blob: baf913047b488d43cef1bf04afd9e3e6e5697329 [file] [log] [blame]
/*
* linux/drivers/scsi/esas2r/esas2r_ioctl.c
* For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
*
* Copyright (c) 2001-2013 ATTO Technology, Inc.
* (mailto:linuxdrivers@attotech.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
*
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include "esas2r.h"
/*
* Buffered ioctl handlers. A buffered ioctl is one which requires that we
* allocate a DMA-able memory area to communicate with the firmware. In
* order to prevent continually allocating and freeing consistent memory,
* we will allocate a global buffer the first time we need it and re-use
* it for subsequent ioctl calls that require it.
*/
u8 *esas2r_buffered_ioctl;
dma_addr_t esas2r_buffered_ioctl_addr;
u32 esas2r_buffered_ioctl_size;
struct pci_dev *esas2r_buffered_ioctl_pcid;
static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
struct esas2r_request *,
struct esas2r_sg_context *,
void *);
typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
struct esas2r_request *, void *);
struct esas2r_buffered_ioctl {
struct esas2r_adapter *a;
void *ioctl;
u32 length;
u32 control_code;
u32 offset;
BUFFERED_IOCTL_CALLBACK
callback;
void *context;
BUFFERED_IOCTL_DONE_CALLBACK
done_callback;
void *done_context;
};
static void complete_fm_api_req(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
a->fm_api_command_done = 1;
wake_up_interruptible(&a->fm_api_waiter);
}
/* Callbacks for building scatter/gather lists for FM API requests */
static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
{
struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
int offset = sgc->cur_offset - a->save_offset;
(*addr) = a->firmware.phys + offset;
return a->firmware.orig_len - offset;
}
static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
{
struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
int offset = sgc->cur_offset - a->save_offset;
(*addr) = a->firmware.header_buff_phys + offset;
return sizeof(struct esas2r_flash_img) - offset;
}
/* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
{
struct esas2r_request *rq;
if (down_interruptible(&a->fm_api_semaphore)) {
fi->status = FI_STAT_BUSY;
return;
}
rq = esas2r_alloc_request(a);
if (rq == NULL) {
fi->status = FI_STAT_BUSY;
goto free_sem;
}
if (fi == &a->firmware.header) {
a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
(size_t)sizeof(
struct
esas2r_flash_img),
(dma_addr_t *)&a->
firmware.
header_buff_phys,
GFP_KERNEL);
if (a->firmware.header_buff == NULL) {
esas2r_debug("failed to allocate header buffer!");
fi->status = FI_STAT_BUSY;
goto free_req;
}
memcpy(a->firmware.header_buff, fi,
sizeof(struct esas2r_flash_img));
a->save_offset = a->firmware.header_buff;
a->fm_api_sgc.get_phys_addr =
(PGETPHYSADDR)get_physaddr_fm_api_header;
} else {
a->save_offset = (u8 *)fi;
a->fm_api_sgc.get_phys_addr =
(PGETPHYSADDR)get_physaddr_fm_api;
}
rq->comp_cb = complete_fm_api_req;
a->fm_api_command_done = 0;
a->fm_api_sgc.cur_offset = a->save_offset;
if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
&a->fm_api_sgc))
goto all_done;
/* Now wait around for it to complete. */
while (!a->fm_api_command_done)
wait_event_interruptible(a->fm_api_waiter,
a->fm_api_command_done);
all_done:
if (fi == &a->firmware.header) {
memcpy(fi, a->firmware.header_buff,
sizeof(struct esas2r_flash_img));
dma_free_coherent(&a->pcid->dev,
(size_t)sizeof(struct esas2r_flash_img),
a->firmware.header_buff,
(dma_addr_t)a->firmware.header_buff_phys);
}
free_req:
esas2r_free_request(a, (struct esas2r_request *)rq);
free_sem:
up(&a->fm_api_semaphore);
return;
}
static void complete_nvr_req(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
a->nvram_command_done = 1;
wake_up_interruptible(&a->nvram_waiter);
}
/* Callback for building scatter/gather lists for buffered ioctls */
static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
u64 *addr)
{
int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
(*addr) = esas2r_buffered_ioctl_addr + offset;
return esas2r_buffered_ioctl_size - offset;
}
static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
a->buffered_ioctl_done = 1;
wake_up_interruptible(&a->buffered_ioctl_waiter);
}
static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
{
struct esas2r_adapter *a = bi->a;
struct esas2r_request *rq;
struct esas2r_sg_context sgc;
u8 result = IOCTL_SUCCESS;
if (down_interruptible(&buffered_ioctl_semaphore))
return IOCTL_OUT_OF_RESOURCES;
/* allocate a buffer or use the existing buffer. */
if (esas2r_buffered_ioctl) {
if (esas2r_buffered_ioctl_size < bi->length) {
/* free the too-small buffer and get a new one */
dma_free_coherent(&a->pcid->dev,
(size_t)esas2r_buffered_ioctl_size,
esas2r_buffered_ioctl,
esas2r_buffered_ioctl_addr);
goto allocate_buffer;
}
} else {
allocate_buffer:
esas2r_buffered_ioctl_size = bi->length;
esas2r_buffered_ioctl_pcid = a->pcid;
esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
(size_t)
esas2r_buffered_ioctl_size,
&
esas2r_buffered_ioctl_addr,
GFP_KERNEL);
}
if (!esas2r_buffered_ioctl) {
esas2r_log(ESAS2R_LOG_CRIT,
"could not allocate %d bytes of consistent memory "
"for a buffered ioctl!",
bi->length);
esas2r_debug("buffered ioctl alloc failure");
result = IOCTL_OUT_OF_RESOURCES;
goto exit_cleanly;
}
memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
rq = esas2r_alloc_request(a);
if (rq == NULL) {
