blob: 29371567be55717602c767d165981c4d00eef178 [file] [log] [blame]
/*
* Copyright 2007,2010 Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <driver.h>
#include <init.h>
#include <malloc.h>
#include <mci.h>
#include <clock.h>
#include <asm/io.h>
#include <asm/mmu.h>
#include <mach/clock.h>
#include "imx-esdhc.h"
struct fsl_esdhc {
u32 dsaddr;
u32 blkattr;
u32 cmdarg;
u32 xfertyp;
u32 cmdrsp0;
u32 cmdrsp1;
u32 cmdrsp2;
u32 cmdrsp3;
u32 datport;
u32 prsstat;
u32 proctl;
u32 sysctl;
u32 irqstat;
u32 irqstaten;
u32 irqsigen;
u32 autoc12err;
u32 hostcapblt;
u32 wml;
char reserved1[8];
u32 fevt;
char reserved2[168];
u32 hostver;
char reserved3[780];
u32 scr;
};
struct fsl_esdhc_host {
struct mci_host mci;
struct fsl_esdhc *regs;
u32 no_snoop;
unsigned long cur_clock;
struct device_d *dev;
};
#define to_fsl_esdhc(mci) container_of(mci, struct fsl_esdhc_host, mci)
/* Return the XFERTYP flags for a given command and data packet */
u32 esdhc_xfertyp(struct mci_cmd *cmd, struct mci_data *data)
{
u32 xfertyp = 0;
if (data) {
xfertyp |= XFERTYP_DPSEL;
#ifndef CONFIG_MCI_IMX_ESDHC_PIO
xfertyp |= XFERTYP_DMAEN;
#endif
if (data->blocks > 1) {
xfertyp |= XFERTYP_MSBSEL;
xfertyp |= XFERTYP_BCEN;
}
if (data->flags & MMC_DATA_READ)
xfertyp |= XFERTYP_DTDSEL;
}
if (cmd->resp_type & MMC_RSP_CRC)
xfertyp |= XFERTYP_CCCEN;
if (cmd->resp_type & MMC_RSP_OPCODE)
xfertyp |= XFERTYP_CICEN;
if (cmd->resp_type & MMC_RSP_136)
xfertyp |= XFERTYP_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
xfertyp |= XFERTYP_RSPTYP_48_BUSY;
else if (cmd->resp_type & MMC_RSP_PRESENT)
xfertyp |= XFERTYP_RSPTYP_48;
return XFERTYP_CMD(cmd->cmdidx) | xfertyp;
}
#ifdef CONFIG_MCI_IMX_ESDHC_PIO
/*
* PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
*/
static void
esdhc_pio_read_write(struct mci_host *mci, struct mci_data *data)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
struct fsl_esdhc *regs = host->regs;
u32 blocks;
char *buffer;
u32 databuf;
u32 size;
u32 irqstat;
u32 timeout;
if (data->flags & MMC_DATA_READ) {
blocks = data->blocks;
buffer = data->dest;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BREN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Read Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
irqstat = esdhc_read32(&regs->irqstat);
databuf = esdhc_read32(&regs->datport);
*((u32 *)buffer) = databuf;
buffer += 4;
size -= 4;
}
blocks--;
}
} else {
blocks = data->blocks;
buffer = (char *)data->src;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BWEN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Write Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
databuf = *((u32 *)buffer);
buffer += 4;
size -= 4;
irqstat = esdhc_read32(&regs->irqstat);
esdhc_write32(&regs->datport, databuf);
}
blocks--;
}
}
}
#endif
static int esdhc_setup_data(struct mci_host *mci, struct mci_data *data)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
struct fsl_esdhc *regs = host->regs;
#ifndef CONFIG_MCI_IMX_ESDHC_PIO
u32 wml_value;
wml_value = data->blocksize/4;
if (data->flags & MMC_DATA_READ) {
if (wml_value > 0x10)
wml_value = 0x10;
esdhc_clrsetbits32(&regs->wml, WML_RD_WML_MASK, wml_value);
esdhc_write32(&regs->dsaddr, (u32)data->dest);
} else {
if (wml_value > 0x80)
wml_value = 0x80;
if ((esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. Can not write to a locked card.\n\n");
return -ETIMEDOUT;
}
esdhc_clrsetbits32(&regs->wml, WML_WR_WML_MASK,
wml_value << 16);
esdhc_write32(&regs->dsaddr, (u32)data->src);
}
#else /* CONFIG_MCI_IMX_ESDHC_PIO */
if (!(data->flags & MMC_DATA_READ)) {
if ((esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. "
"Can not write to a locked card.\n\n");
return -ETIMEDOUT;
}
esdhc_write32(&regs->dsaddr, (u32)data->src);
} else
esdhc_write32(&regs->dsaddr, (u32)data->dest);
#endif /* CONFIG_MCI_IMX_ESDHC_PIO */
esdhc_write32(&regs->blkattr, data->blocks << 16 | data->blocksize);
return 0;
}
/*
* Sends a command out on the bus. Takes the mci pointer,
* a command pointer, and an optional data pointer.
