blob: c6ae1cb1fd76775ea339f0a79a834a28b9b34c78 [file] [log] [blame]
/*
* Copyright (C) 2010 Juergen Beisert, Pengutronix <jbe@pengutronix.de>
*
* This code is based on:
*
* Copyright (C) 2007 SigmaTel, Inc., Ioannis Kappas <ikappas@sigmatel.com>
*
* Portions copyright (C) 2003 Russell King, PXA MMCI Driver
* Portions copyright (C) 2004-2005 Pierre Ossman, W83L51xD SD/MMC driver
*
* Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/**
* @file
* @brief MCI card host interface for i.MX23 CPU
*/
/* #define DEBUG */
#include <common.h>
#include <init.h>
#include <mci.h>
#include <errno.h>
#include <clock.h>
#include <asm/io.h>
#include <asm/bitops.h>
#include <mach/imx-regs.h>
#include <mach/mci.h>
#include <mach/clock.h>
#define CLOCKRATE_MIN (1 * 1000 * 1000)
#define CLOCKRATE_MAX (480 * 1000 * 1000)
#define HW_SSP_CTRL0 0x000
# define SSP_CTRL0_SFTRST (1 << 31)
# define SSP_CTRL0_CLKGATE (1 << 30)
# define SSP_CTRL0_RUN (1 << 29)
# define SSP_CTRL0_LOCK_CS (1 << 27)
# define SSP_CTRL0_READ (1 << 25)
# define SSP_CTRL0_IGNORE_CRC (1 << 26)
# define SSP_CTRL0_DATA_XFER (1 << 24)
# define SSP_CTRL0_BUS_WIDTH(x) (((x) & 0x3) << 22)
# define SSP_CTRL0_WAIT_FOR_IRQ (1 << 21)
# define SSP_CTRL0_LONG_RESP (1 << 19)
# define SSP_CTRL0_GET_RESP (1 << 17)
# define SSP_CTRL0_ENABLE (1 << 16)
#ifdef CONFIG_ARCH_IMX23
# define SSP_CTRL0_XFER_COUNT(x) ((x) & 0xffff)
#endif
#define HW_SSP_CMD0 0x010
# define SSP_CMD0_SLOW_CLK (1 << 22)
# define SSP_CMD0_CONT_CLK (1 << 21)
# define SSP_CMD0_APPEND_8CYC (1 << 20)
#ifdef CONFIG_ARCH_IMX23
# define SSP_CMD0_BLOCK_SIZE(x) (((x) & 0xf) << 16)
# define SSP_CMD0_BLOCK_COUNT(x) (((x) & 0xff) << 8)
#endif
# define SSP_CMD0_CMD(x) ((x) & 0xff)
#define HW_SSP_CMD1 0x020
#ifdef CONFIG_ARCH_IMX23
# define HW_SSP_COMPREF 0x030
# define HW_SSP_COMPMASK 0x040
# define HW_SSP_TIMING 0x050
# define HW_SSP_CTRL1 0x060
# define HW_SSP_DATA 0x070
#endif
#ifdef CONFIG_ARCH_IMX28
# define HW_SSP_XFER_COUNT 0x30
# define HW_SSP_BLOCK_SIZE 0x40
# define SSP_BLOCK_SIZE(x) ((x) & 0xf)
# define SSP_BLOCK_COUNT(x) (((x) & 0xffffff) << 4)
# define HW_SSP_COMPREF 0x050
# define HW_SSP_COMPMASK 0x060
# define HW_SSP_TIMING 0x070
# define HW_SSP_CTRL1 0x080
# define HW_SSP_DATA 0x090
#endif
/* bit definition for register HW_SSP_TIMING */
# define SSP_TIMING_TIMEOUT_MASK (0xffff0000)
# define SSP_TIMING_TIMEOUT(x) ((x) << 16)
# define SSP_TIMING_CLOCK_DIVIDE(x) (((x) & 0xff) << 8)
# define SSP_TIMING_CLOCK_RATE(x) ((x) & 0xff)
/* bit definition for register HW_SSP_CTRL1 */
# define SSP_CTRL1_POLARITY (1 << 9)
# define SSP_CTRL1_WORD_LENGTH(x) (((x) & 0xf) << 4)
# define SSP_CTRL1_SSP_MODE(x) ((x) & 0xf)
#ifdef CONFIG_ARCH_IMX23
# define HW_SSP_SDRESP0 0x080
# define HW_SSP_SDRESP1 0x090
# define HW_SSP_SDRESP2 0x0A0
# define HW_SSP_SDRESP3 0x0B0
#endif
