blob: 1d58854c4a9fab8e425cdd2868840feb976c0bb8 [file] [log] [blame]
/*
drbd.c
This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
from Logicworks, Inc. for making SDP replication support possible.
drbd is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
drbd is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with drbd; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/drbd.h>
#include <asm/uaccess.h>
#include <asm/types.h>
#include <net/sock.h>
#include <linux/ctype.h>
#include <linux/mutex.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/memcontrol.h>
#include <linux/mm_inline.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/reboot.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/workqueue.h>
#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>
#include <linux/vmalloc.h>
#include <linux/drbd_limits.h>
#include "drbd_int.h"
#include "drbd_protocol.h"
#include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
#include "drbd_vli.h"
#include "drbd_debugfs.h"
static DEFINE_MUTEX(drbd_main_mutex);
static int drbd_open(struct block_device *bdev, fmode_t mode);
static void drbd_release(struct gendisk *gd, fmode_t mode);
static void md_sync_timer_fn(unsigned long data);
static int w_bitmap_io(struct drbd_work *w, int unused);
MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
"Lars Ellenberg <lars@linbit.com>");
MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
MODULE_VERSION(REL_VERSION);
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
__stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
#include <linux/moduleparam.h>
/* allow_open_on_secondary */
MODULE_PARM_DESC(allow_oos, "DONT USE!");
/* thanks to these macros, if compiled into the kernel (not-module),
* this becomes the boot parameter drbd.minor_count */
module_param(minor_count, uint, 0444);
module_param(disable_sendpage, bool, 0644);
module_param(allow_oos, bool, 0);
module_param(proc_details, int, 0644);
#ifdef CONFIG_DRBD_FAULT_INJECTION
int enable_faults;
int fault_rate;
static int fault_count;
int fault_devs;
/* bitmap of enabled faults */
module_param(enable_faults, int, 0664);
/* fault rate % value - applies to all enabled faults */
module_param(fault_rate, int, 0664);
/* count of faults inserted */
module_param(fault_count, int, 0664);
/* bitmap of devices to insert faults on */
module_param(fault_devs, int, 0644);
#endif
/* module parameter, defined */
unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
bool disable_sendpage;
bool allow_oos;
int proc_details; /* Detail level in proc drbd*/
/* Module parameter for setting the user mode helper program
* to run. Default is /sbin/drbdadm */
char usermode_helper[80] = "/sbin/drbdadm";
module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
/* in 2.6.x, our device mapping and config info contains our virtual gendisks
* as member "struct gendisk *vdisk;"
*/
struct idr drbd_devices;
struct list_head drbd_resources;
struct kmem_cache *drbd_request_cache;
struct kmem_cache *drbd_ee_cache; /* peer requests */
struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
mempool_t *drbd_request_mempool;
mempool_t *drbd_ee_mempool;
mempool_t *drbd_md_io_page_pool;
struct bio_set *drbd_md_io_bio_set;
/* I do not use a standard mempool, because:
1) I want to hand out the pre-allocated objects first.
2) I want to be able to interrupt sleeping allocation with a signal.
Note: This is a single linked list, the next pointer is the private
member of struct page.
*/
struct page *drbd_pp_pool;
spinlock_t drbd_pp_lock;
int drbd_pp_vacant;
wait_queue_head_t drbd_pp_wait;
DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
static const struct block_device_operations drbd_ops = {
.owner = THIS_MODULE,
.open = drbd_open,
.release = drbd_release,
};
struct bio *bio_alloc_drbd(gfp_t gfp_mask)
{
struct bio *bio;
if (!drbd_md_io_bio_set)
return bio_alloc(gfp_mask, 1);
bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
if (!bio)
return NULL;
return bio;
}
#ifdef __CHECKER__
/* When checking with sparse, and this is an inline function, sparse will
give tons of false positives. When this is a real functions sparse works.
*/
int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
{
int io_allowed;
atomic_inc(&device->local_cnt);
io_allowed = (device->state.disk >= mins);
if (!io_allowed) {
if (atomic_dec_and_test(&device->local_cnt))
wake_up(&device->misc_wait);
}
return io_allowed;
}
#endif
/**
* tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
* @connection: DRBD connection.
* @barrier_nr: Expected identifier of the DRBD write barrier packet.
* @set_size: Expected number of requests before that barrier.
*
* In case the passed barrier_nr or set_size does not match the oldest
* epoch of not yet barrier-acked requests, this function will cause a
* termination of the connection.
*/
void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
unsigned int set_size)
{
struct drbd_request *r;
struct drbd_request *req = NULL;
int expect_epoch = 0;
int expect_size = 0;
spin_lock_irq(&connection->resource->req_lock);
/* find oldest not yet barrier-acked write request,
* count writes in its epoch. */
list_for_each_entry(r, &connection->transfer_log, tl_requests) {
const unsigned s = r->rq_state;
if (!req) {
if (!(s & RQ_WRITE))
continue;
if (!(s & RQ_NET_MASK))
continue;
if (s & RQ_NET_DONE)
continue;
req = r;
expect_epoch = req->epoch;
expect_size ++;
} else {
if (r->epoch != expect_epoch)
break;
if (!(s & RQ_WRITE))
continue;
/* if (s & RQ_DONE): not expected */
/* if (!(s & RQ_NET_MASK)): not expected */
expect_size++;
}
}
/* first some paranoia code */
if (req == NULL) {
drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
barrier_nr);
goto bail;
}
if (expect_epoch != barrier_nr) {
drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
barrier_nr, expect_epoch);
goto bail;
}
if (expect_size != set_size) {
drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
barrier_nr, set_size, expect_size);
goto bail;
}
/* Clean up list of requests processed during current epoch. */
/* this extra list walk restart is paranoia,
* to catch requests being barrier-acked "unexpectedly".
* It usually should find the same req again, or some READ preceding it. */
list_for_each_entry(req, &connection->transfer_log, tl_requests)
if (req->epoch == expect_epoch)
break;
list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
if (req->epoch != expect_epoch)
break;
_req_mod(req, BARRIER_ACKED);
}
spin_unlock_irq(&connection->resource->req_lock);
return;
bail:
spin_unlock_irq(&connection->resource->req_lock);
conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
}
/**
* _tl_restart() - Walks the transfer log, and applies an action to all requests
* @connection: DRBD connection to operate on.
* @what: The action/event to perform with all request objects
*
* @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
* RESTART_FROZEN_DISK_IO.
*/
/* must hold resource->req_lock */
void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
{
struct drbd_request *req, *r;
list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
_req_mod(req, what);
}
void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
{
spin_lock_irq(&connection->resource->req_lock);
_tl_restart(connection, what);
spin_unlock_irq(&connection->resource->req_lock);
}
/**
* tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
* @device: DRBD device.
*
* This is called after the connection to the peer was lost. The storage covered
* by the requests on the transfer gets marked as our of sync. Called from the
* receiver thread and the worker thread.
*/
void tl_clear(struct drbd_connection *connection)
{
tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
}
/**
* tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
* @device: DRBD device.
*/
void tl_abort_disk_io(struct drbd_device *device)
{
struct drbd_connection *connection = first_peer_device(device)->connection;
struct drbd_request *req, *r;
spin_lock_irq(&connection->resource->req_lock);
list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
if (!(req->rq_state & RQ_LOCAL_PENDING))
continue;
if (req->device != device)
continue;
_req_mod(req, ABORT_DISK_IO);
}
spin_unlock_irq(&connection->resource->req_lock);
}
static int drbd_thread_setup(void *arg)
{
struct drbd_thread *thi = (struct drbd_thread *) arg;
struct drbd_resource *resource = thi->resource;
unsigned long flags;
int retval;
snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
thi->name[0],
resource->name);
restart:
retval = thi->function(thi);
spin_lock_irqsave(&thi->t_lock, flags);
/* if the receiver has been "EXITING", the last thing it did
* was set the conn state to "StandAlone",
* if now a re-connect request comes in, conn state goes C_UNCONNECTED,
* and receiver thread will be "started".
* drbd_thread_start needs to set "RESTARTING" in that case.
* t_state check and assignment needs to be within the same spinlock,
* so either thread_start sees EXITING, and can remap to RESTARTING,
* or thread_start see NONE, and can proceed as normal.
