blob: 8c545f7d75257ef72135f8dec24a91ad86fbbc9f [file] [log] [blame]
/*
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* transport.c
*
* This file contains the top-level implementation of an RPC RDMA
* transport.
*
* Naming convention: functions beginning with xprt_ are part of the
* transport switch. All others are RPC RDMA internal.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/sunrpc/addr.h>
#include "xprt_rdma.h"
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
/*
* tunables
*/
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_inline_write_padding;
static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
int xprt_rdma_pad_optimize = 1;
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
static unsigned int zero;
static unsigned int max_padding = PAGE_SIZE;
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
static unsigned int max_memreg = RPCRDMA_LAST - 1;
static struct ctl_table_header *sunrpc_table_header;
static struct ctl_table xr_tunables_table[] = {
{
.procname = "rdma_slot_table_entries",
.data = &xprt_rdma_slot_table_entries,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_slot_table_size,
.extra2 = &max_slot_table_size
},
{
.procname = "rdma_max_inline_read",
.data = &xprt_rdma_max_inline_read,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "rdma_max_inline_write",
.data = &xprt_rdma_max_inline_write,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "rdma_inline_write_padding",
.data = &xprt_rdma_inline_write_padding,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &zero,
.extra2 = &max_padding,
},
{
.procname = "rdma_memreg_strategy",
.data = &xprt_rdma_memreg_strategy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_memreg,
.extra2 = &max_memreg,
},
{
.procname = "rdma_pad_optimize",
.data = &xprt_rdma_pad_optimize,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{ },
};
static struct ctl_table sunrpc_table[] = {
{
.procname = "sunrpc",
.mode = 0555,
.child = xr_tunables_table
},
{ },
};
#endif
#define RPCRDMA_BIND_TO (60U * HZ)
#define RPCRDMA_INIT_REEST_TO (5U * HZ)
#define RPCRDMA_MAX_REEST_TO (30U * HZ)
#define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ)
static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
static void
xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in *sin = (struct sockaddr_in *)sap;
char buf[20];
snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
}
static void
xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
char buf[40];
snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
}
static void
xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
{
char buf[128];
switch (sap->sa_family) {
case AF_INET:
xprt_rdma_format_addresses4(xprt, sap);
break;
case AF_INET6:
xprt_rdma_format_addresses6(xprt, sap);
break;
default:
pr_err("rpcrdma: Unrecognized address family\n");
return;
}
(void)rpc_ntop(sap, buf, sizeof(buf));
xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
}
static void
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
{
unsigned int i;
for (i = 0; i < RPC_DISPLAY_MAX; i++)
switch (i) {
case RPC_DISPLAY_PROTO:
case RPC_DISPLAY_NETID:
continue;
default:
kfree(xprt->address_strings[i]);
}
}
static void
xprt_rdma_connect_worker(struct work_struct *work)
{
struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
rx_connect_worker.work);
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
int rc = 0;
xprt_clear_connected(xprt);
dprintk("RPC: %s: %sconnect\n", __func__,
r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
if (rc)
xprt_wake_pending_tasks(xprt, rc);
dprintk("RPC: %s: exit\n", __func__);
xprt_clear_connecting(xprt);
}
static void
xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
rx_xprt);
pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt);
rdma_disconnect(r_xprt->rx_ia.ri_id);
}
/*
* xprt_rdma_destroy
*
* Destroy the xprt.
* Free all memory associated with the object, including its own.
* NOTE: none of the *destroy methods free memory for their top-level
* objects, even though they may have allocated it (they do free
* private memory). It's up to the caller to handle it. In this
* case (RDMA transport), all structure memory is inlined with the
* struct rpcrdma_xprt.