#ifdef CONFIG_ARCH_IMX28
# define HW_SSP_SDRESP0 0x0A0
# define HW_SSP_SDRESP1 0x0B0
# define HW_SSP_SDRESP2 0x0C0
# define HW_SSP_SDRESP3 0x0D0
#endif
#ifdef CONFIG_ARCH_IMX28
# define HW_SSP_DDR_CTRL 0x0E0
# define HW_SSP_DLL_CTRL 0x0F0
#endif
#ifdef CONFIG_ARCH_IMX23
# define HW_SSP_STATUS 0x0C0
#endif
#ifdef CONFIG_ARCH_IMX28
# define HW_SSP_STATUS 0x100
#endif
/* bit definition for register HW_SSP_STATUS */
# define SSP_STATUS_PRESENT (1 << 31)
# define SSP_STATUS_SD_PRESENT (1 << 29)
# define SSP_STATUS_CARD_DETECT (1 << 28)
# define SSP_STATUS_RESP_CRC_ERR (1 << 16)
# define SSP_STATUS_RESP_ERR (1 << 15)
# define SSP_STATUS_RESP_TIMEOUT (1 << 14)
# define SSP_STATUS_DATA_CRC_ERR (1 << 13)
# define SSP_STATUS_TIMEOUT (1 << 12)
# define SSP_STATUS_FIFO_OVRFLW (1 << 9)
# define SSP_STATUS_FIFO_FULL (1 << 8)
# define SSP_STATUS_FIFO_EMPTY (1 << 5)
# define SSP_STATUS_FIFO_UNDRFLW (1 << 4)
# define SSP_STATUS_CMD_BUSY (1 << 3)
# define SSP_STATUS_DATA_BUSY (1 << 2)
# define SSP_STATUS_BUSY (1 << 0)
# define SSP_STATUS_ERROR (SSP_STATUS_FIFO_OVRFLW | SSP_STATUS_FIFO_UNDRFLW | \
SSP_STATUS_RESP_CRC_ERR | SSP_STATUS_RESP_ERR | \
SSP_STATUS_RESP_TIMEOUT | SSP_STATUS_DATA_CRC_ERR | SSP_STATUS_TIMEOUT)
#ifdef CONFIG_ARCH_IMX28
# define HW_SSP_DLL_STS 0x110
#endif
#ifdef CONFIG_ARCH_IMX23
# define HW_SSP_DEBUG 0x100
# define HW_SSP_VERSION 0x110
#endif
#ifdef CONFIG_ARCH_IMX28
# define HW_SSP_DEBUG 0x120
# define HW_SSP_VERSION 0x130
#endif
struct mxs_mci_host {
struct mci_host host;
void __iomem *regs;
unsigned clock; /* current clock speed in Hz ("0" if disabled) */
unsigned index;
#ifdef CONFIG_MCI_INFO
unsigned f_min;
unsigned f_max;
#endif
int bus_width:2; /* 0 = 1 bit, 1 = 4 bit, 2 = 8 bit */
};
#define to_mxs_mci(mxs) container_of(mxs, struct mxs_mci_host, host)
/**
* Get the SSP clock rate
* @param hw_dev Host interface device instance
* @return Unit's clock in [Hz]
*/
static unsigned mxs_mci_get_unit_clock(struct mxs_mci_host *mxs_mci)
{
return imx_get_sspclk(mxs_mci->index);
}
/**
* Get MCI cards response if defined for the type of command
* @param hw_dev Host interface device instance
* @param cmd Command description
* @return Response bytes count, -EINVAL for unsupported response types
*/
static int mxs_mci_get_cards_response(struct mxs_mci_host *mxs_mci, struct mci_cmd *cmd)
{
switch (cmd->resp_type) {
case MMC_RSP_NONE:
return 0;
case MMC_RSP_R1:
case MMC_RSP_R1b:
case MMC_RSP_R3:
cmd->response[0] = readl(mxs_mci->regs + HW_SSP_SDRESP0);
return 1;
case MMC_RSP_R2:
cmd->response[3] = readl(mxs_mci->regs + HW_SSP_SDRESP0);
cmd->response[2] = readl(mxs_mci->regs + HW_SSP_SDRESP1);
cmd->response[1] = readl(mxs_mci->regs + HW_SSP_SDRESP2);
cmd->response[0] = readl(mxs_mci->regs + HW_SSP_SDRESP3);