*/
if (thi->t_state == RESTARTING) {
drbd_info(resource, "Restarting %s thread\n", thi->name);
thi->t_state = RUNNING;
spin_unlock_irqrestore(&thi->t_lock, flags);
goto restart;
}
thi->task = NULL;
thi->t_state = NONE;
smp_mb();
complete_all(&thi->stop);
spin_unlock_irqrestore(&thi->t_lock, flags);
drbd_info(resource, "Terminating %s\n", current->comm);
/* Release mod reference taken when thread was started */
if (thi->connection)
kref_put(&thi->connection->kref, drbd_destroy_connection);
kref_put(&resource->kref, drbd_destroy_resource);
module_put(THIS_MODULE);
return retval;
}
static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
int (*func) (struct drbd_thread *), const char *name)
{
spin_lock_init(&thi->t_lock);
thi->task = NULL;
thi->t_state = NONE;
thi->function = func;
thi->resource = resource;
thi->connection = NULL;
thi->name = name;
}
int drbd_thread_start(struct drbd_thread *thi)
{
struct drbd_resource *resource = thi->resource;
struct task_struct *nt;
unsigned long flags;
/* is used from state engine doing drbd_thread_stop_nowait,
* while holding the req lock irqsave */
spin_lock_irqsave(&thi->t_lock, flags);
switch (thi->t_state) {
case NONE:
drbd_info(resource, "Starting %s thread (from %s [%d])\n",
thi->name, current->comm, current->pid);
/* Get ref on module for thread - this is released when thread exits */
if (!try_module_get(THIS_MODULE)) {
drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
spin_unlock_irqrestore(&thi->t_lock, flags);
return false;
}
kref_get(&resource->kref);
if (thi->connection)
kref_get(&thi->connection->kref);
init_completion(&thi->stop);
thi->reset_cpu_mask = 1;
thi->t_state = RUNNING;
spin_unlock_irqrestore(&thi->t_lock, flags);
flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
nt = kthread_create(drbd_thread_setup, (void *) thi,
"drbd_%c_%s", thi->name[0], thi->resource->name);
if (IS_ERR(nt)) {
drbd_err(resource, "Couldn't start thread\n");
if (thi->connection)
kref_put(&thi->connection->kref, drbd_destroy_connection);
kref_put(&resource->kref, drbd_destroy_resource);
module_put(THIS_MODULE);
return false;
}
spin_lock_irqsave(&thi->t_lock, flags);
thi->task = nt;
thi->t_state = RUNNING;
spin_unlock_irqrestore(&thi->t_lock, flags);
wake_up_process(nt);
break;
case EXITING:
thi->t_state = RESTARTING;
drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
thi->name, current->comm, current->pid);
/* fall through */
case RUNNING:
case RESTARTING:
default:
spin_unlock_irqrestore(&thi->t_lock, flags);
break;
}
return true;
}
void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
{
unsigned long flags;
enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
/* may be called from state engine, holding the req lock irqsave */
spin_lock_irqsave(&thi->t_lock, flags);
if (thi->t_state == NONE) {
spin_unlock_irqrestore(&thi->t_lock, flags);
if (restart)
drbd_thread_start(thi);
return;
}
if (thi->t_state != ns) {
if (thi->task == NULL) {
spin_unlock_irqrestore(&thi->t_lock, flags);
return;
}
thi->t_state = ns;
smp_mb();
init_completion(&thi->stop);
if (thi->task != current)
force_sig(DRBD_SIGKILL, thi->task);
}
spin_unlock_irqrestore(&thi->t_lock, flags);
if (wait)
wait_for_completion(&thi->stop);
}
int conn_lowest_minor(struct drbd_connection *connection)
{
struct drbd_peer_device *peer_device;
int vnr = 0, minor = -1;
rcu_read_lock();
peer_device = idr_get_next(&connection->peer_devices, &vnr);
if (peer_device)
minor = device_to_minor(peer_device->device);
rcu_read_unlock();
return minor;
}
#ifdef CONFIG_SMP
/**
* drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
*
* Forces all threads of a resource onto the same CPU. This is beneficial for
* DRBD's performance. May be overwritten by user's configuration.
*/
static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
{
unsigned int *resources_per_cpu, min_index = ~0;
resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
if (resources_per_cpu) {
struct drbd_resource *resource;
unsigned int cpu, min = ~0;
rcu_read_lock();
for_each_resource_rcu(resource, &drbd_resources) {
for_each_cpu(cpu, resource->cpu_mask)
resources_per_cpu[cpu]++;
}
rcu_read_unlock();
for_each_online_cpu(cpu) {
if (resources_per_cpu[cpu] < min) {
min = resources_per_cpu[cpu];
min_index = cpu;
}
}
kfree(resources_per_cpu);
}
if (min_index == ~0) {
cpumask_setall(*cpu_mask);
return;
}
cpumask_set_cpu(min_index, *cpu_mask);
}
/**
* drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
* @device: DRBD device.
* @thi: drbd_thread object
*
* call in the "main loop" of _all_ threads, no need for any mutex, current won't die
* prematurely.
*/
void drbd_thread_current_set_cpu(struct drbd_thread *thi)
{
struct drbd_resource *resource = thi->resource;
struct task_struct *p = current;
if (!thi->reset_cpu_mask)
return;
thi->reset_cpu_mask = 0;
set_cpus_allowed_ptr(p, resource->cpu_mask);
}
#else
#define drbd_calc_cpu_mask(A) ({})
#endif
/**
* drbd_header_size - size of a packet header
*
* The header size is a multiple of 8, so any payload following the header is
* word aligned on 64-bit architectures. (The bitmap send and receive code
* relies on this.)
*/
unsigned int drbd_header_size(struct drbd_connection *connection)
{
if (connection->agreed_pro_version >= 100) {
BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
return sizeof(struct p_header100);
} else {
BUILD_BUG_ON(sizeof(struct p_header80) !=
sizeof(struct p_header95));
BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
return sizeof(struct p_header80);
}
}
static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
{
h->magic = cpu_to_be32(DRBD_MAGIC);
h->command = cpu_to_be16(cmd);
h->length = cpu_to_be16(size);
return sizeof(struct p_header80);
}
static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
{
h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
h->command = cpu_to_be16(cmd);
h->length = cpu_to_be32(size);
return sizeof(struct p_header95);
}
static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
int size, int vnr)
{
h->magic = cpu_to_be32(DRBD_MAGIC_100);
h->volume = cpu_to_be16(vnr);
h->command = cpu_to_be16(cmd);
h->length = cpu_to_be32(size);
h->pad = 0;
return sizeof(struct p_header100);
}
static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
void *buffer, enum drbd_packet cmd, int size)
{
if (connection->agreed_pro_version >= 100)
return prepare_header100(buffer, cmd, size, vnr);
else if (connection->agreed_pro_version >= 95 &&
size > DRBD_MAX_SIZE_H80_PACKET)
return prepare_header95(buffer, cmd, size);
else
return prepare_header80(buffer, cmd, size);
}
static void *__conn_prepare_command(struct drbd_connection *connection,
struct drbd_socket *sock)
{
if (!sock->socket)
return NULL;
return sock->sbuf + drbd_header_size(connection);
}
void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
{
void *p;
mutex_lock(&sock->mutex);
p = __conn_prepare_command(connection, sock);
if (!p)
mutex_unlock(&sock->mutex);
return p;
}
void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
{
return conn_prepare_command(peer_device->connection, sock);
}
static int __send_command(struct drbd_connection *connection, int vnr,
struct drbd_socket *sock, enum drbd_packet cmd,
unsigned int header_size, void *data,
unsigned int size)
{
int msg_flags;
int err;
/*
* Called with @data == NULL and the size of the data blocks in @size
* for commands that send data blocks. For those commands, omit the
* MSG_MORE flag: this will increase the likelihood that data blocks
* which are page aligned on the sender will end up page aligned on the
* receiver.
*/
msg_flags = data ? MSG_MORE : 0;
header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
header_size + size);
err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
msg_flags);
if (data && !err)
err = drbd_send_all(connection, sock->socket, data, size, 0);
/* DRBD protocol "pings" are latency critical.