esas2r_log(ESAS2R_LOG_CRIT,
"could not allocate an internal request");
result = IOCTL_OUT_OF_RESOURCES;
esas2r_debug("buffered ioctl - no requests");
goto exit_cleanly;
}
a->buffered_ioctl_done = 0;
rq->comp_cb = complete_buffered_ioctl_req;
sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
sgc.length = esas2r_buffered_ioctl_size;
if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
/* completed immediately, no need to wait */
a->buffered_ioctl_done = 0;
goto free_andexit_cleanly;
}
/* now wait around for it to complete. */
while (!a->buffered_ioctl_done)
wait_event_interruptible(a->buffered_ioctl_waiter,
a->buffered_ioctl_done);
free_andexit_cleanly:
if (result == IOCTL_SUCCESS && bi->done_callback)
(*bi->done_callback)(a, rq, bi->done_context);
esas2r_free_request(a, rq);
exit_cleanly:
if (result == IOCTL_SUCCESS)
memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
up(&buffered_ioctl_semaphore);
return result;
}
/* SMP ioctl support */
static int smp_ioctl_callback(struct esas2r_adapter *a,
struct esas2r_request *rq,
struct esas2r_sg_context *sgc, void *context)
{
struct atto_ioctl_smp *si =
(struct atto_ioctl_smp *)esas2r_buffered_ioctl;
esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
if (!esas2r_build_sg_list(a, rq, sgc)) {
si->status = ATTO_STS_OUT_OF_RSRC;
return false;
}
esas2r_start_request(a, rq);
return true;
}
static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
{
struct esas2r_buffered_ioctl bi;
memset(&bi, 0, sizeof(bi));
bi.a = a;
bi.ioctl = si;
bi.length = sizeof(struct atto_ioctl_smp)
+ le32_to_cpu(si->req_length)
+ le32_to_cpu(si->rsp_length);
bi.offset = 0;
bi.callback = smp_ioctl_callback;
return handle_buffered_ioctl(&bi);
}
/* CSMI ioctl support */
static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
/* Now call the original completion callback. */
(*rq->aux_req_cb)(a, rq);
}
/* Tunnel a CSMI IOCTL to the back end driver for processing. */
static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
union atto_ioctl_csmi *ci,
struct esas2r_request *rq,
struct esas2r_sg_context *sgc,
u32 ctrl_code,
u16 target_id)
{
struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
if (test_bit(AF_DEGRADED_MODE, &a->flags))
return false;
esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
ioctl->csmi.target_id = cpu_to_le16(target_id);
ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
/*
* Always usurp the completion callback since the interrupt callback
* mechanism may be used.
*/
rq->aux_req_cx = ci;
rq->aux_req_cb = rq->comp_cb;
rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
if (!esas2r_build_sg_list(a, rq, sgc))
return false;
esas2r_start_request(a, rq);
return true;
}
static bool check_lun(struct scsi_lun lun)
{
bool result;
result = ((lun.scsi_lun[7] == 0) &&
(lun.scsi_lun[6] == 0) &&
(lun.scsi_lun[5] == 0) &&
(lun.scsi_lun[4] == 0) &&
(lun.scsi_lun[3] == 0) &&
(lun.scsi_lun[2] == 0) &&
/* Byte 1 is intentionally skipped */
(lun.scsi_lun[0] == 0));
return result;
}
static int csmi_ioctl_callback(struct esas2r_adapter *a,
struct esas2r_request *rq,
struct esas2r_sg_context *sgc, void *context)
{
struct atto_csmi *ci = (struct atto_csmi *)context;
union atto_ioctl_csmi *ioctl_csmi =
(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
u8 path = 0;
u8 tid = 0;
u8 lun = 0;
u32 sts = CSMI_STS_SUCCESS;
struct esas2r_target *t;
unsigned long flags;
if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
path = gda->path_id;
tid = gda->target_id;
lun = gda->lun;
} else if (ci->control_code == CSMI_CC_TASK_MGT) {
struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
path = tm->path_id;
tid = tm->target_id;
lun = tm->lun;
}
if (path > 0) {
rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
CSMI_STS_INV_PARAM);
return false;
}
rq->target_id = tid;
rq->vrq->scsi.flags |= cpu_to_le32(lun);
switch (ci->control_code) {
case CSMI_CC_GET_DRVR_INFO:
{
struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
strcpy(gdi->description, esas2r_get_model_name(a));
gdi->csmi_major_rev = CSMI_MAJOR_REV;
gdi->csmi_minor_rev = CSMI_MINOR_REV;
break;
}
case CSMI_CC_GET_CNTLR_CFG:
{
struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
gcc->base_io_addr = 0;
pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
&gcc->base_memaddr_lo);
pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
&gcc->base_memaddr_hi);
gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
a->pcid->subsystem_vendor);
gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
gcc->pci_addr.bus_num = a->pcid->bus->number;
gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
gcc->bios_build_rev = LOWORD(a->flash_ver);
if (test_bit(AF2_THUNDERLINK, &a->flags2))
gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
| CSMI_CNTLRF_SATA_HBA;
else
gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
| CSMI_CNTLRF_SATA_RAID;
gcc->rrom_major_rev = 0;
gcc->rrom_minor_rev = 0;
gcc->rrom_build_rev = 0;
gcc->rrom_release_rev = 0;
gcc->rrom_biosmajor_rev = 0;
gcc->rrom_biosminor_rev = 0;
gcc->rrom_biosbuild_rev = 0;
gcc->rrom_biosrelease_rev = 0;
break;
}
case CSMI_CC_GET_CNTLR_STS:
{
struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
if (test_bit(AF_DEGRADED_MODE, &a->flags))
gcs->status = CSMI_CNTLR_STS_FAILED;
else
gcs->status = CSMI_CNTLR_STS_GOOD;
gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
break;
}
case CSMI_CC_FW_DOWNLOAD:
case CSMI_CC_GET_RAID_INFO:
case CSMI_CC_GET_RAID_CFG:
sts = CSMI_STS_BAD_CTRL_CODE;
break;
case CSMI_CC_SMP_PASSTHRU:
case CSMI_CC_SSP_PASSTHRU:
case CSMI_CC_STP_PASSTHRU:
case CSMI_CC_GET_PHY_INFO:
case CSMI_CC_SET_PHY_INFO:
case CSMI_CC_GET_LINK_ERRORS:
case CSMI_CC_GET_SATA_SIG:
case CSMI_CC_GET_CONN_INFO:
case CSMI_CC_PHY_CTRL:
if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
ci->control_code,
ESAS2R_TARG_ID_INV)) {
sts = CSMI_STS_FAILED;
break;
}
return true;
case CSMI_CC_GET_SCSI_ADDR:
{
struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
struct scsi_lun lun;
memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
if (!check_lun(lun)) {
sts = CSMI_STS_NO_SCSI_ADDR;
break;
}
/* make sure the device is present */
spin_lock_irqsave(&a->mem_lock, flags);
t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
spin_unlock_irqrestore(&a->mem_lock, flags);
if (t == NULL) {
sts = CSMI_STS_NO_SCSI_ADDR;
break;
}
gsa->host_index = 0xFF;
gsa->lun = gsa->sas_lun[1];
rq->target_id = esas2r_targ_get_id(t, a);
break;
}
case CSMI_CC_GET_DEV_ADDR:
{
struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
/* make sure the target is present */
t = a->targetdb + rq->target_id;
if (t >= a->targetdb_end
|| t->target_state != TS_PRESENT
|| t->sas_addr == 0) {
sts = CSMI_STS_NO_DEV_ADDR;
break;
}
/* fill in the result */
*(u64 *)gda->sas_addr = t->sas_addr;
memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
break;
}
case CSMI_CC_TASK_MGT:
/* make sure the target is present */
t = a->targetdb + rq->target_id;
if (t >= a->targetdb_end
|| t->target_state != TS_PRESENT
|| !(t->flags & TF_PASS_THRU)) {
sts = CSMI_STS_NO_DEV_ADDR;
break;
}
if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
ci->control_code,
t->phys_targ_id)) {
sts = CSMI_STS_FAILED;
break;
}
return true;
default:
sts = CSMI_STS_BAD_CTRL_CODE;
break;
}
rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
return false;
}
static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
struct esas2r_request *rq, void *context)
{
struct atto_csmi *ci = (struct atto_csmi *)context;
union atto_ioctl_csmi *ioctl_csmi =
(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
switch (ci->control_code) {
case CSMI_CC_GET_DRVR_INFO:
{
struct atto_csmi_get_driver_info *gdi =
&ioctl_csmi->drvr_info;
strcpy(gdi->name, ESAS2R_VERSION_STR);
gdi->major_rev = ESAS2R_MAJOR_REV;
gdi->minor_rev = ESAS2R_MINOR_REV;
gdi->build_rev = 0;
gdi->release_rev = 0;
break;
}
case CSMI_CC_GET_SCSI_ADDR:
{
struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
CSMI_STS_SUCCESS) {
gsa->target_id = rq->target_id;
gsa->path_id = 0;
}
break;
}
}
ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
}
static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
{
struct esas2r_buffered_ioctl bi;
memset(&bi, 0, sizeof(bi));
bi.a = a;
bi.ioctl = &ci->data;
bi.length = sizeof(union atto_ioctl_csmi);
bi.offset = 0;
bi.callback = csmi_ioctl_callback;
bi.context = ci;
bi.done_callback = csmi_ioctl_done_callback;
bi.done_context = ci;
return handle_buffered_ioctl(&bi);
}
/* ATTO HBA ioctl support */
/* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
struct atto_ioctl *hi,
struct esas2r_request *rq,
struct esas2r_sg_context *sgc)
{
esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
if (!esas2r_build_sg_list(a, rq, sgc)) {
hi->status = ATTO_STS_OUT_OF_RSRC;
return false;
}
esas2r_start_request(a, rq);
return true;
}
static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
u8 sts = ATTO_SPT_RS_FAILED;
spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
spt->sense_length = rq->sense_len;
spt->residual_length =
le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
switch (rq->req_stat) {
case RS_SUCCESS:
case RS_SCSI_ERROR:
sts = ATTO_SPT_RS_SUCCESS;
break;
case RS_UNDERRUN:
sts = ATTO_SPT_RS_UNDERRUN;
break;
case RS_OVERRUN:
sts = ATTO_SPT_RS_OVERRUN;
break;
case RS_SEL:
case RS_SEL2:
sts = ATTO_SPT_RS_NO_DEVICE;
break;
case RS_NO_LUN:
sts = ATTO_SPT_RS_NO_LUN;
break;
case RS_TIMEOUT:
sts = ATTO_SPT_RS_TIMEOUT;
break;
case RS_DEGRADED:
sts = ATTO_SPT_RS_DEGRADED;
break;
case RS_BUSY:
sts = ATTO_SPT_RS_BUSY;
break;
case RS_ABORTED:
sts = ATTO_SPT_RS_ABORTED;
break;
case RS_RESET:
sts = ATTO_SPT_RS_BUS_RESET;
break;
}
spt->req_status = sts;
/* Update the target ID to the next one present. */
spt->target_id =
esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
/* Done, call the completion callback. */
(*rq->aux_req_cb)(a, rq);
}
static int hba_ioctl_callback(struct esas2r_adapter *a,
struct esas2r_request *rq,
struct esas2r_sg_context *sgc,
void *context)
{
struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
hi->status = ATTO_STS_SUCCESS;
switch (hi->function) {
case ATTO_FUNC_GET_ADAP_INFO:
{
u8 *class_code = (u8 *)&a->pcid->class;
struct atto_hba_get_adapter_info *gai =
&hi->data.get_adap_info;
int pcie_cap_reg;
if (hi->flags & HBAF_TUNNEL) {
hi->status = ATTO_STS_UNSUPPORTED;
break;
}
if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
hi->status = ATTO_STS_INV_VERSION;
hi->version = ATTO_VER_GET_ADAP_INFO0;
break;
}
memset(gai, 0, sizeof(*gai));
gai->pci.vendor_id = a->pcid->vendor;
gai->pci.device_id = a->pcid->device;
gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
gai->pci.ss_device_id = a->pcid->subsystem_device;
gai->pci.class_code[0] = class_code[0];
gai->pci.class_code[1] = class_code[1];
gai->pci.class_code[2] = class_code[2];
gai->pci.rev_id = a->pcid->revision;
gai->pci.bus_num = a->pcid->bus->number;
gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
if (pcie_cap_reg) {
u16 stat;
u32 caps;
pci_read_config_word(a->pcid,
pcie_cap_reg + PCI_EXP_LNKSTA,
&stat);
pci_read_config_dword(a->pcid,
pcie_cap_reg + PCI_EXP_LNKCAP,
&caps);
gai->pci.link_speed_curr =
(u8)(stat & PCI_EXP_LNKSTA_CLS);
gai->pci.link_speed_max =
(u8)(caps & PCI_EXP_LNKCAP_SLS);
gai->pci.link_width_curr =
(u8)((stat & PCI_EXP_LNKSTA_NLW)
>> PCI_EXP_LNKSTA_NLW_SHIFT);
gai->pci.link_width_max =
(u8)((caps & PCI_EXP_LNKCAP_MLW)
>> 4);
}
gai->pci.msi_vector_cnt = 1;
if (a->pcid->msix_enabled)
gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
else if (a->pcid->msi_enabled)
gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
else
gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
gai->adap_type = ATTO_GAI_AT_ESASRAID2;
if (test_bit(AF2_THUNDERLINK, &a->flags2))
gai->adap_type = ATTO_GAI_AT_TLSASHBA;
if (test_bit(AF_DEGRADED_MODE, &a->flags))
gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
ATTO_GAI_AF_DEVADDR_SUPP;
if (a->pcid->subsystem_device == ATTO_ESAS_R60F
|| a->pcid->subsystem_device == ATTO_ESAS_R608
|| a->pcid->subsystem_device == ATTO_ESAS_R644
|| a->pcid->subsystem_device == ATTO_TSSC_3808E)
gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
gai->num_ports = ESAS2R_NUM_PHYS;
gai->num_phys = ESAS2R_NUM_PHYS;
strcpy(gai->firmware_rev, a->fw_rev);
strcpy(gai->flash_rev, a->flash_rev);
strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
strcpy(gai->model_name, esas2r_get_model_name(a));
gai->num_targets = ESAS2R_MAX_TARGETS;
gai->num_busses = 1;
gai->num_targsper_bus = gai->num_targets;
gai->num_lunsper_targ = 256;
if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
|| a->pcid->subsystem_device == ATTO_ESAS_R60F)
gai->num_connectors = 4;
else
gai->num_connectors = 2;
gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
gai->num_targets_backend = a->num_targets_backend;
gai->tunnel_flags = a->ioctl_tunnel
& (ATTO_GAI_TF_MEM_RW
| ATTO_GAI_TF_TRACE
| ATTO_GAI_TF_SCSI_PASS_THRU
| ATTO_GAI_TF_GET_DEV_ADDR
| ATTO_GAI_TF_PHY_CTRL
| ATTO_GAI_TF_CONN_CTRL
| ATTO_GAI_TF_GET_DEV_INFO);
break;
}
case ATTO_FUNC_GET_ADAP_ADDR:
{
struct atto_hba_get_adapter_address *gaa =
&hi->data.get_adap_addr;
if (hi->flags & HBAF_TUNNEL) {
hi->status = ATTO_STS_UNSUPPORTED;
break;
}
if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
hi->status = ATTO_STS_INV_VERSION;
hi->version = ATTO_VER_GET_ADAP_ADDR0;
} else if (gaa->addr_type == ATTO_GAA_AT_PORT
|| gaa->addr_type == ATTO_GAA_AT_NODE) {
if (gaa->addr_type == ATTO_GAA_AT_PORT
&& gaa->port_id >= ESAS2R_NUM_PHYS) {
hi->status = ATTO_STS_NOT_APPL;
} else {
memcpy((u64 *)gaa->address,
&a->nvram->sas_addr[0], sizeof(u64));
gaa->addr_len = sizeof(u64);
}
} else {
hi->status = ATTO_STS_INV_PARAM;
}
break;
}
case ATTO_FUNC_MEM_RW:
{
if (hi->flags & HBAF_TUNNEL) {
if (hba_ioctl_tunnel(a, hi, rq, sgc))
return true;
break;
}
hi->status = ATTO_STS_UNSUPPORTED;
break;
}
case ATTO_FUNC_TRACE:
{
struct atto_hba_trace *trc = &hi->data.trace;
if (hi->flags & HBAF_TUNNEL) {
if (hba_ioctl_tunnel(a, hi, rq, sgc))
return true;
break;
}
if (hi->version > ATTO_VER_TRACE1) {
hi->status = ATTO_STS_INV_VERSION;
hi->version = ATTO_VER_TRACE1;
break;
}
if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
&& hi->version >= ATTO_VER_TRACE1) {
if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
u32 len = hi->data_length;
u32 offset = trc->current_offset;
u32 total_len = ESAS2R_FWCOREDUMP_SZ;
/* Size is zero if a core dump isn't present */
if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
total_len = 0;
if (len > total_len)
len = total_len;
if (offset >= total_len
|| offset + len > total_len
|| len == 0) {
hi->status = ATTO_STS_INV_PARAM;
break;
}
memcpy(trc + 1,
a->fw_coredump_buff + offset,
len);
hi->data_length = len;
} else if (trc->trace_func == ATTO_TRC_TF_RESET) {
memset(a->fw_coredump_buff, 0,
ESAS2R_FWCOREDUMP_SZ);
clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
} else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
hi->status = ATTO_STS_UNSUPPORTED;
break;
}
/* Always return all the info we can. */
trc->trace_mask = 0;
trc->current_offset = 0;
trc->total_length = ESAS2R_FWCOREDUMP_SZ;
/* Return zero length buffer if core dump not present */
if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
trc->total_length = 0;
} else {
hi->status = ATTO_STS_UNSUPPORTED;
}
break;
}
case ATTO_FUNC_SCSI_PASS_THRU:
{
struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
struct scsi_lun lun;
memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
if (hi->flags & HBAF_TUNNEL) {
if (hba_ioctl_tunnel(a, hi, rq, sgc))
return true;
break;
}
if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
hi->status = ATTO_STS_INV_VERSION;
hi->version = ATTO_VER_SCSI_PASS_THRU0;
break;
}
if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
hi->status = ATTO_STS_INV_PARAM;
break;
}
esas2r_sgc_init(sgc, a, rq, NULL);
sgc->length = hi->data_length;
sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
+ sizeof(struct atto_hba_scsi_pass_thru);
/* Finish request initialization */
rq->target_id = (u16)spt->target_id;
rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
rq->sense_len = spt->sense_length;
rq->sense_buf = (u8 *)spt->sense_data;
/* NOTE: we ignore spt->timeout */
/*
* always usurp the completion callback since the interrupt
* callback mechanism may be used.