*/
static void
xprt_rdma_destroy(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
dprintk("RPC: %s: called\n", __func__);
cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
xprt_clear_connected(xprt);
rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
rpcrdma_buffer_destroy(&r_xprt->rx_buf);
rpcrdma_ia_close(&r_xprt->rx_ia);
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
dprintk("RPC: %s: returning\n", __func__);
module_put(THIS_MODULE);
}
static const struct rpc_timeout xprt_rdma_default_timeout = {
.to_initval = 60 * HZ,
.to_maxval = 60 * HZ,
};
/**
* xprt_setup_rdma - Set up transport to use RDMA
*
* @args: rpc transport arguments
*/
static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create *args)
{
struct rpcrdma_create_data_internal cdata;
struct rpc_xprt *xprt;
struct rpcrdma_xprt *new_xprt;
struct rpcrdma_ep *new_ep;
struct sockaddr *sap;
int rc;
if (args->addrlen > sizeof(xprt->addr)) {
dprintk("RPC: %s: address too large\n", __func__);
return ERR_PTR(-EBADF);
}
xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
xprt_rdma_slot_table_entries,
xprt_rdma_slot_table_entries);
if (xprt == NULL) {
dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
__func__);
return ERR_PTR(-ENOMEM);
}
/* 60 second timeout, no retries */
xprt->timeout = &xprt_rdma_default_timeout;
xprt->bind_timeout = RPCRDMA_BIND_TO;
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
xprt->resvport = 0; /* privileged port not needed */
xprt->tsh_size = 0; /* RPC-RDMA handles framing */
xprt->ops = &xprt_rdma_procs;
/*
* Set up RDMA-specific connect data.
*/
sap = (struct sockaddr *)&cdata.addr;
memcpy(sap, args->dstaddr, args->addrlen);
/* Ensure xprt->addr holds valid server TCP (not RDMA)
* address, for any side protocols which peek at it */
xprt->prot = IPPROTO_TCP;
xprt->addrlen = args->addrlen;
memcpy(&xprt->addr, sap, xprt->addrlen);
if (rpc_get_port(sap))
xprt_set_bound(xprt);
cdata.max_requests = xprt->max_reqs;
cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
cdata.inline_wsize = xprt_rdma_max_inline_write;
if (cdata.inline_wsize > cdata.wsize)
cdata.inline_wsize = cdata.wsize;
cdata.inline_rsize = xprt_rdma_max_inline_read;
if (cdata.inline_rsize > cdata.rsize)
cdata.inline_rsize = cdata.rsize;
cdata.padding = xprt_rdma_inline_write_padding;
/*
* Create new transport instance, which includes initialized
* o ia
* o endpoint
* o buffers
*/
new_xprt = rpcx_to_rdmax(xprt);
rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy);
if (rc)
goto out1;
/*
* initialize and create ep
*/
new_xprt->rx_data = cdata;
new_ep = &new_xprt->rx_ep;
new_ep->rep_remote_addr = cdata.addr;
rc = rpcrdma_ep_create(&new_xprt->rx_ep,
&new_xprt->rx_ia, &new_xprt->rx_data);
if (rc)
goto out2;
/*
* Allocate pre-registered send and receive buffers for headers and
* any inline data. Also specify any padding which will be provided
* from a preregistered zero buffer.
*/
rc = rpcrdma_buffer_create(new_xprt);
if (rc)
goto out3;
/*
* Register a callback for connection events. This is necessary because
* connection loss notification is async. We also catch connection loss
* when reaping receives.
*/
INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
xprt_rdma_connect_worker);
xprt_rdma_format_addresses(xprt, sap);
xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
if (xprt->max_payload == 0)
goto out4;
xprt->max_payload <<= PAGE_SHIFT;
dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
__func__, xprt->max_payload);
if (!try_module_get(THIS_MODULE))
goto out4;
dprintk("RPC: %s: %s:%s\n", __func__,
xprt->address_strings[RPC_DISPLAY_ADDR],
xprt->address_strings[RPC_DISPLAY_PORT]);
return xprt;
out4:
xprt_rdma_free_addresses(xprt);
rc = -EINVAL;
out3:
rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
out2:
rpcrdma_ia_close(&new_xprt->rx_ia);
out1:
xprt_free(xprt);
return ERR_PTR(rc);
}
/*
* Close a connection, during shutdown or timeout/reconnect
*/
static void
xprt_rdma_close(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
dprintk("RPC: %s: closing\n", __func__);
if (r_xprt->rx_ep.rep_connected > 0)
xprt->reestablish_timeout = 0;
xprt_disconnect_done(xprt);
rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
}
static void
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
{
struct sockaddr_in *sap;
sap = (struct sockaddr_in *)&xprt->addr;
sap->sin_port = htons(port);
sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
sap->sin_port = htons(port);
dprintk("RPC: %s: %u\n", __func__, port);
}
static void
xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
if (r_xprt->rx_ep.rep_connected != 0) {
/* Reconnect */
schedule_delayed_work(&r_xprt->rx_connect_worker,
xprt->reestablish_timeout);
xprt->reestablish_timeout <<= 1;
if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
} else {
schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
if (!RPC_IS_ASYNC(task))
flush_delayed_work(&r_xprt->rx_connect_worker);
}
}
/*
* The RDMA allocate/free functions need the task structure as a place
* to hide the struct rpcrdma_req, which is necessary for the actual send/recv
* sequence.