* This is supposed to trigger tcp_push_pending_frames() */
if (!err && (cmd == P_PING || cmd == P_PING_ACK))
drbd_tcp_nodelay(sock->socket);
return err;
}
static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
enum drbd_packet cmd, unsigned int header_size,
void *data, unsigned int size)
{
return __send_command(connection, 0, sock, cmd, header_size, data, size);
}
int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
enum drbd_packet cmd, unsigned int header_size,
void *data, unsigned int size)
{
int err;
err = __conn_send_command(connection, sock, cmd, header_size, data, size);
mutex_unlock(&sock->mutex);
return err;
}
int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
enum drbd_packet cmd, unsigned int header_size,
void *data, unsigned int size)
{
int err;
err = __send_command(peer_device->connection, peer_device->device->vnr,
sock, cmd, header_size, data, size);
mutex_unlock(&sock->mutex);
return err;
}
int drbd_send_ping(struct drbd_connection *connection)
{
struct drbd_socket *sock;
sock = &connection->meta;
if (!conn_prepare_command(connection, sock))
return -EIO;
return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
}
int drbd_send_ping_ack(struct drbd_connection *connection)
{
struct drbd_socket *sock;
sock = &connection->meta;
if (!conn_prepare_command(connection, sock))
return -EIO;
return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
}
int drbd_send_sync_param(struct drbd_peer_device *peer_device)
{
struct drbd_socket *sock;
struct p_rs_param_95 *p;
int size;
const int apv = peer_device->connection->agreed_pro_version;
enum drbd_packet cmd;
struct net_conf *nc;
struct disk_conf *dc;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
rcu_read_lock();
nc = rcu_dereference(peer_device->connection->net_conf);
size = apv <= 87 ? sizeof(struct p_rs_param)
: apv == 88 ? sizeof(struct p_rs_param)
+ strlen(nc->verify_alg) + 1
: apv <= 94 ? sizeof(struct p_rs_param_89)
: /* apv >= 95 */ sizeof(struct p_rs_param_95);
cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
/* initialize verify_alg and csums_alg */
memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
if (get_ldev(peer_device->device)) {
dc = rcu_dereference(peer_device->device->ldev->disk_conf);
p->resync_rate = cpu_to_be32(dc->resync_rate);
p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
p->c_delay_target = cpu_to_be32(dc->c_delay_target);
p->c_fill_target = cpu_to_be32(dc->c_fill_target);
p->c_max_rate = cpu_to_be32(dc->c_max_rate);
put_ldev(peer_device->device);
} else {
p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
}
if (apv >= 88)
strcpy(p->verify_alg, nc->verify_alg);
if (apv >= 89)
strcpy(p->csums_alg, nc->csums_alg);
rcu_read_unlock();
return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
}
int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
{
struct drbd_socket *sock;
struct p_protocol *p;
struct net_conf *nc;
int size, cf;
sock = &connection->data;
p = __conn_prepare_command(connection, sock);
if (!p)
return -EIO;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
if (nc->tentative && connection->agreed_pro_version < 92) {
rcu_read_unlock();
mutex_unlock(&sock->mutex);
drbd_err(connection, "--dry-run is not supported by peer");
return -EOPNOTSUPP;
}
size = sizeof(*p);
if (connection->agreed_pro_version >= 87)
size += strlen(nc->integrity_alg) + 1;
p->protocol = cpu_to_be32(nc->wire_protocol);
p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
p->two_primaries = cpu_to_be32(nc->two_primaries);
cf = 0;
if (nc->discard_my_data)
cf |= CF_DISCARD_MY_DATA;
if (nc->tentative)
cf |= CF_DRY_RUN;
p->conn_flags = cpu_to_be32(cf);
if (connection->agreed_pro_version >= 87)
strcpy(p->integrity_alg, nc->integrity_alg);
rcu_read_unlock();
return __conn_send_command(connection, sock, cmd, size, NULL, 0);
}
int drbd_send_protocol(struct drbd_connection *connection)
{
int err;
mutex_lock(&connection->data.mutex);
err = __drbd_send_protocol(connection, P_PROTOCOL);
mutex_unlock(&connection->data.mutex);
return err;
}
static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
{
struct drbd_device *device = peer_device->device;
struct drbd_socket *sock;
struct p_uuids *p;
int i;
if (!get_ldev_if_state(device, D_NEGOTIATING))
return 0;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p) {
put_ldev(device);
return -EIO;
}
spin_lock_irq(&device->ldev->md.uuid_lock);
for (i = UI_CURRENT; i < UI_SIZE; i++)
p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
spin_unlock_irq(&device->ldev->md.uuid_lock);
device->comm_bm_set = drbd_bm_total_weight(device);
p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
rcu_read_lock();
uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
rcu_read_unlock();
uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
put_ldev(device);
return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
}
int drbd_send_uuids(struct drbd_peer_device *peer_device)
{
return _drbd_send_uuids(peer_device, 0);
}
int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
{
return _drbd_send_uuids(peer_device, 8);
}
void drbd_print_uuids(struct drbd_device *device, const char *text)
{
if (get_ldev_if_state(device, D_NEGOTIATING)) {
u64 *uuid = device->ldev->md.uuid;
drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
text,
(unsigned long long)uuid[UI_CURRENT],
(unsigned long long)uuid[UI_BITMAP],
(unsigned long long)uuid[UI_HISTORY_START],
(unsigned long long)uuid[UI_HISTORY_END]);
put_ldev(device);
} else {
drbd_info(device, "%s effective data uuid: %016llX\n",
text,
(unsigned long long)device->ed_uuid);
}
}
void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
{
struct drbd_device *device = peer_device->device;
struct drbd_socket *sock;
struct p_rs_uuid *p;
u64 uuid;
D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
uuid = device->ldev->md.uuid[UI_BITMAP];
if (uuid && uuid != UUID_JUST_CREATED)
uuid = uuid + UUID_NEW_BM_OFFSET;
else
get_random_bytes(&uuid, sizeof(u64));
drbd_uuid_set(device, UI_BITMAP, uuid);
drbd_print_uuids(device, "updated sync UUID");
drbd_md_sync(device);
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (p) {
p->uuid = cpu_to_be64(uuid);
drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
}
}
int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
{
struct drbd_device *device = peer_device->device;
struct drbd_socket *sock;
struct p_sizes *p;
sector_t d_size, u_size;
int q_order_type;
unsigned int max_bio_size;
if (get_ldev_if_state(device, D_NEGOTIATING)) {
D_ASSERT(device, device->ldev->backing_bdev);
d_size = drbd_get_max_capacity(device->ldev);
rcu_read_lock();
u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
rcu_read_unlock();
q_order_type = drbd_queue_order_type(device);
max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
put_ldev(device);
} else {
d_size = 0;
u_size = 0;
q_order_type = QUEUE_ORDERED_NONE;
max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
}
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
if (peer_device->connection->agreed_pro_version <= 94)
max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
else if (peer_device->connection->agreed_pro_version < 100)
max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
p->d_size = cpu_to_be64(d_size);
p->u_size = cpu_to_be64(u_size);
p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
p->max_bio_size = cpu_to_be32(max_bio_size);
p->queue_order_type = cpu_to_be16(q_order_type);
p->dds_flags = cpu_to_be16(flags);
return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
}
/**
* drbd_send_current_state() - Sends the drbd state to the peer
* @peer_device: DRBD peer device.
*/
int drbd_send_current_state(struct drbd_peer_device *peer_device)
{
struct drbd_socket *sock;
struct p_state *p;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
}
/**
* drbd_send_state() - After a state change, sends the new state to the peer
* @peer_device: DRBD peer device.
* @state: the state to send, not necessarily the current state.
*
* Each state change queues an "after_state_ch" work, which will eventually
* send the resulting new state to the peer. If more state changes happen
* between queuing and processing of the after_state_ch work, we still
* want to send each intermediary state in the order it occurred.
*/
int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
{
struct drbd_socket *sock;
struct p_state *p;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->state = cpu_to_be32(state.i); /* Within the send mutex */
return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
}
int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
{
struct drbd_socket *sock;
struct p_req_state *p;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->mask = cpu_to_be32(mask.i);
p->val = cpu_to_be32(val.i);
return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
}
int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
{
enum drbd_packet cmd;
struct drbd_socket *sock;
struct p_req_state *p;
cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
sock = &connection->data;
p = conn_prepare_command(connection, sock);
if (!p)
return -EIO;
p->mask = cpu_to_be32(mask.i);
p->val = cpu_to_be32(val.i);
return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
}
void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
{
struct drbd_socket *sock;
struct p_req_state_reply *p;
sock = &peer_device->connection->meta;
p = drbd_prepare_command(peer_device, sock);
if (p) {
p->retcode = cpu_to_be32(retcode);
drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
}
}
void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
{
struct drbd_socket *sock;
struct p_req_state_reply *p;
enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
sock = &connection->meta;
p = conn_prepare_command(connection, sock);
if (p) {
p->retcode = cpu_to_be32(retcode);
conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
}
}
static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
{
BUG_ON(code & ~0xf);
p->encoding = (p->encoding & ~0xf) | code;
}
static void dcbp_set_start(struct p_compressed_bm *p, int set)
{
p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
}
static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
{
BUG_ON(n & ~0x7);
p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
}
static int fill_bitmap_rle_bits(struct drbd_device *device,
struct p_compressed_bm *p,
unsigned int size,
struct bm_xfer_ctx *c)
{
struct bitstream bs;
unsigned long plain_bits;
unsigned long tmp;
unsigned long rl;
unsigned len;
unsigned toggle;
int bits, use_rle;
/* may we use this feature? */
rcu_read_lock();
use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
rcu_read_unlock();
if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
return 0;
if (c->bit_offset >= c->bm_bits)
return 0; /* nothing to do. */
/* use at most thus many bytes */
bitstream_init(&bs, p->code, size, 0);
memset(p->code, 0, size);
/* plain bits covered in this code string */
plain_bits = 0;
/* p->encoding & 0x80 stores whether the first run length is set.
* bit offset is implicit.
* start with toggle == 2 to be able to tell the first iteration */
toggle = 2;
/* see how much plain bits we can stuff into one packet
* using RLE and VLI. */
do {
tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
: _drbd_bm_find_next(device, c->bit_offset);
if (tmp == -1UL)
tmp = c->bm_bits;
rl = tmp - c->bit_offset;
if (toggle == 2) { /* first iteration */
if (rl == 0) {
/* the first checked bit was set,
* store start value, */
dcbp_set_start(p, 1);
/* but skip encoding of zero run length */
toggle = !toggle;
continue;
}
dcbp_set_start(p, 0);
}
/* paranoia: catch zero runlength.
* can only happen if bitmap is modified while we scan it. */
if (rl == 0) {
drbd_err(device, "unexpected zero runlength while encoding bitmap "
"t:%u bo:%lu\n", toggle, c->bit_offset);
return -1;
}
bits = vli_encode_bits(&bs, rl);
if (bits == -ENOBUFS) /* buffer full */
break;
if (bits <= 0) {
drbd_err(device, "error while encoding bitmap: %d\n", bits);
return 0;
}
toggle = !toggle;
plain_bits += rl;
c->bit_offset = tmp;
} while (c->bit_offset < c->bm_bits);
len = bs.cur.b - p->code + !!bs.cur.bit;
if (plain_bits < (len << 3)) {
/* incompressible with this method.
* we need to rewind both word and bit position. */
c->bit_offset -= plain_bits;
bm_xfer_ctx_bit_to_word_offset(c);
c->bit_offset = c->word_offset * BITS_PER_LONG;
return 0;
}
/* RLE + VLI was able to compress it just fine.
* update c->word_offset. */
bm_xfer_ctx_bit_to_word_offset(c);
/* store pad_bits */
dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
return len;
}
/**
* send_bitmap_rle_or_plain
*
* Return 0 when done, 1 when another iteration is needed, and a negative error
* code upon failure.
