if (response == CONTROLVM_RESP_SUCCESS) {
switch (cmd) {
case CONTROLVM_BUS_CREATE:
if (busdev_notifiers.bus_create) {
(*busdev_notifiers.bus_create) (bus_info);
notified = true;
}
break;
case CONTROLVM_BUS_DESTROY:
if (busdev_notifiers.bus_destroy) {
(*busdev_notifiers.bus_destroy) (bus_info);
notified = true;
}
break;
}
}
away:
if (notified)
/* The callback function just called above is responsible
* for calling the appropriate visorchipset_busdev_responders
* function, which will call bus_responder()
*/
;
else
/*
* Do not kfree(pmsg_hdr) as this is the failure path.
* The success path ('notified') will call the responder
* directly and kfree() there.
*/
bus_responder(cmd, pmsg_hdr, response);
up(&notifier_lock);
}
static void
device_epilog(struct visor_device *dev_info,
struct spar_segment_state state, u32 cmd,
struct controlvm_message_header *msg_hdr, int response,
bool need_response, bool for_visorbus)
{
struct visorchipset_busdev_notifiers *notifiers;
bool notified = false;
struct controlvm_message_header *pmsg_hdr = NULL;
notifiers = &busdev_notifiers;
if (!dev_info) {
/* relying on a valid passed in response code */
/* be lazy and re-use msg_hdr for this failure, is this ok?? */
pmsg_hdr = msg_hdr;
goto away;
}
if (dev_info->pending_msg_hdr) {
/* only non-NULL if dev is still waiting on a response */
response = -CONTROLVM_RESP_ERROR_MESSAGE_ID_INVALID_FOR_CLIENT;
pmsg_hdr = dev_info->pending_msg_hdr;
goto away;
}
if (need_response) {
pmsg_hdr = kzalloc(sizeof(*pmsg_hdr), GFP_KERNEL);
if (!pmsg_hdr) {
response = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
goto away;
}
memcpy(pmsg_hdr, msg_hdr,
sizeof(struct controlvm_message_header));
dev_info->pending_msg_hdr = pmsg_hdr;
}
down(&notifier_lock);
if (response >= 0) {
switch (cmd) {
case CONTROLVM_DEVICE_CREATE:
if (notifiers->device_create) {
(*notifiers->device_create) (dev_info);
notified = true;
}
break;
case CONTROLVM_DEVICE_CHANGESTATE:
/* ServerReady / ServerRunning / SegmentStateRunning */
if (state.alive == segment_state_running.alive &&
state.operating ==
segment_state_running.operating) {
if (notifiers->device_resume) {
(*notifiers->device_resume) (dev_info);
notified = true;
}
}
/* ServerNotReady / ServerLost / SegmentStateStandby */
else if (state.alive == segment_state_standby.alive &&
state.operating ==
segment_state_standby.operating) {
/* technically this is standby case
* where server is lost
*/
if (notifiers->device_pause) {
(*notifiers->device_pause) (dev_info);
notified = true;
}
}
break;
case CONTROLVM_DEVICE_DESTROY:
if (notifiers->device_destroy) {
(*notifiers->device_destroy) (dev_info);
notified = true;
}
break;
}
}
away:
if (notified)
/* The callback function just called above is responsible
* for calling the appropriate visorchipset_busdev_responders
* function, which will call device_responder()
*/
;
else
/*
* Do not kfree(pmsg_hdr) as this is the failure path.
* The success path ('notified') will call the responder
* directly and kfree() there.
*/
device_responder(cmd, pmsg_hdr, response);
up(&notifier_lock);
}
static void
bus_create(struct controlvm_message *inmsg)
{
struct controlvm_message_packet *cmd = &inmsg->cmd;
u32 bus_no = cmd->create_bus.bus_no;
int rc = CONTROLVM_RESP_SUCCESS;
struct visor_device *bus_info;
struct visorchannel *visorchannel;
bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
if (bus_info && (bus_info->state.created == 1)) {
POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
goto cleanup;
}
bus_info = kzalloc(sizeof(*bus_info), GFP_KERNEL);
if (!bus_info) {
POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
goto cleanup;
}
INIT_LIST_HEAD(&bus_info->list_all);
bus_info->chipset_bus_no = bus_no;
bus_info->chipset_dev_no = BUS_ROOT_DEVICE;
POSTCODE_LINUX_3(BUS_CREATE_ENTRY_PC, bus_no, POSTCODE_SEVERITY_INFO);
visorchannel = visorchannel_create(cmd->create_bus.channel_addr,
cmd->create_bus.channel_bytes,
GFP_KERNEL,
cmd->create_bus.bus_data_type_uuid);
if (!visorchannel) {
POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
kfree(bus_info);
bus_info = NULL;
goto cleanup;
}
bus_info->visorchannel = visorchannel;
POSTCODE_LINUX_3(BUS_CREATE_EXIT_PC, bus_no, POSTCODE_SEVERITY_INFO);
cleanup:
bus_epilog(bus_info, CONTROLVM_BUS_CREATE, &inmsg->hdr,
rc, inmsg->hdr.flags.response_expected == 1);
}
static void
bus_destroy(struct controlvm_message *inmsg)
{
struct controlvm_message_packet *cmd = &inmsg->cmd;
u32 bus_no = cmd->destroy_bus.bus_no;
struct visor_device *bus_info;
int rc = CONTROLVM_RESP_SUCCESS;
bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
if (!bus_info)
rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
else if (bus_info->state.created == 0)
rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
bus_epilog(bus_info, CONTROLVM_BUS_DESTROY, &inmsg->hdr,
rc, inmsg->hdr.flags.response_expected == 1);