*/
rq->aux_req_cx = hi;
rq->aux_req_cb = rq->comp_cb;
rq->comp_cb = scsi_passthru_comp_cb;
if (spt->flags & ATTO_SPTF_DATA_IN) {
rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
} else if (spt->flags & ATTO_SPTF_DATA_OUT) {
rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
} else {
if (sgc->length) {
hi->status = ATTO_STS_INV_PARAM;
break;
}
}
if (spt->flags & ATTO_SPTF_ORDERED_Q)
rq->vrq->scsi.flags |=
cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
if (!esas2r_build_sg_list(a, rq, sgc)) {
hi->status = ATTO_STS_OUT_OF_RSRC;
break;
}
esas2r_start_request(a, rq);
return true;
}
case ATTO_FUNC_GET_DEV_ADDR:
{
struct atto_hba_get_device_address *gda =
&hi->data.get_dev_addr;
struct esas2r_target *t;
if (hi->flags & HBAF_TUNNEL) {
if (hba_ioctl_tunnel(a, hi, rq, sgc))
return true;
break;
}
if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
hi->status = ATTO_STS_INV_VERSION;
hi->version = ATTO_VER_GET_DEV_ADDR0;
break;
}
if (gda->target_id >= ESAS2R_MAX_TARGETS) {
hi->status = ATTO_STS_INV_PARAM;
break;
}
t = a->targetdb + (u16)gda->target_id;
if (t->target_state != TS_PRESENT) {
hi->status = ATTO_STS_FAILED;
} else if (gda->addr_type == ATTO_GDA_AT_PORT) {
if (t->sas_addr == 0) {
hi->status = ATTO_STS_UNSUPPORTED;
} else {
*(u64 *)gda->address = t->sas_addr;
gda->addr_len = sizeof(u64);
}
} else if (gda->addr_type == ATTO_GDA_AT_NODE) {
hi->status = ATTO_STS_NOT_APPL;
} else {
hi->status = ATTO_STS_INV_PARAM;
}
/* update the target ID to the next one present. */
gda->target_id =
esas2r_targ_db_find_next_present(a,
(u16)gda->target_id);
break;
}
case ATTO_FUNC_PHY_CTRL:
case ATTO_FUNC_CONN_CTRL:
{
if (hba_ioctl_tunnel(a, hi, rq, sgc))
return true;
break;
}
case ATTO_FUNC_ADAP_CTRL:
{
struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
if (hi->flags & HBAF_TUNNEL) {
hi->status = ATTO_STS_UNSUPPORTED;
break;
}
if (hi->version > ATTO_VER_ADAP_CTRL0) {
hi->status = ATTO_STS_INV_VERSION;
hi->version = ATTO_VER_ADAP_CTRL0;
break;
}
if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
esas2r_reset_adapter(a);
} else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
hi->status = ATTO_STS_UNSUPPORTED;
break;
}
if (test_bit(AF_CHPRST_NEEDED, &a->flags))
ac->adap_state = ATTO_AC_AS_RST_SCHED;
else if (test_bit(AF_CHPRST_PENDING, &a->flags))
ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
else if (test_bit(AF_DISC_PENDING, &a->flags))
ac->adap_state = ATTO_AC_AS_RST_DISC;
else if (test_bit(AF_DISABLED, &a->flags))
ac->adap_state = ATTO_AC_AS_DISABLED;
else if (test_bit(AF_DEGRADED_MODE, &a->flags))
ac->adap_state = ATTO_AC_AS_DEGRADED;
else
ac->adap_state = ATTO_AC_AS_OK;
break;
}
case ATTO_FUNC_GET_DEV_INFO:
{
struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
struct esas2r_target *t;
if (hi->flags & HBAF_TUNNEL) {
if (hba_ioctl_tunnel(a, hi, rq, sgc))
return true;
break;
}
if (hi->version > ATTO_VER_GET_DEV_INFO0) {
hi->status = ATTO_STS_INV_VERSION;
hi->version = ATTO_VER_GET_DEV_INFO0;
break;
}
if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
hi->status = ATTO_STS_INV_PARAM;
break;
}
t = a->targetdb + (u16)gdi->target_id;
/* update the target ID to the next one present. */
gdi->target_id =
esas2r_targ_db_find_next_present(a,
(u16)gdi->target_id);
if (t->target_state != TS_PRESENT) {
hi->status = ATTO_STS_FAILED;
break;
}
hi->status = ATTO_STS_UNSUPPORTED;
break;
}
default:
hi->status = ATTO_STS_INV_FUNC;
break;
}
return false;
}
static void hba_ioctl_done_callback(struct esas2r_adapter *a,
struct esas2r_request *rq, void *context)
{
struct atto_ioctl *ioctl_hba =
(struct atto_ioctl *)esas2r_buffered_ioctl;
esas2r_debug("hba_ioctl_done_callback %d", a->index);
if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
struct atto_hba_get_adapter_info *gai =
&ioctl_hba->data.get_adap_info;
esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
gai->drvr_rev_major = ESAS2R_MAJOR_REV;
gai->drvr_rev_minor = ESAS2R_MINOR_REV;
strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
gai->num_busses = 1;
gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
gai->num_lunsper_targ = 1;
}
}
u8 handle_hba_ioctl(struct esas2r_adapter *a,
struct atto_ioctl *ioctl_hba)
{
struct esas2r_buffered_ioctl bi;
memset(&bi, 0, sizeof(bi));
bi.a = a;
bi.ioctl = ioctl_hba;
bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
bi.callback = hba_ioctl_callback;
bi.context = NULL;
bi.done_callback = hba_ioctl_done_callback;
bi.done_context = NULL;
bi.offset = 0;
return handle_buffered_ioctl(&bi);
}
int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
struct esas2r_sas_nvram *data)
{
int result = 0;
a->nvram_command_done = 0;
rq->comp_cb = complete_nvr_req;
if (esas2r_nvram_write(a, rq, data)) {
/* now wait around for it to complete. */
while (!a->nvram_command_done)
wait_event_interruptible(a->nvram_waiter,
a->nvram_command_done);
;
/* done, check the status. */
if (rq->req_stat == RS_SUCCESS)
result = 1;
}
return result;
}
/* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
int esas2r_ioctl_handler(void *hostdata, int cmd, void __user *arg)
{
struct atto_express_ioctl *ioctl = NULL;
struct esas2r_adapter *a;
struct esas2r_request *rq;
u16 code;
int err;
esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
if ((arg == NULL)
|| (cmd < EXPRESS_IOCTL_MIN)
|| (cmd > EXPRESS_IOCTL_MAX))
return -ENOTSUPP;
if (!access_ok(VERIFY_WRITE, arg, sizeof(struct atto_express_ioctl))) {
esas2r_log(ESAS2R_LOG_WARN,