*/
static int
send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
{
struct drbd_socket *sock = &first_peer_device(device)->connection->data;
unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
struct p_compressed_bm *p = sock->sbuf + header_size;
int len, err;
len = fill_bitmap_rle_bits(device, p,
DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
if (len < 0)
return -EIO;
if (len) {
dcbp_set_code(p, RLE_VLI_Bits);
err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
P_COMPRESSED_BITMAP, sizeof(*p) + len,
NULL, 0);
c->packets[0]++;
c->bytes[0] += header_size + sizeof(*p) + len;
if (c->bit_offset >= c->bm_bits)
len = 0; /* DONE */
} else {
/* was not compressible.
* send a buffer full of plain text bits instead. */
unsigned int data_size;
unsigned long num_words;
unsigned long *p = sock->sbuf + header_size;
data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
num_words = min_t(size_t, data_size / sizeof(*p),
c->bm_words - c->word_offset);
len = num_words * sizeof(*p);
if (len)
drbd_bm_get_lel(device, c->word_offset, num_words, p);
err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
c->word_offset += num_words;
c->bit_offset = c->word_offset * BITS_PER_LONG;
c->packets[1]++;
c->bytes[1] += header_size + len;
if (c->bit_offset > c->bm_bits)
c->bit_offset = c->bm_bits;
}
if (!err) {
if (len == 0) {
INFO_bm_xfer_stats(device, "send", c);
return 0;
} else
return 1;
}
return -EIO;
}
/* See the comment at receive_bitmap() */
static int _drbd_send_bitmap(struct drbd_device *device)
{
struct bm_xfer_ctx c;
int err;
if (!expect(device->bitmap))
return false;
if (get_ldev(device)) {
if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
drbd_bm_set_all(device);
if (drbd_bm_write(device)) {
/* write_bm did fail! Leave full sync flag set in Meta P_DATA
* but otherwise process as per normal - need to tell other
* side that a full resync is required! */
drbd_err(device, "Failed to write bitmap to disk!\n");
} else {
drbd_md_clear_flag(device, MDF_FULL_SYNC);
drbd_md_sync(device);
}
}
put_ldev(device);
}
c = (struct bm_xfer_ctx) {
.bm_bits = drbd_bm_bits(device),
.bm_words = drbd_bm_words(device),
};
do {
err = send_bitmap_rle_or_plain(device, &c);
} while (err > 0);
return err == 0;
}
int drbd_send_bitmap(struct drbd_device *device)
{
struct drbd_socket *sock = &first_peer_device(device)->connection->data;
int err = -1;
mutex_lock(&sock->mutex);
if (sock->socket)
err = !_drbd_send_bitmap(device);
mutex_unlock(&sock->mutex);
return err;
}
void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
{
struct drbd_socket *sock;
struct p_barrier_ack *p;
if (connection->cstate < C_WF_REPORT_PARAMS)
return;
sock = &connection->meta;
p = conn_prepare_command(connection, sock);
if (!p)
return;
p->barrier = barrier_nr;
p->set_size = cpu_to_be32(set_size);
conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
}
/**
* _drbd_send_ack() - Sends an ack packet
* @device: DRBD device.
* @cmd: Packet command code.
* @sector: sector, needs to be in big endian byte order
* @blksize: size in byte, needs to be in big endian byte order
* @block_id: Id, big endian byte order
*/
static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
u64 sector, u32 blksize, u64 block_id)
{
struct drbd_socket *sock;
struct p_block_ack *p;
if (peer_device->device->state.conn < C_CONNECTED)
return -EIO;
sock = &peer_device->connection->meta;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->sector = sector;
p->block_id = block_id;
p->blksize = blksize;
p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
}
/* dp->sector and dp->block_id already/still in network byte order,
* data_size is payload size according to dp->head,
* and may need to be corrected for digest size. */
void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
struct p_data *dp, int data_size)
{
if (peer_device->connection->peer_integrity_tfm)
data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
dp->block_id);
}
void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
struct p_block_req *rp)
{
_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
}
/**
* drbd_send_ack() - Sends an ack packet
* @device: DRBD device
* @cmd: packet command code
* @peer_req: peer request
*/
int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
struct drbd_peer_request *peer_req)
{
return _drbd_send_ack(peer_device, cmd,
cpu_to_be64(peer_req->i.sector),
cpu_to_be32(peer_req->i.size),
peer_req->block_id);
}
/* This function misuses the block_id field to signal if the blocks
* are is sync or not. */
int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
sector_t sector, int blksize, u64 block_id)
{
return _drbd_send_ack(peer_device, cmd,
cpu_to_be64(sector),
cpu_to_be32(blksize),
cpu_to_be64(block_id));
}
int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
sector_t sector, int size, u64 block_id)
{
struct drbd_socket *sock;
struct p_block_req *p;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->sector = cpu_to_be64(sector);
p->block_id = block_id;
p->blksize = cpu_to_be32(size);
return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
}
int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
void *digest, int digest_size, enum drbd_packet cmd)
{
struct drbd_socket *sock;
struct p_block_req *p;
/* FIXME: Put the digest into the preallocated socket buffer. */
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->sector = cpu_to_be64(sector);
p->block_id = ID_SYNCER /* unused */;
p->blksize = cpu_to_be32(size);
return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
}
int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
{
struct drbd_socket *sock;
struct p_block_req *p;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->sector = cpu_to_be64(sector);
p->block_id = ID_SYNCER /* unused */;
p->blksize = cpu_to_be32(size);
return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
}
/* called on sndtimeo
* returns false if we should retry,
* true if we think connection is dead
*/
static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
{
int drop_it;
/* long elapsed = (long)(jiffies - device->last_received); */
drop_it = connection->meta.socket == sock
|| !connection->asender.task
|| get_t_state(&connection->asender) != RUNNING
|| connection->cstate < C_WF_REPORT_PARAMS;
if (drop_it)
return true;
drop_it = !--connection->ko_count;
if (!drop_it) {
drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
current->comm, current->pid, connection->ko_count);
request_ping(connection);
}
return drop_it; /* && (device->state == R_PRIMARY) */;
}
static void drbd_update_congested(struct drbd_connection *connection)
{
struct sock *sk = connection->data.socket->sk;
if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
set_bit(NET_CONGESTED, &connection->flags);
}
/* The idea of sendpage seems to be to put some kind of reference
* to the page into the skb, and to hand it over to the NIC. In
* this process get_page() gets called.
*
* As soon as the page was really sent over the network put_page()
* gets called by some part of the network layer. [ NIC driver? ]
*
* [ get_page() / put_page() increment/decrement the count. If count
* reaches 0 the page will be freed. ]
*
* This works nicely with pages from FSs.
* But this means that in protocol A we might signal IO completion too early!
*
* In order not to corrupt data during a resync we must make sure
* that we do not reuse our own buffer pages (EEs) to early, therefore
* we have the net_ee list.
*
* XFS seems to have problems, still, it submits pages with page_count == 0!
* As a workaround, we disable sendpage on pages
* with page_count == 0 or PageSlab.
*/
static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
int offset, size_t size, unsigned msg_flags)
{
struct socket *socket;
void *addr;
int err;
socket = peer_device->connection->data.socket;
addr = kmap(page) + offset;
err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
kunmap(page);
if (!err)
peer_device->device->send_cnt += size >> 9;
return err;
}
static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
int offset, size_t size, unsigned msg_flags)
{
struct socket *socket = peer_device->connection->data.socket;
mm_segment_t oldfs = get_fs();
int len = size;
int err = -EIO;
/* e.g. XFS meta- & log-data is in slab pages, which have a
* page_count of 0 and/or have PageSlab() set.
* we cannot use send_page for those, as that does get_page();
* put_page(); and would cause either a VM_BUG directly, or
* __page_cache_release a page that would actually still be referenced
* by someone, leading to some obscure delayed Oops somewhere else. */
if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
msg_flags |= MSG_NOSIGNAL;
drbd_update_congested(peer_device->connection);
set_fs(KERNEL_DS);
do {
int sent;
sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
if (sent <= 0) {
if (sent == -EAGAIN) {
if (we_should_drop_the_connection(peer_device->connection, socket))
break;
continue;
}
drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
__func__, (int)size, len, sent);
if (sent < 0)
err = sent;
break;
}
len -= sent;
offset += sent;
} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
set_fs(oldfs);
clear_bit(NET_CONGESTED, &peer_device->connection->flags);
if (len == 0) {
err = 0;
peer_device->device->send_cnt += size >> 9;
}
return err;
}
static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
{
struct bio_vec bvec;
struct bvec_iter iter;
/* hint all but last page with MSG_MORE */
bio_for_each_segment(bvec, bio, iter) {
int err;
err = _drbd_no_send_page(peer_device, bvec.bv_page,
bvec.bv_offset, bvec.bv_len,
bio_iter_last(bvec, iter)
? 0 : MSG_MORE);
if (err)
return err;
}
return 0;
}
static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
{
struct bio_vec bvec;
struct bvec_iter iter;
/* hint all but last page with MSG_MORE */
bio_for_each_segment(bvec, bio, iter) {
int err;
err = _drbd_send_page(peer_device, bvec.bv_page,
bvec.bv_offset, bvec.bv_len,
bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
if (err)
return err;
}
return 0;
}
static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
struct drbd_peer_request *peer_req)
{
struct page *page = peer_req->pages;
unsigned len = peer_req->i.size;
int err;
/* hint all but last page with MSG_MORE */
page_chain_for_each(page) {
unsigned l = min_t(unsigned, len, PAGE_SIZE);
err = _drbd_send_page(peer_device, page, 0, l,
page_chain_next(page) ? MSG_MORE : 0);
if (err)
return err;
len -= l;
}
return 0;
}
static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
{
if (connection->agreed_pro_version >= 95)
return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
(bi_rw & REQ_FUA ? DP_FUA : 0) |
(bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
(bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
else
return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
}
/* Used to send write or TRIM aka REQ_DISCARD requests
* R_PRIMARY -> Peer (P_DATA, P_TRIM)
*/
int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
{
struct drbd_device *device = peer_device->device;
struct drbd_socket *sock;
struct p_data *p;
unsigned int dp_flags = 0;
int digest_size;
int err;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
digest_size = peer_device->connection->integrity_tfm ?
crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
if (!p)
return -EIO;
p->sector = cpu_to_be64(req->i.sector);
p->block_id = (unsigned long)req;
p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
if (device->state.conn >= C_SYNC_SOURCE &&
device->state.conn <= C_PAUSED_SYNC_T)
dp_flags |= DP_MAY_SET_IN_SYNC;
if (peer_device->connection->agreed_pro_version >= 100) {
if (req->rq_state & RQ_EXP_RECEIVE_ACK)
dp_flags |= DP_SEND_RECEIVE_ACK;
/* During resync, request an explicit write ack,
* even in protocol != C */
if (req->rq_state & RQ_EXP_WRITE_ACK
|| (dp_flags & DP_MAY_SET_IN_SYNC))
dp_flags |= DP_SEND_WRITE_ACK;
}
p->dp_flags = cpu_to_be32(dp_flags);
if (dp_flags & DP_DISCARD) {
struct p_trim *t = (struct p_trim*)p;
t->size = cpu_to_be32(req->i.size);
err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
goto out;
}
/* our digest is still only over the payload.
* TRIM does not carry any payload. */
if (digest_size)
drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size);
if (!err) {
/* For protocol A, we have to memcpy the payload into
* socket buffers, as we may complete right away
* as soon as we handed it over to tcp, at which point the data
* pages may become invalid.
*
* For data-integrity enabled, we copy it as well, so we can be
* sure that even if the bio pages may still be modified, it
* won't change the data on the wire, thus if the digest checks
* out ok after sending on this side, but does not fit on the
* receiving side, we sure have detected corruption elsewhere.
*/
if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
err = _drbd_send_bio(peer_device, req->master_bio);
else
err = _drbd_send_zc_bio(peer_device, req->master_bio);
/* double check digest, sometimes buffers have been modified in flight. */
if (digest_size > 0 && digest_size <= 64) {
/* 64 byte, 512 bit, is the largest digest size
* currently supported in kernel crypto. */
unsigned char digest[64];
drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
if (memcmp(p + 1, digest, digest_size)) {
drbd_warn(device,
"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
(unsigned long long)req->i.sector, req->i.size);
}
} /* else if (digest_size > 64) {
... Be noisy about digest too large ...
} */
}
out:
mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
return err;
}
/* answer packet, used to send data back for read requests:
* Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
* C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
*/
int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
struct drbd_peer_request *peer_req)
{
struct drbd_device *device = peer_device->device;
struct drbd_socket *sock;
struct p_data *p;
int err;
int digest_size;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
digest_size = peer_device->connection->integrity_tfm ?
crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
if (!p)
return -EIO;
p->sector = cpu_to_be64(peer_req->i.sector);
p->block_id = peer_req->block_id;
p->seq_num = 0; /* unused */
p->dp_flags = 0;
if (digest_size)
drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
if (!err)
err = _drbd_send_zc_ee(peer_device, peer_req);
mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
return err;
}
int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
{
struct drbd_socket *sock;
struct p_block_desc *p;
sock = &peer_device->connection->data;
p = drbd_prepare_command(peer_device, sock);
if (!p)
return -EIO;
p->sector = cpu_to_be64(req->i.sector);
p->blksize = cpu_to_be32(req->i.size);
return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
}
/*
drbd_send distinguishes two cases:
Packets sent via the data socket "sock"
and packets sent via the meta data socket "msock"
sock msock
-----------------+-------------------------+------------------------------
timeout conf.timeout / 2 conf.timeout / 2
timeout action send a ping via msock Abort communication
and close all sockets
*/
/*
* you must have down()ed the appropriate [m]sock_mutex elsewhere!
*/
int drbd_send(struct drbd_connection *connection, struct socket *sock,
void *buf, size_t size, unsigned msg_flags)
{
struct kvec iov;
struct msghdr msg;
int rv, sent = 0;
if (!sock)
return -EBADR;
/* THINK if (signal_pending) return ... ? */
iov.iov_base = buf;
iov.iov_len = size;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = msg_flags | MSG_NOSIGNAL;
if (sock == connection->data.socket) {
rcu_read_lock();
connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
rcu_read_unlock();
drbd_update_congested(connection);
}
do {
/* STRANGE
* tcp_sendmsg does _not_ use its size parameter at all ?
*
* -EAGAIN on timeout, -EINTR on signal.
*/
/* THINK
* do we need to block DRBD_SIG if sock == &meta.socket ??
* otherwise wake_asender() might interrupt some send_*Ack !
*/
rv = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
if (rv == -EAGAIN) {
if (we_should_drop_the_connection(connection, sock))
break;
else
continue;
}
if (rv == -EINTR) {
flush_signals(current);
rv = 0;
}
if (rv < 0)
break;
sent += rv;
iov.iov_base += rv;
iov.iov_len -= rv;
} while (sent < size);
if (sock == connection->data.socket)
clear_bit(NET_CONGESTED, &connection->flags);
if (rv <= 0) {
if (rv != -EAGAIN) {
drbd_err(connection, "%s_sendmsg returned %d\n",
sock == connection->meta.socket ? "msock" : "sock",
rv);
conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
} else
conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
}
return sent;
}
/**
* drbd_send_all - Send an entire buffer
*
* Returns 0 upon success and a negative error value otherwise.
*/
int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
size_t size, unsigned msg_flags)
{
int err;
err = drbd_send(connection, sock, buffer, size, msg_flags);
if (err < 0)
return err;
if (err != size)
return -EIO;
return 0;
}
static int drbd_open(struct block_device *bdev, fmode_t mode)
{
struct drbd_device *device = bdev->bd_disk->private_data;
unsigned long flags;
int rv = 0;
mutex_lock(&drbd_main_mutex);
spin_lock_irqsave(&device->resource->req_lock, flags);
/* to have a stable device->state.role
* and no race with updating open_cnt */
if (device->state.role != R_PRIMARY) {
if (mode & FMODE_WRITE)
rv = -EROFS;
else if (!allow_oos)
rv = -EMEDIUMTYPE;
}
if (!rv)
device->open_cnt++;
spin_unlock_irqrestore(&device->resource->req_lock, flags);
mutex_unlock(&drbd_main_mutex);
return rv;
}
static void drbd_release(struct gendisk *gd, fmode_t mode)
{
struct drbd_device *device = gd->private_data;
mutex_lock(&drbd_main_mutex);
device->open_cnt--;
mutex_unlock(&drbd_main_mutex);
}
static void drbd_set_defaults(struct drbd_device *device)
{
/* Beware! The actual layout differs
* between big endian and little endian */
device->state = (union drbd_dev_state) {
{ .role = R_SECONDARY,
.peer = R_UNKNOWN,
.conn = C_STANDALONE,
.disk = D_DISKLESS,
.pdsk = D_UNKNOWN,
} };
}
void drbd_init_set_defaults(struct drbd_device *device)
{
/* the memset(,0,) did most of this.