/* bus_info is freed as part of the busdevice_release function */
}
static void
bus_configure(struct controlvm_message *inmsg,
struct parser_context *parser_ctx)
{
struct controlvm_message_packet *cmd = &inmsg->cmd;
u32 bus_no;
struct visor_device *bus_info;
int rc = CONTROLVM_RESP_SUCCESS;
bus_no = cmd->configure_bus.bus_no;
POSTCODE_LINUX_3(BUS_CONFIGURE_ENTRY_PC, bus_no,
POSTCODE_SEVERITY_INFO);
bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
if (!bus_info) {
POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
} else if (bus_info->state.created == 0) {
POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
} else if (bus_info->pending_msg_hdr != NULL) {
POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_MESSAGE_ID_INVALID_FOR_CLIENT;
} else {
visorchannel_set_clientpartition(bus_info->visorchannel,
cmd->configure_bus.guest_handle);
bus_info->partition_uuid = parser_id_get(parser_ctx);
parser_param_start(parser_ctx, PARSERSTRING_NAME);
bus_info->name = parser_string_get(parser_ctx);
POSTCODE_LINUX_3(BUS_CONFIGURE_EXIT_PC, bus_no,
POSTCODE_SEVERITY_INFO);
}
bus_epilog(bus_info, CONTROLVM_BUS_CONFIGURE, &inmsg->hdr,
rc, inmsg->hdr.flags.response_expected == 1);
}
static void
my_device_create(struct controlvm_message *inmsg)
{
struct controlvm_message_packet *cmd = &inmsg->cmd;
u32 bus_no = cmd->create_device.bus_no;
u32 dev_no = cmd->create_device.dev_no;
struct visor_device *dev_info = NULL;
struct visor_device *bus_info;
struct visorchannel *visorchannel;
int rc = CONTROLVM_RESP_SUCCESS;
bus_info = visorbus_get_device_by_id(bus_no, BUS_ROOT_DEVICE, NULL);
if (!bus_info) {
POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
goto cleanup;
}
if (bus_info->state.created == 0) {
POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
goto cleanup;
}
dev_info = visorbus_get_device_by_id(bus_no, dev_no, NULL);
if (dev_info && (dev_info->state.created == 1)) {
POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
goto cleanup;
}
dev_info = kzalloc(sizeof(*dev_info), GFP_KERNEL);
if (!dev_info) {
POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
goto cleanup;
}
dev_info->chipset_bus_no = bus_no;
dev_info->chipset_dev_no = dev_no;
dev_info->inst = cmd->create_device.dev_inst_uuid;
/* not sure where the best place to set the 'parent' */
dev_info->device.parent = &bus_info->device;
POSTCODE_LINUX_4(DEVICE_CREATE_ENTRY_PC, dev_no, bus_no,
POSTCODE_SEVERITY_INFO);
visorchannel =
visorchannel_create_with_lock(cmd->create_device.channel_addr,
cmd->create_device.channel_bytes,
GFP_KERNEL,
cmd->create_device.data_type_uuid);
if (!visorchannel) {
POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
kfree(dev_info);
dev_info = NULL;
goto cleanup;
}
dev_info->visorchannel = visorchannel;
dev_info->channel_type_guid = cmd->create_device.data_type_uuid;
POSTCODE_LINUX_4(DEVICE_CREATE_EXIT_PC, dev_no, bus_no,
POSTCODE_SEVERITY_INFO);
cleanup:
device_epilog(dev_info, segment_state_running,
CONTROLVM_DEVICE_CREATE, &inmsg->hdr, rc,
inmsg->hdr.flags.response_expected == 1, 1);
}
static void
my_device_changestate(struct controlvm_message *inmsg)
{
struct controlvm_message_packet *cmd = &inmsg->cmd;
u32 bus_no = cmd->device_change_state.bus_no;
u32 dev_no = cmd->device_change_state.dev_no;
struct spar_segment_state state = cmd->device_change_state.state;
struct visor_device *dev_info;
int rc = CONTROLVM_RESP_SUCCESS;
dev_info = visorbus_get_device_by_id(bus_no, dev_no, NULL);
if (!dev_info) {
POSTCODE_LINUX_4(DEVICE_CHANGESTATE_FAILURE_PC, dev_no, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
} else if (dev_info->state.created == 0) {
POSTCODE_LINUX_4(DEVICE_CHANGESTATE_FAILURE_PC, dev_no, bus_no,
POSTCODE_SEVERITY_ERR);
rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
}
if ((rc >= CONTROLVM_RESP_SUCCESS) && dev_info)
device_epilog(dev_info, state,
CONTROLVM_DEVICE_CHANGESTATE, &inmsg->hdr, rc,
inmsg->hdr.flags.response_expected == 1, 1);
}
static void
my_device_destroy(struct controlvm_message *inmsg)
{
struct controlvm_message_packet *cmd = &inmsg->cmd;
u32 bus_no = cmd->destroy_device.bus_no;
u32 dev_no = cmd->destroy_device.dev_no;
struct visor_device *dev_info;
int rc = CONTROLVM_RESP_SUCCESS;
dev_info = visorbus_get_device_by_id(bus_no, dev_no, NULL);
if (!dev_info)
rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
else if (dev_info->state.created == 0)
rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
if ((rc >= CONTROLVM_RESP_SUCCESS) && dev_info)
device_epilog(dev_info, segment_state_running,
CONTROLVM_DEVICE_DESTROY, &inmsg->hdr, rc,
inmsg->hdr.flags.response_expected == 1, 1);
}
/* When provided with the physical address of the controlvm channel
* (phys_addr), the offset to the payload area we need to manage
* (offset), and the size of this payload area (bytes), fills in the
* controlvm_payload_info struct. Returns true for success or false
* for failure.