*/
static int
esdhc_send_cmd(struct mci_host *mci, struct mci_cmd *cmd, struct mci_data *data)
{
u32 xfertyp;
u32 irqstat;
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
struct fsl_esdhc *regs = host->regs;
esdhc_write32(&regs->irqstat, -1);
/* Wait for the bus to be idle */
while ((esdhc_read32(&regs->prsstat) & PRSSTAT_CICHB) ||
(esdhc_read32(&regs->prsstat) & PRSSTAT_CIDHB))
;
while (esdhc_read32(&regs->prsstat) & PRSSTAT_DLA)
;
/* Wait at least 8 SD clock cycles before the next command */
/*
* Note: This is way more than 8 cycles, but 1ms seems to
* resolve timing issues with some cards
*/
udelay(1000);
/* Set up for a data transfer if we have one */
if (data) {
int err;
err = esdhc_setup_data(mci, data);
if(err)
return err;
if (data->flags & MMC_DATA_WRITE) {
dma_flush_range((unsigned long)data->src,
(unsigned long)(data->src + 512));
} else
dma_clean_range((unsigned long)data->src,
(unsigned long)(data->src + 512));
}
/* Figure out the transfer arguments */
xfertyp = esdhc_xfertyp(cmd, data);
/* Send the command */
esdhc_write32(&regs->cmdarg, cmd->cmdarg);
esdhc_write32(&regs->xfertyp, xfertyp);
/* Wait for the command to complete */
while (!(esdhc_read32(&regs->irqstat) & IRQSTAT_CC))
;
irqstat = esdhc_read32(&regs->irqstat);
esdhc_write32(&regs->irqstat, irqstat);
if (irqstat & CMD_ERR)
return -EIO;
if (irqstat & IRQSTAT_CTOE)
return -ETIMEDOUT;
/* Copy the response to the response buffer */
if (cmd->resp_type & MMC_RSP_136) {
u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
cmdrsp3 = esdhc_read32(&regs->cmdrsp3);
cmdrsp2 = esdhc_read32(&regs->cmdrsp2);
cmdrsp1 = esdhc_read32(&regs->cmdrsp1);
cmdrsp0 = esdhc_read32(&regs->cmdrsp0);
cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
cmd->response[3] = (cmdrsp0 << 8);
} else
cmd->response[0] = esdhc_read32(&regs->cmdrsp0);
/* Wait until all of the blocks are transferred */
if (data) {
#ifdef CONFIG_MCI_IMX_ESDHC_PIO
esdhc_pio_read_write(mci, data);
#else
do {
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & DATA_ERR)
return -EIO;
if (irqstat & IRQSTAT_DTOE)
return -ETIMEDOUT;
} while (!(irqstat & IRQSTAT_TC) &&
(esdhc_read32(&regs->prsstat) & PRSSTAT_DLA));
if (data->flags & MMC_DATA_READ) {
dma_inv_range((unsigned long)data->dest,
(unsigned long)(data->dest + 512));
}
#endif
}
esdhc_write32(&regs->irqstat, -1);
return 0;
}
void set_sysctl(struct mci_host *mci, u32 clock)
{
int div, pre_div;
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
struct fsl_esdhc *regs = host->regs;
int sdhc_clk = imx_get_mmcclk();
u32 clk;
if (clock < mci->f_min)
clock = mci->f_min;
pre_div = 0;
for (pre_div = 1; pre_div < 256; pre_div <<= 1) {
if (sdhc_clk / pre_div < clock * 16)
break;
};
div = sdhc_clk / pre_div / clock;
if (sdhc_clk / pre_div / div > clock)
div++;
host->cur_clock = sdhc_clk / pre_div / div;
div -= 1;
pre_div >>= 1;
dev_dbg(host->dev, "set clock: wanted: %d got: %ld\n", clock, host->cur_clock);
dev_dbg(host->dev, "pre_div: %d div: %d\n", pre_div, div);
clk = (pre_div << 8) | (div << 4);
esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_CLOCK_MASK, clk);
udelay(10000);
clk = SYSCTL_PEREN | SYSCTL_CKEN;