return 4;
}
return -EINVAL;
}
/**
* Finish a request to the MCI card
* @param hw_dev Host interface device instance
*
* Can also stop the clock to save power
*/
static void mxs_mci_finish_request(struct mxs_mci_host *mxs_mci)
{
/* stop the engines (normaly already done) */
writel(SSP_CTRL0_RUN, mxs_mci->regs + HW_SSP_CTRL0 + 8);
}
/**
* Check if the last command failed and if, why it failed
* @param status HW_SSP_STATUS's content
* @return 0 if no error, negative values else
*/
static int mxs_mci_get_cmd_error(unsigned status)
{
if (status & SSP_STATUS_ERROR)
pr_debug("Status Reg reports %08X\n", status);
if (status & SSP_STATUS_TIMEOUT) {
pr_debug("CMD timeout\n");
return -ETIMEDOUT;
} else if (status & SSP_STATUS_RESP_TIMEOUT) {
pr_debug("RESP timeout\n");
return -ETIMEDOUT;
} else if (status & SSP_STATUS_RESP_CRC_ERR) {
pr_debug("CMD crc error\n");
return -EILSEQ;
} else if (status & SSP_STATUS_RESP_ERR) {
pr_debug("RESP error\n");
return -EIO;
}
return 0;
}
/**
* Define the timout for the next command
* @param hw_dev Host interface device instance
* @param to Timeout value in MCI card's bus clocks
*/
static void mxs_mci_setup_timeout(struct mxs_mci_host *mxs_mci, unsigned to)
{
uint32_t reg;
reg = readl(mxs_mci->regs + HW_SSP_TIMING) & ~SSP_TIMING_TIMEOUT_MASK;
reg |= SSP_TIMING_TIMEOUT(to);
writel(reg, mxs_mci->regs + HW_SSP_TIMING);
}
/**
* Read data from the MCI card
* @param hw_dev Host interface device instance
* @param buffer To write data into
* @param length Count of bytes to read (must be multiples of 4)
* @return 0 on success, negative values else
*
* @note This routine uses PIO to read in the data bytes from the FIFO. This
* may fail whith high clock speeds. If you receive -EIO errors you can try
* again with reduced clock speeds.
*/
static int mxs_mci_read_data(struct mxs_mci_host *mxs_mci, void *buffer, unsigned length)
{
uint32_t *p = buffer;
if (length & 0x3) {
pr_debug("Cannot read data sizes not multiple of 4 (request for %u detected)\n",
length);
return -EINVAL;
}
while ((length != 0) &&
((readl(mxs_mci->regs + HW_SSP_STATUS) & SSP_STATUS_ERROR) == 0)) {
/* TODO sort out FIFO overflows and emit -EOI for this case */
if ((readl(mxs_mci->regs + HW_SSP_STATUS) & SSP_STATUS_FIFO_EMPTY) == 0) {
*p = readl(mxs_mci->regs + HW_SSP_DATA);
p++;
length -= 4;
}
}
if (length == 0)
return 0;
return -EINVAL;
}
/**
* Write data into the MCI card
* @param hw_dev Host interface device instance
* @param buffer To read the data from
* @param length Count of bytes to write (must be multiples of 4)
* @return 0 on success, negative values else
*
* @note This routine uses PIO to write the data bytes into the FIFO. This
* may fail with high clock speeds. If you receive -EIO errors you can try
* again with reduced clock speeds.