*/
static int
initialize_controlvm_payload_info(u64 phys_addr, u64 offset, u32 bytes,
struct visor_controlvm_payload_info *info)
{
u8 *payload = NULL;
int rc = CONTROLVM_RESP_SUCCESS;
if (!info) {
rc = -CONTROLVM_RESP_ERROR_PAYLOAD_INVALID;
goto cleanup;
}
memset(info, 0, sizeof(struct visor_controlvm_payload_info));
if ((offset == 0) || (bytes == 0)) {
rc = -CONTROLVM_RESP_ERROR_PAYLOAD_INVALID;
goto cleanup;
}
payload = memremap(phys_addr + offset, bytes, MEMREMAP_WB);
if (!payload) {
rc = -CONTROLVM_RESP_ERROR_IOREMAP_FAILED;
goto cleanup;
}
info->offset = offset;
info->bytes = bytes;
info->ptr = payload;
cleanup:
if (rc < 0) {
if (payload) {
memunmap(payload);
payload = NULL;
}
}
return rc;
}
static void
destroy_controlvm_payload_info(struct visor_controlvm_payload_info *info)
{
if (info->ptr) {
memunmap(info->ptr);
info->ptr = NULL;
}
memset(info, 0, sizeof(struct visor_controlvm_payload_info));
}
static void
initialize_controlvm_payload(void)
{
u64 phys_addr = visorchannel_get_physaddr(controlvm_channel);
u64 payload_offset = 0;
u32 payload_bytes = 0;
if (visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
request_payload_offset),
&payload_offset, sizeof(payload_offset)) < 0) {
POSTCODE_LINUX_2(CONTROLVM_INIT_FAILURE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
if (visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
request_payload_bytes),
&payload_bytes, sizeof(payload_bytes)) < 0) {
POSTCODE_LINUX_2(CONTROLVM_INIT_FAILURE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
initialize_controlvm_payload_info(phys_addr,
payload_offset, payload_bytes,
&controlvm_payload_info);
}
/* Send ACTION=online for DEVPATH=/sys/devices/platform/visorchipset.
* Returns CONTROLVM_RESP_xxx code.
*/
static int
visorchipset_chipset_ready(void)
{
kobject_uevent(&visorchipset_platform_device.dev.kobj, KOBJ_ONLINE);
return CONTROLVM_RESP_SUCCESS;
}
static int
visorchipset_chipset_selftest(void)
{
char env_selftest[20];
char *envp[] = { env_selftest, NULL };
sprintf(env_selftest, "SPARSP_SELFTEST=%d", 1);
kobject_uevent_env(&visorchipset_platform_device.dev.kobj, KOBJ_CHANGE,
envp);
return CONTROLVM_RESP_SUCCESS;
}
/* Send ACTION=offline for DEVPATH=/sys/devices/platform/visorchipset.
* Returns CONTROLVM_RESP_xxx code.
*/
static int
visorchipset_chipset_notready(void)
{
kobject_uevent(&visorchipset_platform_device.dev.kobj, KOBJ_OFFLINE);
return CONTROLVM_RESP_SUCCESS;
}
static void
chipset_ready(struct controlvm_message_header *msg_hdr)
{
int rc = visorchipset_chipset_ready();
if (rc != CONTROLVM_RESP_SUCCESS)
rc = -rc;
if (msg_hdr->flags.response_expected && !visorchipset_holdchipsetready)
controlvm_respond(msg_hdr, rc);
if (msg_hdr->flags.response_expected && visorchipset_holdchipsetready) {
/* Send CHIPSET_READY response when all modules have been loaded
* and disks mounted for the partition
*/
g_chipset_msg_hdr = *msg_hdr;
}
}
static void
chipset_selftest(struct controlvm_message_header *msg_hdr)
{
int rc = visorchipset_chipset_selftest();
if (rc != CONTROLVM_RESP_SUCCESS)
rc = -rc;
if (msg_hdr->flags.response_expected)
controlvm_respond(msg_hdr, rc);
}
static void
chipset_notready(struct controlvm_message_header *msg_hdr)
{
int rc = visorchipset_chipset_notready();
if (rc != CONTROLVM_RESP_SUCCESS)
rc = -rc;
if (msg_hdr->flags.response_expected)
controlvm_respond(msg_hdr, rc);
}
/* This is your "one-stop" shop for grabbing the next message from the
* CONTROLVM_QUEUE_EVENT queue in the controlvm channel.
*/
static bool
read_controlvm_event(struct controlvm_message *msg)
{
if (visorchannel_signalremove(controlvm_channel,
CONTROLVM_QUEUE_EVENT, msg)) {
/* got a message */
if (msg->hdr.flags.test_message == 1)
return false;
return true;
}
return false;
}
/*
* The general parahotplug flow works as follows. The visorchipset
* driver receives a DEVICE_CHANGESTATE message from Command
* specifying a physical device to enable or disable. The CONTROLVM
* message handler calls parahotplug_process_message, which then adds
* the message to a global list and kicks off a udev event which
* causes a user level script to enable or disable the specified
* device. The udev script then writes to
* /proc/visorchipset/parahotplug, which causes parahotplug_proc_write
* to get called, at which point the appropriate CONTROLVM message is
* retrieved from the list and responded to.