* note: only assignments, no allocation in here */
drbd_set_defaults(device);
atomic_set(&device->ap_bio_cnt, 0);
atomic_set(&device->ap_actlog_cnt, 0);
atomic_set(&device->ap_pending_cnt, 0);
atomic_set(&device->rs_pending_cnt, 0);
atomic_set(&device->unacked_cnt, 0);
atomic_set(&device->local_cnt, 0);
atomic_set(&device->pp_in_use_by_net, 0);
atomic_set(&device->rs_sect_in, 0);
atomic_set(&device->rs_sect_ev, 0);
atomic_set(&device->ap_in_flight, 0);
atomic_set(&device->md_io.in_use, 0);
mutex_init(&device->own_state_mutex);
device->state_mutex = &device->own_state_mutex;
spin_lock_init(&device->al_lock);
spin_lock_init(&device->peer_seq_lock);
INIT_LIST_HEAD(&device->active_ee);
INIT_LIST_HEAD(&device->sync_ee);
INIT_LIST_HEAD(&device->done_ee);
INIT_LIST_HEAD(&device->read_ee);
INIT_LIST_HEAD(&device->net_ee);
INIT_LIST_HEAD(&device->resync_reads);
INIT_LIST_HEAD(&device->resync_work.list);
INIT_LIST_HEAD(&device->unplug_work.list);
INIT_LIST_HEAD(&device->bm_io_work.w.list);
INIT_LIST_HEAD(&device->pending_master_completion[0]);
INIT_LIST_HEAD(&device->pending_master_completion[1]);
INIT_LIST_HEAD(&device->pending_completion[0]);
INIT_LIST_HEAD(&device->pending_completion[1]);
device->resync_work.cb = w_resync_timer;
device->unplug_work.cb = w_send_write_hint;
device->bm_io_work.w.cb = w_bitmap_io;
init_timer(&device->resync_timer);
init_timer(&device->md_sync_timer);
init_timer(&device->start_resync_timer);
init_timer(&device->request_timer);
device->resync_timer.function = resync_timer_fn;
device->resync_timer.data = (unsigned long) device;
device->md_sync_timer.function = md_sync_timer_fn;
device->md_sync_timer.data = (unsigned long) device;
device->start_resync_timer.function = start_resync_timer_fn;
device->start_resync_timer.data = (unsigned long) device;
device->request_timer.function = request_timer_fn;
device->request_timer.data = (unsigned long) device;
init_waitqueue_head(&device->misc_wait);
init_waitqueue_head(&device->state_wait);
init_waitqueue_head(&device->ee_wait);
init_waitqueue_head(&device->al_wait);
init_waitqueue_head(&device->seq_wait);
device->resync_wenr = LC_FREE;
device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
}
void drbd_device_cleanup(struct drbd_device *device)
{
int i;
if (first_peer_device(device)->connection->receiver.t_state != NONE)
drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
first_peer_device(device)->connection->receiver.t_state);
device->al_writ_cnt =
device->bm_writ_cnt =
device->read_cnt =
device->recv_cnt =
device->send_cnt =
device->writ_cnt =
device->p_size =
device->rs_start =
device->rs_total =
device->rs_failed = 0;
device->rs_last_events = 0;
device->rs_last_sect_ev = 0;
for (i = 0; i < DRBD_SYNC_MARKS; i++) {
device->rs_mark_left[i] = 0;
device->rs_mark_time[i] = 0;
}
D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
drbd_set_my_capacity(device, 0);
if (device->bitmap) {
/* maybe never allocated. */
drbd_bm_resize(device, 0, 1);
drbd_bm_cleanup(device);
}
drbd_free_ldev(device->ldev);
device->ldev = NULL;
clear_bit(AL_SUSPENDED, &device->flags);
D_ASSERT(device, list_empty(&device->active_ee));
D_ASSERT(device, list_empty(&device->sync_ee));
D_ASSERT(device, list_empty(&device->done_ee));
D_ASSERT(device, list_empty(&device->read_ee));
D_ASSERT(device, list_empty(&device->net_ee));
D_ASSERT(device, list_empty(&device->resync_reads));
D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
D_ASSERT(device, list_empty(&device->resync_work.list));
D_ASSERT(device, list_empty(&device->unplug_work.list));
drbd_set_defaults(device);
}
static void drbd_destroy_mempools(void)
{
struct page *page;
while (drbd_pp_pool) {
page = drbd_pp_pool;
drbd_pp_pool = (struct page *)page_private(page);
__free_page(page);
drbd_pp_vacant--;
}
/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
if (drbd_md_io_bio_set)
bioset_free(drbd_md_io_bio_set);
if (drbd_md_io_page_pool)
mempool_destroy(drbd_md_io_page_pool);
if (drbd_ee_mempool)
mempool_destroy(drbd_ee_mempool);
if (drbd_request_mempool)
mempool_destroy(drbd_request_mempool);
if (drbd_ee_cache)
kmem_cache_destroy(drbd_ee_cache);
if (drbd_request_cache)
kmem_cache_destroy(drbd_request_cache);
if (drbd_bm_ext_cache)
kmem_cache_destroy(drbd_bm_ext_cache);
if (drbd_al_ext_cache)
kmem_cache_destroy(drbd_al_ext_cache);
drbd_md_io_bio_set = NULL;
drbd_md_io_page_pool = NULL;
drbd_ee_mempool = NULL;
drbd_request_mempool = NULL;
drbd_ee_cache = NULL;
drbd_request_cache = NULL;
drbd_bm_ext_cache = NULL;
drbd_al_ext_cache = NULL;
return;
}
static int drbd_create_mempools(void)
{
struct page *page;
const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
int i;
/* prepare our caches and mempools */
drbd_request_mempool = NULL;
drbd_ee_cache = NULL;
drbd_request_cache = NULL;
drbd_bm_ext_cache = NULL;
drbd_al_ext_cache = NULL;
drbd_pp_pool = NULL;
drbd_md_io_page_pool = NULL;
drbd_md_io_bio_set = NULL;
/* caches */
drbd_request_cache = kmem_cache_create(
"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
if (drbd_request_cache == NULL)
goto Enomem;
drbd_ee_cache = kmem_cache_create(
"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
if (drbd_ee_cache == NULL)
goto Enomem;
drbd_bm_ext_cache = kmem_cache_create(
"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
if (drbd_bm_ext_cache == NULL)
goto Enomem;
drbd_al_ext_cache = kmem_cache_create(
"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
if (drbd_al_ext_cache == NULL)
goto Enomem;
/* mempools */
drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
if (drbd_md_io_bio_set == NULL)
goto Enomem;
drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
if (drbd_md_io_page_pool == NULL)
goto Enomem;
drbd_request_mempool = mempool_create_slab_pool(number,
drbd_request_cache);
if (drbd_request_mempool == NULL)
goto Enomem;
drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
if (drbd_ee_mempool == NULL)
goto Enomem;
/* drbd's page pool */
spin_lock_init(&drbd_pp_lock);
for (i = 0; i < number; i++) {
page = alloc_page(GFP_HIGHUSER);
if (!page)
goto Enomem;
set_page_private(page, (unsigned long)drbd_pp_pool);
drbd_pp_pool = page;
}
drbd_pp_vacant = number;
return 0;
Enomem:
drbd_destroy_mempools(); /* in case we allocated some */
return -ENOMEM;
}
static void drbd_release_all_peer_reqs(struct drbd_device *device)
{
int rr;
rr = drbd_free_peer_reqs(device, &device->active_ee);
if (rr)
drbd_err(device, "%d EEs in active list found!\n", rr);
rr = drbd_free_peer_reqs(device, &device->sync_ee);
if (rr)
drbd_err(device, "%d EEs in sync list found!\n", rr);
rr = drbd_free_peer_reqs(device, &device->read_ee);
if (rr)
drbd_err(device, "%d EEs in read list found!\n", rr);
rr = drbd_free_peer_reqs(device, &device->done_ee);
if (rr)
drbd_err(device, "%d EEs in done list found!\n", rr);
rr = drbd_free_peer_reqs(device, &device->net_ee);
if (rr)
drbd_err(device, "%d EEs in net list found!\n", rr);
}
/* caution. no locking. */
void drbd_destroy_device(struct kref *kref)
{
struct drbd_device *device = container_of(kref, struct drbd_device, kref);
struct drbd_resource *resource = device->resource;
struct drbd_peer_device *peer_device, *tmp_peer_device;
del_timer_sync(&device->request_timer);
/* paranoia asserts */
D_ASSERT(device, device->open_cnt == 0);
/* end paranoia asserts */
/* cleanup stuff that may have been allocated during
* device (re-)configuration or state changes */
if (device->this_bdev)
bdput(device->this_bdev);
drbd_free_ldev(device->ldev);
device->ldev = NULL;
drbd_release_all_peer_reqs(device);
lc_destroy(device->act_log);
lc_destroy(device->resync);
kfree(device->p_uuid);
/* device->p_uuid = NULL; */
if (device->bitmap) /* should no longer be there. */
drbd_bm_cleanup(device);
__free_page(device->md_io.page);
put_disk(device->vdisk);
blk_cleanup_queue(device->rq_queue);
kfree(device->rs_plan_s);
/* not for_each_connection(connection, resource):
* those may have been cleaned up and disassociated already.
*/
for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
kref_put(&peer_device->connection->kref, drbd_destroy_connection);
kfree(peer_device);
}
memset(device, 0xfd, sizeof(*device));
kfree(device);
kref_put(&resource->kref, drbd_destroy_resource);
}
/* One global retry thread, if we need to push back some bio and have it
* reinserted through our make request function.
*/
static struct retry_worker {
struct workqueue_struct *wq;
struct work_struct worker;
spinlock_t lock;
struct list_head writes;
} retry;
static void do_retry(struct work_struct *ws)
{
struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
LIST_HEAD(writes);
struct drbd_request *req, *tmp;
spin_lock_irq(&retry->lock);
list_splice_init(&retry->writes, &writes);
spin_unlock_irq(&retry->lock);
list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
struct drbd_device *device = req->device;
struct bio *bio = req->master_bio;
unsigned long start_jif = req->start_jif;
bool expected;
expected =
expect(atomic_read(&req->completion_ref) == 0) &&
expect(req->rq_state & RQ_POSTPONED) &&
expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
(req->rq_state & RQ_LOCAL_ABORTED) != 0);
if (!expected)
drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
req, atomic_read(&req->completion_ref),
req->rq_state);
/* We still need to put one kref associated with the
* "completion_ref" going zero in the code path that queued it
* here. The request object may still be referenced by a
* frozen local req->private_bio, in case we force-detached.
*/
kref_put(&req->kref, drbd_req_destroy);
/* A single suspended or otherwise blocking device may stall
* all others as well. Fortunately, this code path is to
* recover from a situation that "should not happen":
* concurrent writes in multi-primary setup.
* In a "normal" lifecycle, this workqueue is supposed to be
* destroyed without ever doing anything.
* If it turns out to be an issue anyways, we can do per
* resource (replication group) or per device (minor) retry
* workqueues instead.