*/
static int mxs_mci_write_data(struct mxs_mci_host *mxs_mci, const void *buffer, unsigned length)
{
const uint32_t *p = buffer;
if (length & 0x3) {
pr_debug("Cannot write data sizes not multiple of 4 (request for %u detected)\n",
length);
return -EINVAL;
}
while ((length != 0) &&
((readl(mxs_mci->regs + HW_SSP_STATUS) & SSP_STATUS_ERROR) == 0)) {
/* TODO sort out FIFO overflows and emit -EOI for this case */
if ((readl(mxs_mci->regs + HW_SSP_STATUS) & SSP_STATUS_FIFO_FULL) == 0) {
writel(*p, mxs_mci->regs + HW_SSP_DATA);
p++;
length -= 4;
}
}
if (length == 0)
return 0;
return -EINVAL;
}
/**
* Start the transaction with or without data
* @param hw_dev Host interface device instance
* @param data Data transfer description (might be NULL)
* @return 0 on success
*/
static int mxs_mci_transfer_data(struct mxs_mci_host *mxs_mci, struct mci_data *data)
{
/*
* Everything is ready for the transaction now:
* - transfer configuration
* - command and its parameters
*
* Start the transaction right now
*/
writel(SSP_CTRL0_RUN, mxs_mci->regs + HW_SSP_CTRL0 + 4);
if (data != NULL) {
unsigned length = data->blocks * data->blocksize;
if (data->flags & MMC_DATA_READ)
return mxs_mci_read_data(mxs_mci, data->dest, length);
else
return mxs_mci_write_data(mxs_mci, data->src, length);
}
return 0;
}
/**
* Configure the MCI hardware for the next transaction
* @param cmd_flags Command information
* @param data_flags Data information (may be 0)
* @return Corresponding setting for the SSP_CTRL0 register
*/
static uint32_t mxs_mci_prepare_transfer_setup(unsigned cmd_flags, unsigned data_flags)
{
uint32_t reg = 0;
if (cmd_flags & MMC_RSP_PRESENT)
reg |= SSP_CTRL0_GET_RESP;
if ((cmd_flags & MMC_RSP_CRC) == 0)
reg |= SSP_CTRL0_IGNORE_CRC;
if (cmd_flags & MMC_RSP_136)
reg |= SSP_CTRL0_LONG_RESP;
if (cmd_flags & MMC_RSP_BUSY)
reg |= SSP_CTRL0_WAIT_FOR_IRQ; /* FIXME correct? */
#if 0
if (cmd_flags & MMC_RSP_OPCODE)
/* TODO */
#endif
if (data_flags & MMC_DATA_READ)
reg |= SSP_CTRL0_READ;
return reg;
}
/**
* Handle MCI commands without data
* @param hw_dev Host interface device instance
* @param cmd The command to handle
* @return 0 on success
*
* This functions handles the following MCI commands:
* - "broadcast command (BC)" without a response
* - "broadcast commands with response (BCR)"
* - "addressed command (AC)" with response, but without data
*/
static int mxs_mci_std_cmds(struct mxs_mci_host *mxs_mci, struct mci_cmd *cmd)
{
/* setup command and transfer parameters */
writel(mxs_mci_prepare_transfer_setup(cmd->resp_type, 0) |
SSP_CTRL0_ENABLE, mxs_mci->regs + HW_SSP_CTRL0);
/* prepare the command, when no response is expected add a few trailing clocks */
writel(SSP_CMD0_CMD(cmd->cmdidx) |
(cmd->resp_type & MMC_RSP_PRESENT ? 0 : SSP_CMD0_APPEND_8CYC),
mxs_mci->regs + HW_SSP_CMD0);
/* prepare command's arguments */
writel(cmd->cmdarg, mxs_mci->regs + HW_SSP_CMD1);
mxs_mci_setup_timeout(mxs_mci, 0xffff);
/* start the transfer */
writel(SSP_CTRL0_RUN, mxs_mci->regs + HW_SSP_CTRL0 + 4);
/* wait until finished */
while (readl(mxs_mci->regs + HW_SSP_CTRL0) & SSP_CTRL0_RUN)
;
if (cmd->resp_type & MMC_RSP_PRESENT)
mxs_mci_get_cards_response(mxs_mci, cmd);