*/
#define PARAHOTPLUG_TIMEOUT_MS 2000
/*
* Generate unique int to match an outstanding CONTROLVM message with a
* udev script /proc response
*/
static int
parahotplug_next_id(void)
{
static atomic_t id = ATOMIC_INIT(0);
return atomic_inc_return(&id);
}
/*
* Returns the time (in jiffies) when a CONTROLVM message on the list
* should expire -- PARAHOTPLUG_TIMEOUT_MS in the future
*/
static unsigned long
parahotplug_next_expiration(void)
{
return jiffies + msecs_to_jiffies(PARAHOTPLUG_TIMEOUT_MS);
}
/*
* Create a parahotplug_request, which is basically a wrapper for a
* CONTROLVM_MESSAGE that we can stick on a list
*/
static struct parahotplug_request *
parahotplug_request_create(struct controlvm_message *msg)
{
struct parahotplug_request *req;
req = kmalloc(sizeof(*req), GFP_KERNEL | __GFP_NORETRY);
if (!req)
return NULL;
req->id = parahotplug_next_id();
req->expiration = parahotplug_next_expiration();
req->msg = *msg;
return req;
}
/*
* Free a parahotplug_request.
*/
static void
parahotplug_request_destroy(struct parahotplug_request *req)
{
kfree(req);
}
/*
* Cause uevent to run the user level script to do the disable/enable
* specified in (the CONTROLVM message in) the specified
* parahotplug_request
*/
static void
parahotplug_request_kickoff(struct parahotplug_request *req)
{
struct controlvm_message_packet *cmd = &req->msg.cmd;
char env_cmd[40], env_id[40], env_state[40], env_bus[40], env_dev[40],
env_func[40];
char *envp[] = {
env_cmd, env_id, env_state, env_bus, env_dev, env_func, NULL
};
sprintf(env_cmd, "SPAR_PARAHOTPLUG=1");
sprintf(env_id, "SPAR_PARAHOTPLUG_ID=%d", req->id);
sprintf(env_state, "SPAR_PARAHOTPLUG_STATE=%d",
cmd->device_change_state.state.active);
sprintf(env_bus, "SPAR_PARAHOTPLUG_BUS=%d",
cmd->device_change_state.bus_no);
sprintf(env_dev, "SPAR_PARAHOTPLUG_DEVICE=%d",
cmd->device_change_state.dev_no >> 3);
sprintf(env_func, "SPAR_PARAHOTPLUG_FUNCTION=%d",
cmd->device_change_state.dev_no & 0x7);
kobject_uevent_env(&visorchipset_platform_device.dev.kobj, KOBJ_CHANGE,
envp);
}
/*
* Remove any request from the list that's been on there too long and
* respond with an error.
*/
static void
parahotplug_process_list(void)
{
struct list_head *pos;
struct list_head *tmp;
spin_lock(&parahotplug_request_list_lock);
list_for_each_safe(pos, tmp, &parahotplug_request_list) {
struct parahotplug_request *req =
list_entry(pos, struct parahotplug_request, list);
if (!time_after_eq(jiffies, req->expiration))
continue;
list_del(pos);
if (req->msg.hdr.flags.response_expected)
controlvm_respond_physdev_changestate(
&req->msg.hdr,
CONTROLVM_RESP_ERROR_DEVICE_UDEV_TIMEOUT,
req->msg.cmd.device_change_state.state);
parahotplug_request_destroy(req);
}
spin_unlock(&parahotplug_request_list_lock);
}
/*
* Called from the /proc handler, which means the user script has
* finished the enable/disable. Find the matching identifier, and
* respond to the CONTROLVM message with success.
*/
static int
parahotplug_request_complete(int id, u16 active)
{
struct list_head *pos;
struct list_head *tmp;
spin_lock(&parahotplug_request_list_lock);
/* Look for a request matching "id". */
list_for_each_safe(pos, tmp, &parahotplug_request_list) {
struct parahotplug_request *req =
list_entry(pos, struct parahotplug_request, list);
if (req->id == id) {
/* Found a match. Remove it from the list and
* respond.
*/
list_del(pos);
spin_unlock(&parahotplug_request_list_lock);
req->msg.cmd.device_change_state.state.active = active;
if (req->msg.hdr.flags.response_expected)
controlvm_respond_physdev_changestate(
&req->msg.hdr, CONTROLVM_RESP_SUCCESS,
req->msg.cmd.device_change_state.state);
parahotplug_request_destroy(req);
return 0;
}
}
spin_unlock(&parahotplug_request_list_lock);
return -1;
}
/*
* Enables or disables a PCI device by kicking off a udev script
*/
static void
parahotplug_process_message(struct controlvm_message *inmsg)
{
struct parahotplug_request *req;
req = parahotplug_request_create(inmsg);
if (!req)
return;
if (inmsg->cmd.device_change_state.state.active) {
/* For enable messages, just respond with success
* right away. This is a bit of a hack, but there are
* issues with the early enable messages we get (with
* either the udev script not detecting that the device
* is up, or not getting called at all). Fortunately
* the messages that get lost don't matter anyway, as
* devices are automatically enabled at
* initialization.
*/
parahotplug_request_kickoff(req);
controlvm_respond_physdev_changestate(&inmsg->hdr,
CONTROLVM_RESP_SUCCESS,
inmsg->cmd.device_change_state.state);
parahotplug_request_destroy(req);
} else {
/* For disable messages, add the request to the
* request list before kicking off the udev script. It
* won't get responded to until the script has
* indicated it's done.
*/
spin_lock(&parahotplug_request_list_lock);
list_add_tail(&req->list, &parahotplug_request_list);
spin_unlock(&parahotplug_request_list_lock);
parahotplug_request_kickoff(req);
}
}
/* Process a controlvm message.