"ioctl_handler access_ok failed for cmd %d, "
"address %p", cmd,
arg);
return -EFAULT;
}
/* allocate a kernel memory buffer for the IOCTL data */
ioctl = kzalloc(sizeof(struct atto_express_ioctl), GFP_KERNEL);
if (ioctl == NULL) {
esas2r_log(ESAS2R_LOG_WARN,
"ioctl_handler kzalloc failed for %d bytes",
sizeof(struct atto_express_ioctl));
return -ENOMEM;
}
err = __copy_from_user(ioctl, arg, sizeof(struct atto_express_ioctl));
if (err != 0) {
esas2r_log(ESAS2R_LOG_WARN,
"copy_from_user didn't copy everything (err %d, cmd %d)",
err,
cmd);
kfree(ioctl);
return -EFAULT;
}
/* verify the signature */
if (memcmp(ioctl->header.signature,
EXPRESS_IOCTL_SIGNATURE,
EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
kfree(ioctl);
return -ENOTSUPP;
}
/* assume success */
ioctl->header.return_code = IOCTL_SUCCESS;
err = 0;
/*
* handle EXPRESS_IOCTL_GET_CHANNELS
* without paying attention to channel
*/
if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
int i = 0, k = 0;
ioctl->data.chanlist.num_channels = 0;
while (i < MAX_ADAPTERS) {
if (esas2r_adapters[i]) {
ioctl->data.chanlist.num_channels++;
ioctl->data.chanlist.channel[k] = i;
k++;
}
i++;
}
goto ioctl_done;
}
/* get the channel */
if (ioctl->header.channel == 0xFF) {
a = (struct esas2r_adapter *)hostdata;
} else {
a = esas2r_adapters[ioctl->header.channel];
if (ioctl->header.channel >= MAX_ADAPTERS || (a == NULL)) {
ioctl->header.return_code = IOCTL_BAD_CHANNEL;
esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
kfree(ioctl);
return -ENOTSUPP;
}
}
switch (cmd) {
case EXPRESS_IOCTL_RW_FIRMWARE:
if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
err = esas2r_write_fw(a,
(char *)ioctl->data.fwrw.image,
0,
sizeof(struct
atto_express_ioctl));
if (err >= 0) {
err = esas2r_read_fw(a,
(char *)ioctl->data.fwrw.
image,
0,
sizeof(struct
atto_express_ioctl));
}
} else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
err = esas2r_write_fs(a,
(char *)ioctl->data.fwrw.image,
0,
sizeof(struct
atto_express_ioctl));
if (err >= 0) {
err = esas2r_read_fs(a,
(char *)ioctl->data.fwrw.
image,
0,
sizeof(struct
atto_express_ioctl));
}
} else {
ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
}
break;
case EXPRESS_IOCTL_READ_PARAMS:
memcpy(ioctl->data.prw.data_buffer, a->nvram,
sizeof(struct esas2r_sas_nvram));
ioctl->data.prw.code = 1;
break;
case EXPRESS_IOCTL_WRITE_PARAMS:
rq = esas2r_alloc_request(a);
if (rq == NULL) {
kfree(ioctl);
esas2r_log(ESAS2R_LOG_WARN,
"could not allocate an internal request");
return -ENOMEM;
}
code = esas2r_write_params(a, rq,
(struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
ioctl->data.prw.code = code;
esas2r_free_request(a, rq);
break;
case EXPRESS_IOCTL_DEFAULT_PARAMS:
esas2r_nvram_get_defaults(a,
(struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
ioctl->data.prw.code = 1;
break;
case EXPRESS_IOCTL_CHAN_INFO:
ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
ioctl->data.chaninfo.IRQ = a->pcid->irq;
ioctl->data.chaninfo.device_id = a->pcid->device;
ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
ioctl->data.chaninfo.revision_id = a->pcid->revision;
ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
ioctl->data.chaninfo.core_rev = 0;
ioctl->data.chaninfo.host_no = a->host->host_no;
ioctl->data.chaninfo.hbaapi_rev = 0;
break;
case EXPRESS_IOCTL_SMP:
ioctl->header.return_code = handle_smp_ioctl(a,
&ioctl->data.
ioctl_smp);
break;
case EXPRESS_CSMI:
ioctl->header.return_code =
handle_csmi_ioctl(a, &ioctl->data.csmi);
break;
case EXPRESS_IOCTL_HBA:
ioctl->header.return_code = handle_hba_ioctl(a,
&ioctl->data.
ioctl_hba);
break;
case EXPRESS_IOCTL_VDA:
err = esas2r_write_vda(a,
(char *)&ioctl->data.ioctl_vda,
0,
sizeof(struct atto_ioctl_vda) +
ioctl->data.ioctl_vda.data_length);
if (err >= 0) {
err = esas2r_read_vda(a,
(char *)&ioctl->data.ioctl_vda,
0,
sizeof(struct atto_ioctl_vda) +
ioctl->data.ioctl_vda.data_length);
}
break;
case EXPRESS_IOCTL_GET_MOD_INFO:
ioctl->data.modinfo.adapter = a;
ioctl->data.modinfo.pci_dev = a->pcid;
ioctl->data.modinfo.scsi_host = a->host;
ioctl->data.modinfo.host_no = a->host->host_no;
break;
default:
esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
ioctl->header.return_code = IOCTL_ERR_INVCMD;
}
ioctl_done:
if (err < 0) {
esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %d", err,
cmd);
switch (err) {
case -ENOMEM:
case -EBUSY:
ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
break;
case -ENOSYS:
case -EINVAL:
ioctl->header.return_code = IOCTL_INVALID_PARAM;
break;
default:
ioctl->header.return_code = IOCTL_GENERAL_ERROR;
break;
}
}
/* Always copy the buffer back, if only to pick up the status */
err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
if (err != 0) {
esas2r_log(ESAS2R_LOG_WARN,
"ioctl_handler copy_to_user didn't copy "
"everything (err %d, cmd %d)", err,
cmd);
kfree(ioctl);
return -EFAULT;
}
kfree(ioctl);
return 0;
}
int esas2r_ioctl(struct scsi_device *sd, int cmd, void __user *arg)
{
return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
}
static void free_fw_buffers(struct esas2r_adapter *a)
{
if (a->firmware.data) {
dma_free_coherent(&a->pcid->dev,
(size_t)a->firmware.orig_len,
a->firmware.data,
(dma_addr_t)a->firmware.phys);
a->firmware.data = NULL;
}
}
static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
{
free_fw_buffers(a);
a->firmware.orig_len = length;
a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
(size_t)length,
(dma_addr_t *)&a->firmware.