*/
/* We are not just doing generic_make_request(),
* as we want to keep the start_time information. */
inc_ap_bio(device);
__drbd_make_request(device, bio, start_jif);
}
}
/* called via drbd_req_put_completion_ref(),
* holds resource->req_lock */
void drbd_restart_request(struct drbd_request *req)
{
unsigned long flags;
spin_lock_irqsave(&retry.lock, flags);
list_move_tail(&req->tl_requests, &retry.writes);
spin_unlock_irqrestore(&retry.lock, flags);
/* Drop the extra reference that would otherwise
* have been dropped by complete_master_bio.
* do_retry() needs to grab a new one. */
dec_ap_bio(req->device);
queue_work(retry.wq, &retry.worker);
}
void drbd_destroy_resource(struct kref *kref)
{
struct drbd_resource *resource =
container_of(kref, struct drbd_resource, kref);
idr_destroy(&resource->devices);
free_cpumask_var(resource->cpu_mask);
kfree(resource->name);
memset(resource, 0xf2, sizeof(*resource));
kfree(resource);
}
void drbd_free_resource(struct drbd_resource *resource)
{
struct drbd_connection *connection, *tmp;
for_each_connection_safe(connection, tmp, resource) {
list_del(&connection->connections);
drbd_debugfs_connection_cleanup(connection);
kref_put(&connection->kref, drbd_destroy_connection);
}
drbd_debugfs_resource_cleanup(resource);
kref_put(&resource->kref, drbd_destroy_resource);
}
static void drbd_cleanup(void)
{
unsigned int i;
struct drbd_device *device;
struct drbd_resource *resource, *tmp;
/* first remove proc,
* drbdsetup uses it's presence to detect
* whether DRBD is loaded.
* If we would get stuck in proc removal,
* but have netlink already deregistered,
* some drbdsetup commands may wait forever
* for an answer.
*/
if (drbd_proc)
remove_proc_entry("drbd", NULL);
if (retry.wq)
destroy_workqueue(retry.wq);
drbd_genl_unregister();
drbd_debugfs_cleanup();
idr_for_each_entry(&drbd_devices, device, i)
drbd_delete_device(device);
/* not _rcu since, no other updater anymore. Genl already unregistered */
for_each_resource_safe(resource, tmp, &drbd_resources) {
list_del(&resource->resources);
drbd_free_resource(resource);
}
drbd_destroy_mempools();
unregister_blkdev(DRBD_MAJOR, "drbd");
idr_destroy(&drbd_devices);
pr_info("module cleanup done.\n");
}
/**
* drbd_congested() - Callback for the flusher thread
* @congested_data: User data
* @bdi_bits: Bits the BDI flusher thread is currently interested in
*
* Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
*/
static int drbd_congested(void *congested_data, int bdi_bits)
{
struct drbd_device *device = congested_data;
struct request_queue *q;
char reason = '-';
int r = 0;
if (!may_inc_ap_bio(device)) {
/* DRBD has frozen IO */
r = bdi_bits;
reason = 'd';
goto out;
}
if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
r |= (1 << WB_async_congested);
/* Without good local data, we would need to read from remote,
* and that would need the worker thread as well, which is
* currently blocked waiting for that usermode helper to
* finish.
*/
if (!get_ldev_if_state(device, D_UP_TO_DATE))
r |= (1 << WB_sync_congested);
else
put_ldev(device);
r &= bdi_bits;
reason = 'c';
goto out;
}
if (get_ldev(device)) {
q = bdev_get_queue(device->ldev->backing_bdev);
r = bdi_congested(&q->backing_dev_info, bdi_bits);
put_ldev(device);
if (r)
reason = 'b';
}
if (bdi_bits & (1 << WB_async_congested) &&
test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
r |= (1 << WB_async_congested);
reason = reason == 'b' ? 'a' : 'n';
}
out:
device->congestion_reason = reason;
return r;
}
static void drbd_init_workqueue(struct drbd_work_queue* wq)
{
spin_lock_init(&wq->q_lock);
INIT_LIST_HEAD(&wq->q);
init_waitqueue_head(&wq->q_wait);
}
struct completion_work {
struct drbd_work w;
struct completion done;
};
static int w_complete(struct drbd_work *w, int cancel)
{
struct completion_work *completion_work =
container_of(w, struct completion_work, w);
complete(&completion_work->done);
return 0;
}
void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
{
struct completion_work completion_work;
completion_work.w.cb = w_complete;
init_completion(&completion_work.done);
drbd_queue_work(work_queue, &completion_work.w);
wait_for_completion(&completion_work.done);
}
struct drbd_resource *drbd_find_resource(const char *name)
{
struct drbd_resource *resource;
if (!name || !name[0])
return NULL;
rcu_read_lock();
for_each_resource_rcu(resource, &drbd_resources) {
if (!strcmp(resource->name, name)) {
kref_get(&resource->kref);
goto found;
}
}
resource = NULL;
found:
rcu_read_unlock();
return resource;
}
struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
void *peer_addr, int peer_addr_len)
{
struct drbd_resource *resource;
struct drbd_connection *connection;
rcu_read_lock();
for_each_resource_rcu(resource, &drbd_resources) {
for_each_connection_rcu(connection, resource) {
if (connection->my_addr_len == my_addr_len &&
connection->peer_addr_len == peer_addr_len &&
!memcmp(&connection->my_addr, my_addr, my_addr_len) &&
!memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
kref_get(&connection->kref);
goto found;
}
}
}
connection = NULL;
found:
rcu_read_unlock();
return connection;
}
static int drbd_alloc_socket(struct drbd_socket *socket)
{
socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
if (!socket->rbuf)
return -ENOMEM;
socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
if (!socket->sbuf)
return -ENOMEM;
return 0;
}
static void drbd_free_socket(struct drbd_socket *socket)
{
free_page((unsigned long) socket->sbuf);
free_page((unsigned long) socket->rbuf);
}
void conn_free_crypto(struct drbd_connection *connection)
{
drbd_free_sock(connection);
crypto_free_hash(connection->csums_tfm);
crypto_free_hash(connection->verify_tfm);
crypto_free_hash(connection->cram_hmac_tfm);
crypto_free_hash(connection->integrity_tfm);
crypto_free_hash(connection->peer_integrity_tfm);
kfree(connection->int_dig_in);
kfree(connection->int_dig_vv);
connection->csums_tfm = NULL;
connection->verify_tfm = NULL;
connection->cram_hmac_tfm = NULL;
connection->integrity_tfm = NULL;
connection->peer_integrity_tfm = NULL;
connection->int_dig_in = NULL;
connection->int_dig_vv = NULL;
}
int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
{
struct drbd_connection *connection;
cpumask_var_t new_cpu_mask;
int err;
if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
return -ENOMEM;
/* silently ignore cpu mask on UP kernel */
if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
cpumask_bits(new_cpu_mask), nr_cpu_ids);
if (err == -EOVERFLOW) {
/* So what. mask it out. */
cpumask_var_t tmp_cpu_mask;
if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
cpumask_setall(tmp_cpu_mask);
cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
res_opts->cpu_mask,
strlen(res_opts->cpu_mask) > 12 ? "..." : "",
nr_cpu_ids);
free_cpumask_var(tmp_cpu_mask);
err = 0;
}
}
if (err) {
drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
/* retcode = ERR_CPU_MASK_PARSE; */
goto fail;
}
}
resource->res_opts = *res_opts;
if (cpumask_empty(new_cpu_mask))
drbd_calc_cpu_mask(&new_cpu_mask);
if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
cpumask_copy(resource->cpu_mask, new_cpu_mask);
for_each_connection_rcu(connection, resource) {
connection->receiver.reset_cpu_mask = 1;
connection->asender.reset_cpu_mask = 1;
connection->worker.reset_cpu_mask = 1;
}
}
err = 0;
fail:
free_cpumask_var(new_cpu_mask);
return err;
}
struct drbd_resource *drbd_create_resource(const char *name)
{
struct drbd_resource *resource;
resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
if (!resource)
goto fail;
resource->name = kstrdup(name, GFP_KERNEL);
if (!resource->name)
goto fail_free_resource;
if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
goto fail_free_name;
kref_init(&resource->kref);
idr_init(&resource->devices);
INIT_LIST_HEAD(&resource->connections);
resource->write_ordering = WO_bdev_flush;
list_add_tail_rcu(&resource->resources, &drbd_resources);
mutex_init(&resource->conf_update);
mutex_init(&resource->adm_mutex);
spin_lock_init(&resource->req_lock);
drbd_debugfs_resource_add(resource);
return resource;
fail_free_name:
kfree(resource->name);
fail_free_resource:
kfree(resource);
fail:
return NULL;
}
/* caller must be under adm_mutex */
struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
{
struct drbd_resource *resource;
struct drbd_connection *connection;
connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
if (!connection)
return NULL;
if (drbd_alloc_socket(&connection->data))
goto fail;
if (drbd_alloc_socket(&connection->meta))
goto fail;
connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
if (!connection->current_epoch)
goto fail;
INIT_LIST_HEAD(&connection->transfer_log);
INIT_LIST_HEAD(&connection->current_epoch->list);
connection->epochs = 1;
spin_lock_init(&connection->epoch_lock);
connection->send.seen_any_write_yet = false;
connection->send.current_epoch_nr = 0;
connection->send.current_epoch_writes = 0;
resource = drbd_create_resource(name);
if (!resource)
goto fail;
connection->cstate = C_STANDALONE;
mutex_init(&connection->cstate_mutex);