* Return result:
* false - this function will return false only in the case where the
* controlvm message was NOT processed, but processing must be
* retried before reading the next controlvm message; a
* scenario where this can occur is when we need to throttle
* the allocation of memory in which to copy out controlvm
* payload data
* true - processing of the controlvm message completed,
* either successfully or with an error.
*/
static bool
handle_command(struct controlvm_message inmsg, u64 channel_addr)
{
struct controlvm_message_packet *cmd = &inmsg.cmd;
u64 parm_addr;
u32 parm_bytes;
struct parser_context *parser_ctx = NULL;
bool local_addr;
struct controlvm_message ackmsg;
/* create parsing context if necessary */
local_addr = (inmsg.hdr.flags.test_message == 1);
if (channel_addr == 0)
return true;
parm_addr = channel_addr + inmsg.hdr.payload_vm_offset;
parm_bytes = inmsg.hdr.payload_bytes;
/* Parameter and channel addresses within test messages actually lie
* within our OS-controlled memory. We need to know that, because it
* makes a difference in how we compute the virtual address.
*/
if (parm_addr && parm_bytes) {
bool retry = false;
parser_ctx =
parser_init_byte_stream(parm_addr, parm_bytes,
local_addr, &retry);
if (!parser_ctx && retry)
return false;
}
if (!local_addr) {
controlvm_init_response(&ackmsg, &inmsg.hdr,
CONTROLVM_RESP_SUCCESS);
if (controlvm_channel)
visorchannel_signalinsert(controlvm_channel,
CONTROLVM_QUEUE_ACK,
&ackmsg);
}
switch (inmsg.hdr.id) {
case CONTROLVM_CHIPSET_INIT:
chipset_init(&inmsg);
break;
case CONTROLVM_BUS_CREATE:
bus_create(&inmsg);
break;
case CONTROLVM_BUS_DESTROY:
bus_destroy(&inmsg);
break;
case CONTROLVM_BUS_CONFIGURE:
bus_configure(&inmsg, parser_ctx);
break;
case CONTROLVM_DEVICE_CREATE:
my_device_create(&inmsg);
break;
case CONTROLVM_DEVICE_CHANGESTATE:
if (cmd->device_change_state.flags.phys_device) {
parahotplug_process_message(&inmsg);
} else {
/* save the hdr and cmd structures for later use */
/* when sending back the response to Command */
my_device_changestate(&inmsg);
g_devicechangestate_packet = inmsg.cmd;
break;
}
break;
case CONTROLVM_DEVICE_DESTROY:
my_device_destroy(&inmsg);
break;
case CONTROLVM_DEVICE_CONFIGURE:
/* no op for now, just send a respond that we passed */
if (inmsg.hdr.flags.response_expected)
controlvm_respond(&inmsg.hdr, CONTROLVM_RESP_SUCCESS);
break;
case CONTROLVM_CHIPSET_READY:
chipset_ready(&inmsg.hdr);
break;
case CONTROLVM_CHIPSET_SELFTEST:
chipset_selftest(&inmsg.hdr);
break;
case CONTROLVM_CHIPSET_STOP:
chipset_notready(&inmsg.hdr);
break;
default:
if (inmsg.hdr.flags.response_expected)
controlvm_respond(&inmsg.hdr,
-CONTROLVM_RESP_ERROR_MESSAGE_ID_UNKNOWN);
break;
}
if (parser_ctx) {
parser_done(parser_ctx);
parser_ctx = NULL;
}
return true;
}
static inline unsigned int
issue_vmcall_io_controlvm_addr(u64 *control_addr, u32 *control_bytes)
{
struct vmcall_io_controlvm_addr_params params;
int result = VMCALL_SUCCESS;
u64 physaddr;
physaddr = virt_to_phys(&params);
ISSUE_IO_VMCALL(VMCALL_IO_CONTROLVM_ADDR, physaddr, result);
if (VMCALL_SUCCESSFUL(result)) {
*control_addr = params.address;
*control_bytes = params.channel_bytes;
}
return result;
}
static u64 controlvm_get_channel_address(void)
{
u64 addr = 0;
u32 size = 0;
if (!VMCALL_SUCCESSFUL(issue_vmcall_io_controlvm_addr(&addr, &size)))
return 0;
return addr;
}
static void
controlvm_periodic_work(struct work_struct *work)
{
struct controlvm_message inmsg;
bool got_command = false;
bool handle_command_failed = false;
static u64 poll_count;
/* make sure visorbus server is registered for controlvm callbacks */
if (visorchipset_visorbusregwait && !visorbusregistered)
goto cleanup;
poll_count++;
if (poll_count >= 250)
; /* keep going */
else
goto cleanup;
/* Check events to determine if response to CHIPSET_READY
* should be sent
*/
if (visorchipset_holdchipsetready &&
(g_chipset_msg_hdr.id != CONTROLVM_INVALID)) {
if (check_chipset_events() == 1) {
controlvm_respond(&g_chipset_msg_hdr, 0);
clear_chipset_events();
memset(&g_chipset_msg_hdr, 0,
sizeof(struct controlvm_message_header));
}
}
while (visorchannel_signalremove(controlvm_channel,
CONTROLVM_QUEUE_RESPONSE,
&inmsg))
;
if (!got_command) {
if (controlvm_pending_msg_valid) {
/* we throttled processing of a prior
* msg, so try to process it again
* rather than reading a new one
*/
inmsg = controlvm_pending_msg;
controlvm_pending_msg_valid = false;
got_command = true;
} else {
got_command = read_controlvm_event(&inmsg);
}
}
handle_command_failed = false;
while (got_command && (!handle_command_failed)) {
most_recent_message_jiffies = jiffies;
if (handle_command(inmsg,
visorchannel_get_physaddr
(controlvm_channel)))
got_command = read_controlvm_event(&inmsg);
else {
/* this is a scenario where throttling
* is required, but probably NOT an
* error...; we stash the current
* controlvm msg so we will attempt to
* reprocess it on our next loop
*/
handle_command_failed = true;
controlvm_pending_msg = inmsg;
controlvm_pending_msg_valid = true;
}
}
/* parahotplug_worker */
parahotplug_process_list();
cleanup:
if (time_after(jiffies,