return mxs_mci_get_cmd_error(readl(mxs_mci->regs + HW_SSP_STATUS));
}
/**
* Handle an "addressed data transfer command " with or without data
* @param hw_dev Host interface device instance
* @param cmd The command to handle
* @param data The data information (buffer, direction aso.) May be NULL
* @return 0 on success
*/
static int mxs_mci_adtc(struct mxs_mci_host *mxs_mci, struct mci_cmd *cmd,
struct mci_data *data)
{
uint32_t xfer_cnt, log2blocksize, block_cnt;
int err;
/* Note: 'data' can be NULL! */
if (data != NULL) {
xfer_cnt = data->blocks * data->blocksize;
block_cnt = data->blocks - 1; /* can be 0 */
log2blocksize = find_first_bit((const unsigned long*)&data->blocksize,
32);
} else
xfer_cnt = log2blocksize = block_cnt = 0;
/* setup command and transfer parameters */
#ifdef CONFIG_ARCH_IMX23
writel(mxs_mci_prepare_transfer_setup(cmd->resp_type, data != NULL ? data->flags : 0) |
SSP_CTRL0_BUS_WIDTH(mxs_mci->bus_width) |
(xfer_cnt != 0 ? SSP_CTRL0_DATA_XFER : 0) | /* command plus data */
SSP_CTRL0_ENABLE |
SSP_CTRL0_XFER_COUNT(xfer_cnt), /* byte count to be transfered */
mxs_mci->regs + HW_SSP_CTRL0);
/* prepare the command and the transfered data count */
writel(SSP_CMD0_CMD(cmd->cmdidx) |
SSP_CMD0_BLOCK_SIZE(log2blocksize) |
SSP_CMD0_BLOCK_COUNT(block_cnt) |
(cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION ? SSP_CMD0_APPEND_8CYC : 0),
mxs_mci->regs + HW_SSP_CMD0);
#endif
#ifdef CONFIG_ARCH_IMX28
writel(mxs_mci_prepare_transfer_setup(cmd->resp_type, data != NULL ? data->flags : 0) |
SSP_CTRL0_BUS_WIDTH(mxs_mci->bus_width) |
(xfer_cnt != 0 ? SSP_CTRL0_DATA_XFER : 0) | /* command plus data */
SSP_CTRL0_ENABLE,
mxs_mci->regs + HW_SSP_CTRL0);
writel(xfer_cnt, mxs_mci->regs + HW_SSP_XFER_COUNT);
/* prepare the command and the transfered data count */
writel(SSP_CMD0_CMD(cmd->cmdidx) |
(cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION ? SSP_CMD0_APPEND_8CYC : 0),
mxs_mci->regs + HW_SSP_CMD0);
writel(SSP_BLOCK_SIZE(log2blocksize) |
SSP_BLOCK_COUNT(block_cnt),
mxs_mci->regs + HW_SSP_BLOCK_SIZE);
#endif
/* prepare command's arguments */
writel(cmd->cmdarg, mxs_mci->regs + HW_SSP_CMD1);
mxs_mci_setup_timeout(mxs_mci, 0xffff);
err = mxs_mci_transfer_data(mxs_mci, data);
if (err != 0) {
pr_debug(" Transfering data failed\n");
return err;
}
/* wait until finished */
while (readl(mxs_mci->regs + HW_SSP_CTRL0) & SSP_CTRL0_RUN)
;
mxs_mci_get_cards_response(mxs_mci, cmd);
return 0;
}
/**
* @param hw_dev Host interface device instance
* @param nc New Clock in [Hz] (may be 0 to disable the clock)
* @return The real clock frequency
*
* The SSP unit clock can base on the external 24 MHz or the internal 480 MHz
* Its unit clock value is derived from the io clock, from the SSP divider
* and at least the SSP bus clock itself is derived from the SSP unit's divider
*
* @code
* |------------------- generic -------------|-peripheral specific-|-----all SSPs-----|-per SSP unit-|
* 24 MHz ----------------------------
* \ \
* \ |----| FRAC |----IO CLK----| SSP unit DIV |---| SSP DIV |--- SSP output clock
* \- | PLL |--- 480 MHz ---/
* @endcode
*
* @note Up to "SSP unit DIV" the outer world must care. This routine only
* handles the "SSP DIV".