*
* The RPC layer allocates both send and receive buffers in the same call
* (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer).
* We may register rq_rcv_buf when using reply chunks.
*/
static void *
xprt_rdma_allocate(struct rpc_task *task, size_t size)
{
struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_regbuf *rb;
struct rpcrdma_req *req;
size_t min_size;
gfp_t flags;
req = rpcrdma_buffer_get(&r_xprt->rx_buf);
if (req == NULL)
return NULL;
flags = GFP_NOIO | __GFP_NOWARN;
if (RPC_IS_SWAPPER(task))
flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
if (req->rl_rdmabuf == NULL)
goto out_rdmabuf;
if (req->rl_sendbuf == NULL)
goto out_sendbuf;
if (size > req->rl_sendbuf->rg_size)
goto out_sendbuf;
out:
dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
req->rl_connect_cookie = 0; /* our reserved value */
return req->rl_sendbuf->rg_base;
out_rdmabuf:
min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags);
if (IS_ERR(rb))
goto out_fail;
req->rl_rdmabuf = rb;
out_sendbuf:
/* XDR encoding and RPC/RDMA marshaling of this request has not
* yet occurred. Thus a lower bound is needed to prevent buffer
* overrun during marshaling.
*
* RPC/RDMA marshaling may choose to send payload bearing ops
* inline, if the result is smaller than the inline threshold.
* The value of the "size" argument accounts for header
* requirements but not for the payload in these cases.
*
* Likewise, allocate enough space to receive a reply up to the
* size of the inline threshold.
*
* It's unlikely that both the send header and the received
* reply will be large, but slush is provided here to allow
* flexibility when marshaling.
*/
min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp);
min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
if (size < min_size)
size = min_size;
rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags);
if (IS_ERR(rb))
goto out_fail;
rb->rg_owner = req;
r_xprt->rx_stats.hardway_register_count += size;
rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf);
req->rl_sendbuf = rb;
goto out;
out_fail:
rpcrdma_buffer_put(req);
r_xprt->rx_stats.failed_marshal_count++;
return NULL;
}
/*
* This function returns all RDMA resources to the pool.
*/
static void
xprt_rdma_free(void *buffer)
{
struct rpcrdma_req *req;
struct rpcrdma_xprt *r_xprt;
struct rpcrdma_regbuf *rb;
int i;
if (buffer == NULL)
return;
rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]);
req = rb->rg_owner;
r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply);
for (i = 0; req->rl_nchunks;) {
--req->rl_nchunks;
i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
&req->rl_segments[i]);
}
rpcrdma_buffer_put(req);
}
/*
* send_request invokes the meat of RPC RDMA. It must do the following:
* 1. Marshal the RPC request into an RPC RDMA request, which means
* putting a header in front of data, and creating IOVs for RDMA
* from those in the request.
* 2. In marshaling, detect opportunities for RDMA, and use them.
* 3. Post a recv message to set up asynch completion, then send
* the request (rpcrdma_ep_post).