most_recent_message_jiffies + (HZ * MIN_IDLE_SECONDS))) {
/* it's been longer than MIN_IDLE_SECONDS since we
* processed our last controlvm message; slow down the
* polling
*/
if (poll_jiffies != POLLJIFFIES_CONTROLVMCHANNEL_SLOW)
poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_SLOW;
} else {
if (poll_jiffies != POLLJIFFIES_CONTROLVMCHANNEL_FAST)
poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
}
queue_delayed_work(periodic_controlvm_workqueue,
&periodic_controlvm_work, poll_jiffies);
}
static void
setup_crash_devices_work_queue(struct work_struct *work)
{
struct controlvm_message local_crash_bus_msg;
struct controlvm_message local_crash_dev_msg;
struct controlvm_message msg;
u32 local_crash_msg_offset;
u16 local_crash_msg_count;
/* make sure visorbus is registered for controlvm callbacks */
if (visorchipset_visorbusregwait && !visorbusregistered)
goto cleanup;
POSTCODE_LINUX_2(CRASH_DEV_ENTRY_PC, POSTCODE_SEVERITY_INFO);
/* send init chipset msg */
msg.hdr.id = CONTROLVM_CHIPSET_INIT;
msg.cmd.init_chipset.bus_count = 23;
msg.cmd.init_chipset.switch_count = 0;
chipset_init(&msg);
/* get saved message count */
if (visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
saved_crash_message_count),
&local_crash_msg_count, sizeof(u16)) < 0) {
POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
if (local_crash_msg_count != CONTROLVM_CRASHMSG_MAX) {
POSTCODE_LINUX_3(CRASH_DEV_COUNT_FAILURE_PC,
local_crash_msg_count,
POSTCODE_SEVERITY_ERR);
return;
}
/* get saved crash message offset */
if (visorchannel_read(controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
saved_crash_message_offset),
&local_crash_msg_offset, sizeof(u32)) < 0) {
POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
/* read create device message for storage bus offset */
if (visorchannel_read(controlvm_channel,
local_crash_msg_offset,
&local_crash_bus_msg,
sizeof(struct controlvm_message)) < 0) {
POSTCODE_LINUX_2(CRASH_DEV_RD_BUS_FAIULRE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
/* read create device message for storage device */
if (visorchannel_read(controlvm_channel,
local_crash_msg_offset +
sizeof(struct controlvm_message),
&local_crash_dev_msg,
sizeof(struct controlvm_message)) < 0) {
POSTCODE_LINUX_2(CRASH_DEV_RD_DEV_FAIULRE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
/* reuse IOVM create bus message */
if (local_crash_bus_msg.cmd.create_bus.channel_addr) {
bus_create(&local_crash_bus_msg);
} else {
POSTCODE_LINUX_2(CRASH_DEV_BUS_NULL_FAILURE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
/* reuse create device message for storage device */
if (local_crash_dev_msg.cmd.create_device.channel_addr) {
my_device_create(&local_crash_dev_msg);
} else {
POSTCODE_LINUX_2(CRASH_DEV_DEV_NULL_FAILURE_PC,
POSTCODE_SEVERITY_ERR);
return;
}
POSTCODE_LINUX_2(CRASH_DEV_EXIT_PC, POSTCODE_SEVERITY_INFO);
return;
cleanup:
poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_SLOW;
queue_delayed_work(periodic_controlvm_workqueue,
&periodic_controlvm_work, poll_jiffies);
}
static void
bus_create_response(struct visor_device *bus_info, int response)
{
if (response >= 0)
bus_info->state.created = 1;
bus_responder(CONTROLVM_BUS_CREATE, bus_info->pending_msg_hdr,
response);
kfree(bus_info->pending_msg_hdr);
bus_info->pending_msg_hdr = NULL;
}
static void
bus_destroy_response(struct visor_device *bus_info, int response)
{
bus_responder(CONTROLVM_BUS_DESTROY, bus_info->pending_msg_hdr,
response);
kfree(bus_info->pending_msg_hdr);
bus_info->pending_msg_hdr = NULL;
}
static void
device_create_response(struct visor_device *dev_info, int response)
{
if (response >= 0)
dev_info->state.created = 1;
device_responder(CONTROLVM_DEVICE_CREATE, dev_info->pending_msg_hdr,
response);
kfree(dev_info->pending_msg_hdr);
dev_info->pending_msg_hdr = NULL;
}
static void
device_destroy_response(struct visor_device *dev_info, int response)
{
device_responder(CONTROLVM_DEVICE_DESTROY, dev_info->pending_msg_hdr,
response);
kfree(dev_info->pending_msg_hdr);
dev_info->pending_msg_hdr = NULL;
}
static void
visorchipset_device_pause_response(struct visor_device *dev_info,
int response)
{
device_changestate_responder(CONTROLVM_DEVICE_CHANGESTATE,
dev_info, response,
segment_state_standby);
kfree(dev_info->pending_msg_hdr);
dev_info->pending_msg_hdr = NULL;
}
static void
device_resume_response(struct visor_device *dev_info, int response)
{
device_changestate_responder(CONTROLVM_DEVICE_CHANGESTATE,
dev_info, response,
segment_state_running);
kfree(dev_info->pending_msg_hdr);
dev_info->pending_msg_hdr = NULL;
}
static ssize_t chipsetready_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
char msgtype[64];
if (sscanf(buf, "%63s", msgtype) != 1)
return -EINVAL;
if (!strcmp(msgtype, "CALLHOMEDISK_MOUNTED")) {
chipset_events[0] = 1;
return count;
} else if (!strcmp(msgtype, "MODULES_LOADED")) {
chipset_events[1] = 1;
return count;
}
return -EINVAL;
}
/* The parahotplug/devicedisabled interface gets called by our support script
* when an SR-IOV device has been shut down. The ID is passed to the script
* and then passed back when the device has been removed.