*/
static unsigned mxs_mci_setup_clock_speed(struct mxs_mci_host *mxs_mci, unsigned nc)
{
unsigned ssp, div, rate, reg;
if (nc == 0U) {
/* TODO stop the clock */
return 0;
}
ssp = mxs_mci_get_unit_clock(mxs_mci);
for (div = 2; div < 255; div += 2) {
rate = DIV_ROUND_CLOSEST(DIV_ROUND_CLOSEST(ssp, nc), div);
if (rate <= 0x100)
break;
}
if (div >= 255) {
pr_warning("Cannot set clock to %d Hz\n", nc);
return 0;
}
reg = readl(mxs_mci->regs + HW_SSP_TIMING) & SSP_TIMING_TIMEOUT_MASK;
reg |= SSP_TIMING_CLOCK_DIVIDE(div) | SSP_TIMING_CLOCK_RATE(rate - 1);
writel(reg, mxs_mci->regs + HW_SSP_TIMING);
return ssp / div / rate;
}
/**
* Reset the MCI engine (the hard way)
* @param hw_dev Host interface instance
*
* This will reset everything in all registers of this unit! (FIXME)
*/
static void mxs_mci_reset(struct mxs_mci_host *mxs_mci)
{
writel(SSP_CTRL0_SFTRST, mxs_mci->regs + HW_SSP_CTRL0 + 8);
while (readl(mxs_mci->regs + HW_SSP_CTRL0) & SSP_CTRL0_SFTRST)
;
}
/* ------------------------- MCI API -------------------------------------- */
/**
* Keep the attached MMC/SD unit in a well know state
* @param mci_pdata MCI platform data
* @param mci_dev MCI device instance
* @return 0 on success, negative value else
*/
static int mxs_mci_initialize(struct mci_host *host, struct device_d *mci_dev)
{
struct mxs_mci_host *mxs_mci = to_mxs_mci(host);
/* enable the clock to this unit to be able to reset it */
writel(SSP_CTRL0_CLKGATE, mxs_mci->regs + HW_SSP_CTRL0 + 8);
/* reset the unit */
mxs_mci_reset(mxs_mci);
/* restore the last settings */
mxs_mci_setup_timeout(mxs_mci, 0xffff);
writel(SSP_CTRL0_IGNORE_CRC |
SSP_CTRL0_BUS_WIDTH(mxs_mci->bus_width),
mxs_mci->regs + HW_SSP_CTRL0);
writel(SSP_CTRL1_POLARITY |
SSP_CTRL1_SSP_MODE(3) |
SSP_CTRL1_WORD_LENGTH(7), mxs_mci->regs + HW_SSP_CTRL1);
return 0;
}
/**
* Process one command to the MCI card
* @param mci_pdata MCI platform data
* @param cmd The command to process
* @param data The data to handle in the command (can be NULL)
* @return 0 on success, negative value else
*/
static int mxs_mci_request(struct mci_host *host, struct mci_cmd *cmd,
struct mci_data *data)
{
struct mxs_mci_host *mxs_mci = to_mxs_mci(host);
int rc;
if ((cmd->resp_type == 0) || (data == NULL))
rc = mxs_mci_std_cmds(mxs_mci, cmd);
else
rc = mxs_mci_adtc(mxs_mci, cmd, data); /* with response and data */
mxs_mci_finish_request(mxs_mci); /* TODO */
return rc;
}
/**
* Setup the bus width and IO speed
* @param mci_pdata MCI platform data
* @param mci_dev MCI device instance
* @param bus_width New bus width value (1, 4 or 8)
* @param clock New clock in Hz (can be '0' to disable the clock)
*
* Drivers currently realized values are stored in MCI's platformdata
*/
static void mxs_mci_set_ios(struct mci_host *host, struct device_d *mci_dev,
unsigned bus_width, unsigned clock)
{
struct mxs_mci_host *mxs_mci = to_mxs_mci(host);
switch (bus_width) {
case 8:
mxs_mci->bus_width = 2;