* 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
*/
static int
xprt_rdma_send_request(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpc_xprt *xprt = rqst->rq_xprt;
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int rc = 0;
rc = rpcrdma_marshal_req(rqst);
if (rc < 0)
goto failed_marshal;
if (req->rl_reply == NULL) /* e.g. reconnection */
rpcrdma_recv_buffer_get(req);
/* Must suppress retransmit to maintain credits */
if (req->rl_connect_cookie == xprt->connect_cookie)
goto drop_connection;
req->rl_connect_cookie = xprt->connect_cookie;
if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
goto drop_connection;
rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
rqst->rq_bytes_sent = 0;
return 0;
failed_marshal:
r_xprt->rx_stats.failed_marshal_count++;
dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n",
__func__, rc);
if (rc == -EIO)
return -EIO;
drop_connection:
xprt_disconnect_done(xprt);
return -ENOTCONN; /* implies disconnect */
}
static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
long idle_time = 0;
if (xprt_connected(xprt))
idle_time = (long)(jiffies - xprt->last_used) / HZ;
seq_puts(seq, "\txprt:\trdma ");
seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
0, /* need a local port? */
xprt->stat.bind_count,
xprt->stat.connect_count,
xprt->stat.connect_time,
idle_time,
xprt->stat.sends,
xprt->stat.recvs,
xprt->stat.bad_xids,
xprt->stat.req_u,
xprt->stat.bklog_u);
seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n",
r_xprt->rx_stats.read_chunk_count,
r_xprt->rx_stats.write_chunk_count,
r_xprt->rx_stats.reply_chunk_count,
r_xprt->rx_stats.total_rdma_request,
r_xprt->rx_stats.total_rdma_reply,
r_xprt->rx_stats.pullup_copy_count,
r_xprt->rx_stats.fixup_copy_count,
r_xprt->rx_stats.hardway_register_count,
r_xprt->rx_stats.failed_marshal_count,
r_xprt->rx_stats.bad_reply_count,
r_xprt->rx_stats.nomsg_call_count);
}
static int
xprt_rdma_enable_swap(struct rpc_xprt *xprt)
{
return 0;
}
static void
xprt_rdma_disable_swap(struct rpc_xprt *xprt)
{
}
/*
* Plumbing for rpc transport switch and kernel module
*/
static struct rpc_xprt_ops xprt_rdma_procs = {
.reserve_xprt = xprt_reserve_xprt_cong,
.release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
.alloc_slot = xprt_alloc_slot,
.release_request = xprt_release_rqst_cong, /* ditto */
.set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
.rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
.set_port = xprt_rdma_set_port,
.connect = xprt_rdma_connect,
.buf_alloc = xprt_rdma_allocate,
.buf_free = xprt_rdma_free,
.send_request = xprt_rdma_send_request,
.close = xprt_rdma_close,
.destroy = xprt_rdma_destroy,
.print_stats = xprt_rdma_print_stats,
.enable_swap = xprt_rdma_enable_swap,
.disable_swap = xprt_rdma_disable_swap,
.inject_disconnect = xprt_rdma_inject_disconnect,
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
.bc_setup = xprt_rdma_bc_setup,
.bc_up = xprt_rdma_bc_up,
.bc_free_rqst = xprt_rdma_bc_free_rqst,
.bc_destroy = xprt_rdma_bc_destroy,
#endif
};
static struct xprt_class xprt_rdma = {
.list = LIST_HEAD_INIT(xprt_rdma.list),
.name = "rdma",
.owner = THIS_MODULE,
.ident = XPRT_TRANSPORT_RDMA,
.setup = xprt_setup_rdma,
};
void xprt_rdma_cleanup(void)
{
int rc;
dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (sunrpc_table_header) {
unregister_sysctl_table(sunrpc_table_header);
sunrpc_table_header = NULL;
}
#endif
rc = xprt_unregister_transport(&xprt_rdma);
if (rc)
dprintk("RPC: %s: xprt_unregister returned %i\n",
__func__, rc);
rpcrdma_destroy_wq();
frwr_destroy_recovery_wq();
}
int xprt_rdma_init(void)
{
int rc;
rc = frwr_alloc_recovery_wq();
if (rc)
return rc;
rc = rpcrdma_alloc_wq();
if (rc) {
frwr_destroy_recovery_wq();
return rc;
}
rc = xprt_register_transport(&xprt_rdma);
if (rc) {
rpcrdma_destroy_wq();
frwr_destroy_recovery_wq();
return rc;
}
dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
dprintk("Defaults:\n");
dprintk("\tSlots %d\n"
"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
xprt_rdma_slot_table_entries,
xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
dprintk("\tPadding %d\n\tMemreg %d\n",
xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (!sunrpc_table_header)
sunrpc_table_header = register_sysctl_table(sunrpc_table);
#endif
return 0;
}