*/
static ssize_t devicedisabled_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int id;
if (kstrtouint(buf, 10, &id))
return -EINVAL;
parahotplug_request_complete(id, 0);
return count;
}
/* The parahotplug/deviceenabled interface gets called by our support script
* when an SR-IOV device has been recovered. The ID is passed to the script
* and then passed back when the device has been brought back up.
*/
static ssize_t deviceenabled_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int id;
if (kstrtouint(buf, 10, &id))
return -EINVAL;
parahotplug_request_complete(id, 1);
return count;
}
static int
visorchipset_mmap(struct file *file, struct vm_area_struct *vma)
{
unsigned long physaddr = 0;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
u64 addr = 0;
/* sv_enable_dfp(); */
if (offset & (PAGE_SIZE - 1))
return -ENXIO; /* need aligned offsets */
switch (offset) {
case VISORCHIPSET_MMAP_CONTROLCHANOFFSET:
vma->vm_flags |= VM_IO;
if (!*file_controlvm_channel)
return -ENXIO;
visorchannel_read(*file_controlvm_channel,
offsetof(struct spar_controlvm_channel_protocol,
gp_control_channel),
&addr, sizeof(addr));
if (!addr)
return -ENXIO;
physaddr = (unsigned long)addr;
if (remap_pfn_range(vma, vma->vm_start,
physaddr >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,
/*pgprot_noncached */
(vma->vm_page_prot))) {
return -EAGAIN;
}
break;
default:
return -ENXIO;
}
return 0;
}
static inline s64 issue_vmcall_query_guest_virtual_time_offset(void)
{
u64 result = VMCALL_SUCCESS;
u64 physaddr = 0;
ISSUE_IO_VMCALL(VMCALL_QUERY_GUEST_VIRTUAL_TIME_OFFSET, physaddr,
result);
return result;
}
static inline int issue_vmcall_update_physical_time(u64 adjustment)
{
int result = VMCALL_SUCCESS;
ISSUE_IO_VMCALL(VMCALL_UPDATE_PHYSICAL_TIME, adjustment, result);
return result;
}
static long visorchipset_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
s64 adjustment;
s64 vrtc_offset;
switch (cmd) {
case VMCALL_QUERY_GUEST_VIRTUAL_TIME_OFFSET:
/* get the physical rtc offset */
vrtc_offset = issue_vmcall_query_guest_virtual_time_offset();
if (copy_to_user((void __user *)arg, &vrtc_offset,
sizeof(vrtc_offset))) {
return -EFAULT;
}
return 0;
case VMCALL_UPDATE_PHYSICAL_TIME:
if (copy_from_user(&adjustment, (void __user *)arg,
sizeof(adjustment))) {
return -EFAULT;
}
return issue_vmcall_update_physical_time(adjustment);
default:
return -EFAULT;
}
}
static const struct file_operations visorchipset_fops = {
.owner = THIS_MODULE,
.open = visorchipset_open,
.read = NULL,
.write = NULL,
.unlocked_ioctl = visorchipset_ioctl,
.release = visorchipset_release,
.mmap = visorchipset_mmap,
};
static int
visorchipset_file_init(dev_t major_dev, struct visorchannel **controlvm_channel)
{
int rc = 0;
file_controlvm_channel = controlvm_channel;
cdev_init(&file_cdev, &visorchipset_fops);
file_cdev.owner = THIS_MODULE;
if (MAJOR(major_dev) == 0) {
rc = alloc_chrdev_region(&major_dev, 0, 1, "visorchipset");
/* dynamic major device number registration required */
if (rc < 0)
return rc;
} else {
/* static major device number registration required */
rc = register_chrdev_region(major_dev, 1, "visorchipset");
if (rc < 0)
return rc;
}
rc = cdev_add(&file_cdev, MKDEV(MAJOR(major_dev), 0), 1);
if (rc < 0) {
unregister_chrdev_region(major_dev, 1);
return rc;
}
return 0;
}
static int
visorchipset_init(struct acpi_device *acpi_device)
{
int rc = 0;
u64 addr;
int tmp_sz = sizeof(struct spar_controlvm_channel_protocol);
uuid_le uuid = SPAR_CONTROLVM_CHANNEL_PROTOCOL_UUID;
addr = controlvm_get_channel_address();
if (!addr)
return -ENODEV;
memset(&busdev_notifiers, 0, sizeof(busdev_notifiers));
memset(&controlvm_payload_info, 0, sizeof(controlvm_payload_info));
controlvm_channel = visorchannel_create_with_lock(addr, tmp_sz,
GFP_KERNEL, uuid);
if (SPAR_CONTROLVM_CHANNEL_OK_CLIENT(
visorchannel_get_header(controlvm_channel))) {
initialize_controlvm_payload();
} else {
visorchannel_destroy(controlvm_channel);
controlvm_channel = NULL;