init_waitqueue_head(&connection->ping_wait);
idr_init(&connection->peer_devices);
drbd_init_workqueue(&connection->sender_work);
mutex_init(&connection->data.mutex);
mutex_init(&connection->meta.mutex);
drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
connection->receiver.connection = connection;
drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
connection->worker.connection = connection;
drbd_thread_init(resource, &connection->asender, drbd_asender, "asender");
connection->asender.connection = connection;
kref_init(&connection->kref);
connection->resource = resource;
if (set_resource_options(resource, res_opts))
goto fail_resource;
kref_get(&resource->kref);
list_add_tail_rcu(&connection->connections, &resource->connections);
drbd_debugfs_connection_add(connection);
return connection;
fail_resource:
list_del(&resource->resources);
drbd_free_resource(resource);
fail:
kfree(connection->current_epoch);
drbd_free_socket(&connection->meta);
drbd_free_socket(&connection->data);
kfree(connection);
return NULL;
}
void drbd_destroy_connection(struct kref *kref)
{
struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
struct drbd_resource *resource = connection->resource;
if (atomic_read(&connection->current_epoch->epoch_size) != 0)
drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
kfree(connection->current_epoch);
idr_destroy(&connection->peer_devices);
drbd_free_socket(&connection->meta);
drbd_free_socket(&connection->data);
kfree(connection->int_dig_in);
kfree(connection->int_dig_vv);
memset(connection, 0xfc, sizeof(*connection));
kfree(connection);
kref_put(&resource->kref, drbd_destroy_resource);
}
static int init_submitter(struct drbd_device *device)
{
/* opencoded create_singlethread_workqueue(),
* to be able to say "drbd%d", ..., minor */
device->submit.wq = alloc_workqueue("drbd%u_submit",
WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
if (!device->submit.wq)
return -ENOMEM;
INIT_WORK(&device->submit.worker, do_submit);
INIT_LIST_HEAD(&device->submit.writes);
return 0;
}
enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
{
struct drbd_resource *resource = adm_ctx->resource;
struct drbd_connection *connection;
struct drbd_device *device;
struct drbd_peer_device *peer_device, *tmp_peer_device;
struct gendisk *disk;
struct request_queue *q;
int id;
int vnr = adm_ctx->volume;
enum drbd_ret_code err = ERR_NOMEM;
device = minor_to_device(minor);
if (device)
return ERR_MINOR_OR_VOLUME_EXISTS;
/* GFP_KERNEL, we are outside of all write-out paths */
device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
if (!device)
return ERR_NOMEM;
kref_init(&device->kref);
kref_get(&resource->kref);
device->resource = resource;
device->minor = minor;
device->vnr = vnr;
drbd_init_set_defaults(device);
q = blk_alloc_queue(GFP_KERNEL);
if (!q)
goto out_no_q;
device->rq_queue = q;
q->queuedata = device;
disk = alloc_disk(1);
if (!disk)
goto out_no_disk;
device->vdisk = disk;
set_disk_ro(disk, true);
disk->queue = q;
disk->major = DRBD_MAJOR;
disk->first_minor = minor;
disk->fops = &drbd_ops;
sprintf(disk->disk_name, "drbd%d", minor);
disk->private_data = device;
device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
/* we have no partitions. we contain only ourselves. */
device->this_bdev->bd_contains = device->this_bdev;
q->backing_dev_info.congested_fn = drbd_congested;
q->backing_dev_info.congested_data = device;
blk_queue_make_request(q, drbd_make_request);
blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
/* Setting the max_hw_sectors to an odd value of 8kibyte here
This triggers a max_bio_size message upon first attach or connect */
blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
q->queue_lock = &resource->req_lock;
device->md_io.page = alloc_page(GFP_KERNEL);
if (!device->md_io.page)
goto out_no_io_page;
if (drbd_bm_init(device))
goto out_no_bitmap;
device->read_requests = RB_ROOT;
device->write_requests = RB_ROOT;
id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
if (id < 0) {
if (id == -ENOSPC)
err = ERR_MINOR_OR_VOLUME_EXISTS;
goto out_no_minor_idr;
}
kref_get(&device->kref);
id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
if (id < 0) {
if (id == -ENOSPC)
err = ERR_MINOR_OR_VOLUME_EXISTS;
goto out_idr_remove_minor;
}
kref_get(&device->kref);
INIT_LIST_HEAD(&device->peer_devices);
INIT_LIST_HEAD(&device->pending_bitmap_io);
for_each_connection(connection, resource) {
peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
if (!peer_device)
goto out_idr_remove_from_resource;
peer_device->connection = connection;
peer_device->device = device;
list_add(&peer_device->peer_devices, &device->peer_devices);
kref_get(&device->kref);
id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
if (id < 0) {
if (id == -ENOSPC)
err = ERR_INVALID_REQUEST;
goto out_idr_remove_from_resource;
}
kref_get(&connection->kref);
}
if (init_submitter(device)) {
err = ERR_NOMEM;
goto out_idr_remove_vol;
}
add_disk(disk);
/* inherit the connection state */
device->state.conn = first_connection(resource)->cstate;
if (device->state.conn == C_WF_REPORT_PARAMS) {
for_each_peer_device(peer_device, device)
drbd_connected(peer_device);
}
/* move to create_peer_device() */
for_each_peer_device(peer_device, device)
drbd_debugfs_peer_device_add(peer_device);
drbd_debugfs_device_add(device);
return NO_ERROR;
out_idr_remove_vol:
idr_remove(&connection->peer_devices, vnr);
out_idr_remove_from_resource:
for_each_connection(connection, resource) {
peer_device = idr_find(&connection->peer_devices, vnr);
if (peer_device) {
idr_remove(&connection->peer_devices, vnr);
kref_put(&connection->kref, drbd_destroy_connection);
}
}
for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
list_del(&peer_device->peer_devices);
kfree(peer_device);
}
idr_remove(&resource->devices, vnr);
out_idr_remove_minor:
idr_remove(&drbd_devices, minor);
synchronize_rcu();
out_no_minor_idr:
drbd_bm_cleanup(device);
out_no_bitmap:
__free_page(device->md_io.page);
out_no_io_page:
put_disk(disk);
out_no_disk:
blk_cleanup_queue(q);
out_no_q:
kref_put(&resource->kref, drbd_destroy_resource);
kfree(device);
return err;
}
void drbd_delete_device(struct drbd_device *device)
{
struct drbd_resource *resource = device->resource;
struct drbd_connection *connection;
struct drbd_peer_device *peer_device;
int refs = 3;
/* move to free_peer_device() */
for_each_peer_device(peer_device, device)
drbd_debugfs_peer_device_cleanup(peer_device);
drbd_debugfs_device_cleanup(device);
for_each_connection(connection, resource) {
idr_remove(&connection->peer_devices, device->vnr);
refs++;
}
idr_remove(&resource->devices, device->vnr);
idr_remove(&drbd_devices, device_to_minor(device));
del_gendisk(device->vdisk);
synchronize_rcu();
kref_sub(&device->kref, refs, drbd_destroy_device);
}
static int __init drbd_init(void)
{
int err;
if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
pr_err("invalid minor_count (%d)\n", minor_count);
#ifdef MODULE
return -EINVAL;
#else
minor_count = DRBD_MINOR_COUNT_DEF;
#endif
}
err = register_blkdev(DRBD_MAJOR, "drbd");
if (err) {
pr_err("unable to register block device major %d\n",
DRBD_MAJOR);
return err;
}
/*
* allocate all necessary structs
*/
init_waitqueue_head(&drbd_pp_wait);
drbd_proc = NULL; /* play safe for drbd_cleanup */
idr_init(&drbd_devices);
rwlock_init(&global_state_lock);
INIT_LIST_HEAD(&drbd_resources);
err = drbd_genl_register();
if (err) {
pr_err("unable to register generic netlink family\n");
goto fail;
}
err = drbd_create_mempools();
if (err)
goto fail;
err = -ENOMEM;
drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
if (!drbd_proc) {
pr_err("unable to register proc file\n");
goto fail;
}
retry.wq = create_singlethread_workqueue("drbd-reissue");
if (!retry.wq) {
pr_err("unable to create retry workqueue\n");
goto fail;
}
INIT_WORK(&retry.worker, do_retry);
spin_lock_init(&retry.lock);
INIT_LIST_HEAD(&retry.writes);
if (drbd_debugfs_init())
pr_notice("failed to initialize debugfs -- will not be available\n");
pr_info("initialized. "
"Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
pr_info("%s\n", drbd_buildtag());
pr_info("registered as block device major %d\n", DRBD_MAJOR);
return 0; /* Success! */
fail:
drbd_cleanup();
if (err == -ENOMEM)
pr_err("ran out of memory\n");
else
pr_err("initialization failure\n");
return err;
}
void drbd_free_ldev(struct drbd_backing_dev *ldev)
{
if (ldev == NULL)
return;
blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
kfree(ldev->disk_conf);
kfree(ldev);
}
static void drbd_free_one_sock(struct drbd_socket *ds)
{
struct socket *s;
mutex_lock(&ds->mutex);
s = ds->socket;
ds->socket = NULL;
mutex_unlock(&ds->mutex);
if (s) {
/* so debugfs does not need to mutex_lock() */
synchronize_rcu();
kernel_sock_shutdown(s, SHUT_RDWR);
sock_release(s);
}
}
void drbd_free_sock(struct drbd_connection *connection)
{
if (connection->data.socket)
drbd_free_one_sock(&connection->data);
if (connection->meta.socket)
drbd_free_one_sock(&connection->meta);
}
/* meta data management */
void conn_md_sync(struct drbd_connection *connection)
{