host->bus_width = 8; /* 8 bit is possible */
break;
case 4:
mxs_mci->bus_width = 1;
host->bus_width = 4; /* 4 bit is possible */
break;
default:
mxs_mci->bus_width = 0;
host->bus_width = 1; /* 1 bit is possible */
break;
}
mxs_mci->clock = mxs_mci_setup_clock_speed(mxs_mci, clock);
pr_debug("IO settings: bus width=%d, frequency=%u Hz\n", host->bus_width,
mxs_mci->clock);
}
/* ----------------------------------------------------------------------- */
#ifdef CONFIG_MCI_INFO
const unsigned char bus_width[3] = { 1, 4, 8 };
static void mxs_mci_info(struct device_d *hw_dev)
{
struct mxs_mci_host *mxs_mci = GET_HOST_DATA(hw_dev);
printf(" Interface\n");
printf(" Min. bus clock: %u Hz\n", mxs_mci->f_min);
printf(" Max. bus clock: %u Hz\n", mxs_mci->f_max);
printf(" Current bus clock: %u Hz\n", mxs_mci->clock);
printf(" Bus width: %u bit\n", bus_width[mxs_mci->bus_width]);
printf("\n");
}
#endif
static int mxs_mci_probe(struct device_d *hw_dev)
{
struct mxs_mci_platform_data *pd = hw_dev->platform_data;
struct mxs_mci_host *mxs_mci;
struct mci_host *host;
if (hw_dev->platform_data == NULL) {
pr_err("Missing platform data\n");
return -EINVAL;
}
mxs_mci = xzalloc(sizeof(*mxs_mci));
host = &mxs_mci->host;
hw_dev->priv = mxs_mci;
host->hw_dev = hw_dev;
host->send_cmd = mxs_mci_request,
host->set_ios = mxs_mci_set_ios,
host->init = mxs_mci_initialize,
mxs_mci->regs = (void *)hw_dev->map_base;
/* feed forward the platform specific values */
host->voltages = pd->voltages;
host->host_caps = pd->caps;
#ifdef CONFIG_ARCH_IMX23
mxs_mci->index = 0; /* there is only one clock for all */
#endif
#ifdef CONFIG_ARCH_IMX28
/* one dedicated clock per unit */
switch (hw_dev->map_base) {
case IMX_SSP0_BASE:
mxs_mci->index = 0;
break;
case IMX_SSP1_BASE:
mxs_mci->index = 1;
break;
case IMX_SSP2_BASE:
mxs_mci->index = 2;
break;
case IMX_SSP3_BASE:
mxs_mci->index = 3;
break;
default:
pr_debug("Unknown SSP unit at address 0x%08x\n", mxs_mci->regs);
return 0;
}
#endif
if (pd->f_min == 0) {
host->f_min = mxs_mci_get_unit_clock(mxs_mci) / 254 / 256;
pr_debug("Min. frequency is %u Hz\n", host->f_min);
} else {
host->f_min = pd->f_min;
pr_debug("Min. frequency is %u Hz, could be %u Hz\n",
host->f_min, mxs_mci_get_unit_clock(mxs_mci) / 254 / 256);
}
if (pd->f_max == 0) {
host->f_max = mxs_mci_get_unit_clock(mxs_mci) / 2 / 1;
pr_debug("Max. frequency is %u Hz\n", host->f_max);
} else {
host->f_max = pd->f_max;
pr_debug("Max. frequency is %u Hz, could be %u Hz\n",
host->f_max, mxs_mci_get_unit_clock(mxs_mci) / 2 / 1);
}
#ifdef CONFIG_MCI_INFO
mxs_mci->f_min = host->f_min;
mxs_mci->f_max = host->f_max;
#endif
return mci_register(host);
}
static struct driver_d mxs_mci_driver = {
.name = "mxs_mci",
.probe = mxs_mci_probe,
#ifdef CONFIG_MCI_INFO
.info = mxs_mci_info,
#endif
};
static int mxs_mci_init_driver(void)
{
register_driver(&mxs_mci_driver);
return 0;
}
device_initcall(mxs_mci_init_driver);