phys,
GFP_KERNEL);
if (!a->firmware.data) {
esas2r_debug("buffer alloc failed!");
return 0;
}
return 1;
}
/* Handle a call to read firmware. */
int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
{
esas2r_trace_enter();
/* if the cached header is a status, simply copy it over and return. */
if (a->firmware.state == FW_STATUS_ST) {
int size = min_t(int, count, sizeof(a->firmware.header));
esas2r_trace_exit();
memcpy(buf, &a->firmware.header, size);
esas2r_debug("esas2r_read_fw: STATUS size %d", size);
return size;
}
/*
* if the cached header is a command, do it if at
* offset 0, otherwise copy the pieces.
*/
if (a->firmware.state == FW_COMMAND_ST) {
u32 length = a->firmware.header.length;
esas2r_trace_exit();
esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
length,
off);
if (off == 0) {
if (a->firmware.header.action == FI_ACT_UP) {
if (!allocate_fw_buffers(a, length))
return -ENOMEM;
/* copy header over */
memcpy(a->firmware.data,
&a->firmware.header,
sizeof(a->firmware.header));
do_fm_api(a,
(struct esas2r_flash_img *)a->firmware.data);
} else if (a->firmware.header.action == FI_ACT_UPSZ) {
int size =
min((int)count,
(int)sizeof(a->firmware.header));
do_fm_api(a, &a->firmware.header);
memcpy(buf, &a->firmware.header, size);
esas2r_debug("FI_ACT_UPSZ size %d", size);
return size;
} else {
esas2r_debug("invalid action %d",
a->firmware.header.action);
return -ENOSYS;
}
}
if (count + off > length)
count = length - off;
if (count < 0)
return 0;
if (!a->firmware.data) {
esas2r_debug(
"read: nonzero offset but no buffer available!");
return -ENOMEM;
}
esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
count,
length);
memcpy(buf, &a->firmware.data[off], count);
/* when done, release the buffer */
if (length <= off + count) {
esas2r_debug("esas2r_read_fw: freeing buffer!");
free_fw_buffers(a);
}
return count;
}
esas2r_trace_exit();
esas2r_debug("esas2r_read_fw: invalid firmware state %d",
a->firmware.state);
return -EINVAL;
}
/* Handle a call to write firmware. */
int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
int count)
{
u32 length;
if (off == 0) {
struct esas2r_flash_img *header =
(struct esas2r_flash_img *)buf;
/* assume version 0 flash image */
int min_size = sizeof(struct esas2r_flash_img_v0);
a->firmware.state = FW_INVALID_ST;
/* validate the version field first */
if (count < 4
|| header->fi_version > FI_VERSION_1) {
esas2r_debug(
"esas2r_write_fw: short header or invalid version");
return -EINVAL;
}
/* See if its a version 1 flash image */
if (header->fi_version == FI_VERSION_1)
min_size = sizeof(struct esas2r_flash_img);
/* If this is the start, the header must be full and valid. */
if (count < min_size) {
esas2r_debug("esas2r_write_fw: short header, aborting");
return -EINVAL;
}
/* Make sure the size is reasonable. */
length = header->length;
if (length > 1024 * 1024) {
esas2r_debug(
"esas2r_write_fw: hosed, length %d fi_version %d",
length, header->fi_version);
return -EINVAL;
}
/*
* If this is a write command, allocate memory because
* we have to cache everything. otherwise, just cache
* the header, because the read op will do the command.
*/
if (header->action == FI_ACT_DOWN) {
if (!allocate_fw_buffers(a, length))
return -ENOMEM;
/*
* Store the command, so there is context on subsequent
* calls.
*/
memcpy(&a->firmware.header,
buf,
sizeof(*header));
} else if (header->action == FI_ACT_UP
|| header->action == FI_ACT_UPSZ) {
/* Save the command, result will be picked up on read */
memcpy(&a->firmware.header,
buf,
sizeof(*header));
a->firmware.state = FW_COMMAND_ST;
esas2r_debug(
"esas2r_write_fw: COMMAND, count %d, action %d ",
count, header->action);
/*
* Pretend we took the whole buffer,
* so we don't get bothered again.
*/
return count;
} else {
esas2r_debug("esas2r_write_fw: invalid action %d ",
a->firmware.header.action);
return -ENOSYS;
}
} else {
length = a->firmware.header.length;
}
/*
* We only get here on a download command, regardless of offset.
* the chunks written by the system need to be cached, and when
* the final one arrives, issue the fmapi command.
*/
if (off + count > length)
count = length - off;
if (count > 0) {
esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
count,
length);
/*
* On a full upload, the system tries sending the whole buffer.
* there's nothing to do with it, so just drop it here, before
* trying to copy over into unallocated memory!
*/
if (a->firmware.header.action == FI_ACT_UP)
return count;
if (!a->firmware.data) {
esas2r_debug(
"write: nonzero offset but no buffer available!");
return -ENOMEM;
}
memcpy(&a->firmware.data[off], buf, count);
if (length == off + count) {
do_fm_api(a,
(struct esas2r_flash_img *)a->firmware.data);
/*
* Now copy the header result to be picked up by the
* next read
*/
memcpy(&a->firmware.header,
a->firmware.data,
sizeof(a->firmware.header));
a->firmware.state = FW_STATUS_ST;
esas2r_debug("write completed");
/*
* Since the system has the data buffered, the only way
* this can leak is if a root user writes a program
* that writes a shorter buffer than it claims, and the
* copyin fails.