return -ENODEV;
}
major_dev = MKDEV(visorchipset_major, 0);
rc = visorchipset_file_init(major_dev, &controlvm_channel);
if (rc < 0) {
POSTCODE_LINUX_2(CHIPSET_INIT_FAILURE_PC, DIAG_SEVERITY_ERR);
goto cleanup;
}
memset(&g_chipset_msg_hdr, 0, sizeof(struct controlvm_message_header));
/* if booting in a crash kernel */
if (is_kdump_kernel())
INIT_DELAYED_WORK(&periodic_controlvm_work,
setup_crash_devices_work_queue);
else
INIT_DELAYED_WORK(&periodic_controlvm_work,
controlvm_periodic_work);
periodic_controlvm_workqueue =
create_singlethread_workqueue("visorchipset_controlvm");
if (!periodic_controlvm_workqueue) {
POSTCODE_LINUX_2(CREATE_WORKQUEUE_FAILED_PC,
DIAG_SEVERITY_ERR);
rc = -ENOMEM;
goto cleanup;
}
most_recent_message_jiffies = jiffies;
poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
rc = queue_delayed_work(periodic_controlvm_workqueue,
&periodic_controlvm_work, poll_jiffies);
if (rc < 0) {
POSTCODE_LINUX_2(QUEUE_DELAYED_WORK_PC,
DIAG_SEVERITY_ERR);
goto cleanup;
}
visorchipset_platform_device.dev.devt = major_dev;
if (platform_device_register(&visorchipset_platform_device) < 0) {
POSTCODE_LINUX_2(DEVICE_REGISTER_FAILURE_PC, DIAG_SEVERITY_ERR);
rc = -1;
goto cleanup;
}
POSTCODE_LINUX_2(CHIPSET_INIT_SUCCESS_PC, POSTCODE_SEVERITY_INFO);
rc = visorbus_init();
cleanup:
if (rc) {
POSTCODE_LINUX_3(CHIPSET_INIT_FAILURE_PC, rc,
POSTCODE_SEVERITY_ERR);
}
return rc;
}
static void
visorchipset_file_cleanup(dev_t major_dev)
{
if (file_cdev.ops)
cdev_del(&file_cdev);
file_cdev.ops = NULL;
unregister_chrdev_region(major_dev, 1);
}
static int
visorchipset_exit(struct acpi_device *acpi_device)
{
POSTCODE_LINUX_2(DRIVER_EXIT_PC, POSTCODE_SEVERITY_INFO);
visorbus_exit();
cancel_delayed_work(&periodic_controlvm_work);
flush_workqueue(periodic_controlvm_workqueue);
destroy_workqueue(periodic_controlvm_workqueue);
periodic_controlvm_workqueue = NULL;
destroy_controlvm_payload_info(&controlvm_payload_info);
memset(&g_chipset_msg_hdr, 0, sizeof(struct controlvm_message_header));
visorchannel_destroy(controlvm_channel);
visorchipset_file_cleanup(visorchipset_platform_device.dev.devt);
platform_device_unregister(&visorchipset_platform_device);
POSTCODE_LINUX_2(DRIVER_EXIT_PC, POSTCODE_SEVERITY_INFO);
return 0;
}
static const struct acpi_device_id unisys_device_ids[] = {
{"PNP0A07", 0},
{"", 0},
};
static struct acpi_driver unisys_acpi_driver = {
.name = "unisys_acpi",
.class = "unisys_acpi_class",
.owner = THIS_MODULE,
.ids = unisys_device_ids,
.ops = {
.add = visorchipset_init,
.remove = visorchipset_exit,
},
};
MODULE_DEVICE_TABLE(acpi, unisys_device_ids);
static __init uint32_t visorutil_spar_detect(void)
{
unsigned int eax, ebx, ecx, edx;
if (cpu_has_hypervisor) {
/* check the ID */
cpuid(UNISYS_SPAR_LEAF_ID, &eax, &ebx, &ecx, &edx);
return (ebx == UNISYS_SPAR_ID_EBX) &&
(ecx == UNISYS_SPAR_ID_ECX) &&
(edx == UNISYS_SPAR_ID_EDX);
} else {
return 0;
}
}
static int init_unisys(void)
{
int result;
if (!visorutil_spar_detect())
return -ENODEV;
result = acpi_bus_register_driver(&unisys_acpi_driver);
if (result)
return -ENODEV;
pr_info("Unisys Visorchipset Driver Loaded.\n");
return 0;
};
static void exit_unisys(void)
{
acpi_bus_unregister_driver(&unisys_acpi_driver);
}
module_param_named(major, visorchipset_major, int, S_IRUGO);
MODULE_PARM_DESC(visorchipset_major,
"major device number to use for the device node");
module_param_named(visorbusregwait, visorchipset_visorbusregwait, int, S_IRUGO);
MODULE_PARM_DESC(visorchipset_visorbusreqwait,
"1 to have the module wait for the visor bus to register");
module_param_named(holdchipsetready, visorchipset_holdchipsetready,
int, S_IRUGO);
MODULE_PARM_DESC(visorchipset_holdchipsetready,
"1 to hold response to CHIPSET_READY");
module_init(init_unisys);
module_exit(exit_unisys);
MODULE_AUTHOR("Unisys");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Supervisor chipset driver for service partition: ver "
VERSION);
MODULE_VERSION(VERSION);