*/
free_fw_buffers(a);
}
}
return count;
}
/* Callback for the completion of a VDA request. */
static void vda_complete_req(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
a->vda_command_done = 1;
wake_up_interruptible(&a->vda_waiter);
}
/* Scatter/gather callback for VDA requests */
static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
{
struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
(*addr) = a->ppvda_buffer + offset;
return VDA_MAX_BUFFER_SIZE - offset;
}
/* Handle a call to read a VDA command. */
int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
{
if (!a->vda_buffer)
return -ENOMEM;
if (off == 0) {
struct esas2r_request *rq;
struct atto_ioctl_vda *vi =
(struct atto_ioctl_vda *)a->vda_buffer;
struct esas2r_sg_context sgc;
bool wait_for_completion;
/*
* Presumeably, someone has already written to the vda_buffer,
* and now they are reading the node the response, so now we
* will actually issue the request to the chip and reply.
*/
/* allocate a request */
rq = esas2r_alloc_request(a);
if (rq == NULL) {
esas2r_debug("esas2r_read_vda: out of requestss");
return -EBUSY;
}
rq->comp_cb = vda_complete_req;
sgc.first_req = rq;
sgc.adapter = a;
sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
a->vda_command_done = 0;
wait_for_completion =
esas2r_process_vda_ioctl(a, vi, rq, &sgc);
if (wait_for_completion) {
/* now wait around for it to complete. */
while (!a->vda_command_done)
wait_event_interruptible(a->vda_waiter,
a->vda_command_done);
}
esas2r_free_request(a, (struct esas2r_request *)rq);
}
if (off > VDA_MAX_BUFFER_SIZE)
return 0;
if (count + off > VDA_MAX_BUFFER_SIZE)
count = VDA_MAX_BUFFER_SIZE - off;
if (count < 0)
return 0;
memcpy(buf, a->vda_buffer + off, count);
return count;
}
/* Handle a call to write a VDA command. */
int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
int count)
{
/*
* allocate memory for it, if not already done. once allocated,
* we will keep it around until the driver is unloaded.
*/
if (!a->vda_buffer) {
dma_addr_t dma_addr;
a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
(size_t)
VDA_MAX_BUFFER_SIZE,
&dma_addr,
GFP_KERNEL);
a->ppvda_buffer = dma_addr;
}
if (!a->vda_buffer)
return -ENOMEM;
if (off > VDA_MAX_BUFFER_SIZE)
return 0;
if (count + off > VDA_MAX_BUFFER_SIZE)
count = VDA_MAX_BUFFER_SIZE - off;
if (count < 1)
return 0;
memcpy(a->vda_buffer + off, buf, count);
return count;
}
/* Callback for the completion of an FS_API request.*/
static void fs_api_complete_req(struct esas2r_adapter *a,
struct esas2r_request *rq)
{
a->fs_api_command_done = 1;
wake_up_interruptible(&a->fs_api_waiter);
}
/* Scatter/gather callback for VDA requests */
static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
{
struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
struct esas2r_ioctl_fs *fs =
(struct esas2r_ioctl_fs *)a->fs_api_buffer;
u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
(*addr) = a->ppfs_api_buffer + offset;
return a->fs_api_buffer_size - offset;
}
/* Handle a call to read firmware via FS_API. */
int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
{
if (!a->fs_api_buffer)
return -ENOMEM;
if (off == 0) {
struct esas2r_request *rq;
struct esas2r_sg_context sgc;
struct esas2r_ioctl_fs *fs =
(struct esas2r_ioctl_fs *)a->fs_api_buffer;
/* If another flash request is already in progress, return. */
if (down_interruptible(&a->fs_api_semaphore)) {
busy:
fs->status = ATTO_STS_OUT_OF_RSRC;
return -EBUSY;
}
/*
* Presumeably, someone has already written to the
* fs_api_buffer, and now they are reading the node the
* response, so now we will actually issue the request to the
* chip and reply. Allocate a request
*/
rq = esas2r_alloc_request(a);
if (rq == NULL) {
esas2r_debug("esas2r_read_fs: out of requests");
up(&a->fs_api_semaphore);
goto busy;
}
rq->comp_cb = fs_api_complete_req;
/* Set up the SGCONTEXT for to build the s/g table */
sgc.cur_offset = fs->data;
sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
a->fs_api_command_done = 0;
if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
if (fs->status == ATTO_STS_OUT_OF_RSRC)
count = -EBUSY;
goto dont_wait;
}
/* Now wait around for it to complete. */
while (!a->fs_api_command_done)
wait_event_interruptible(a->fs_api_waiter,
a->fs_api_command_done);
;
dont_wait:
/* Free the request and keep going */
up(&a->fs_api_semaphore);
esas2r_free_request(a, (struct esas2r_request *)rq);
/* Pick up possible error code from above */
if (count < 0)
return count;
}
if (off > a->fs_api_buffer_size)
return 0;
if (count + off > a->fs_api_buffer_size)
count = a->fs_api_buffer_size - off;
if (count < 0)
return 0;
memcpy(buf, a->fs_api_buffer + off, count);
return count;
}
/* Handle a call to write firmware via FS_API. */
int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
int count)
{
if (off == 0) {
struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
u32 length = fs->command.length + offsetof(
struct esas2r_ioctl_fs,
data);
/*
* Special case, for BEGIN commands, the length field
* is lying to us, so just get enough for the header.
*/
if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
length = offsetof(struct esas2r_ioctl_fs, data);
/*
* Beginning a command. We assume we'll get at least
* enough in the first write so we can look at the
* header and see how much we need to alloc.
*/
if (count < offsetof(struct esas2r_ioctl_fs, data))
return -EINVAL;
/* Allocate a buffer or use the existing buffer. */
if (a->fs_api_buffer) {
if (a->fs_api_buffer_size < length) {
/* Free too-small buffer and get a new one */
dma_free_coherent(&a->pcid->dev,
(size_t)a->fs_api_buffer_size,
a->fs_api_buffer,
(dma_addr_t)a->ppfs_api_buffer);
goto re_allocate_buffer;
}
} else {
re_allocate_buffer:
a->fs_api_buffer_size = length;
a->fs_api_buffer = (u8 *)dma_alloc_coherent(
&a->pcid->dev,
(size_t)a->fs_api_buffer_size,
(dma_addr_t *)&a->ppfs_api_buffer,
GFP_KERNEL);
}
}
if (!a->fs_api_buffer)
return -ENOMEM;
if (off > a->fs_api_buffer_size)
return 0;
if (count + off > a->fs_api_buffer_size)
count = a->fs_api_buffer_size - off;
if (count < 1)
return 0;
memcpy(a->fs_api_buffer + off, buf, count);
return count;
}