esdhc_setbits32(&regs->sysctl, clk);
}
static void esdhc_set_ios(struct mci_host *mci, struct device_d *dev,
unsigned bus_width, unsigned clock)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
struct fsl_esdhc *regs = host->regs;
/* Set the clock speed */
set_sysctl(mci, clock);
/* Set the bus width */
esdhc_clrbits32(&regs->proctl, PROCTL_DTW_4 | PROCTL_DTW_8);
if (bus_width == 4)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_4);
else if (bus_width == 8)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_8);
}
static int esdhc_init(struct mci_host *mci, struct device_d *dev)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
struct fsl_esdhc *regs = host->regs;
int timeout = 1000;
int ret = 0;
/* Enable cache snooping */
if (host && !host->no_snoop)
esdhc_write32(&regs->scr, 0x00000040);
/* Reset the entire host controller */
esdhc_write32(&regs->sysctl, SYSCTL_RSTA);
/* Wait until the controller is available */
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA) && --timeout)
udelay(1000);
esdhc_write32(&regs->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN);
/* Set the initial clock speed */
set_sysctl(mci, 400000);
/* Disable the BRR and BWR bits in IRQSTAT */
esdhc_clrbits32(&regs->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR);
/* Put the PROCTL reg back to the default */
esdhc_write32(&regs->proctl, PROCTL_INIT);
/* Set timout to the maximum value */
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16);
return ret;
}
static int esdhc_reset(struct fsl_esdhc *regs)
{
uint64_t start;
/* reset the controller */
esdhc_write32(&regs->sysctl, SYSCTL_RSTA);
start = get_time_ns();
/* hardware clears the bit when it is done */
while (1) {
if (!(esdhc_read32(&regs->sysctl) & SYSCTL_RSTA))
break;
if (is_timeout(start, 100 * MSECOND)) {
printf("MMC/SD: Reset never completed.\n");
return -EIO;
}
}
return 0;
}
static int fsl_esdhc_probe(struct device_d *dev)
{
struct fsl_esdhc_host *host;
struct mci_host *mci;
u32 caps;
int ret;
host = xzalloc(sizeof(*host));
mci = &host->mci;
host->dev = dev;
host->regs = (struct fsl_esdhc *)dev->map_base;
/* First reset the eSDHC controller */
ret = esdhc_reset(host->regs);
if (ret) {
free(host);
return ret;
}
caps = esdhc_read32(&host->regs->hostcapblt);
if (caps & ESDHC_HOSTCAPBLT_VS18)
mci->voltages |= MMC_VDD_165_195;
if (caps & ESDHC_HOSTCAPBLT_VS30)
mci->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & ESDHC_HOSTCAPBLT_VS33)
mci->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34;
mci->host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT;
if (caps & ESDHC_HOSTCAPBLT_HSS)
mci->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
host->mci.send_cmd = esdhc_send_cmd;
host->mci.set_ios = esdhc_set_ios;
host->mci.init = esdhc_init;
host->mci.host_caps = MMC_MODE_4BIT;
host->mci.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
host->mci.f_min = imx_get_mmcclk() >> 12;
if (host->mci.f_min < 200000)
host->mci.f_min = 200000;
host->mci.f_max = imx_get_mmcclk();
mci_register(&host->mci);
return 0;
}
static struct driver_d fsl_esdhc_driver = {
.name = "imx-esdhc",
.probe = fsl_esdhc_probe,
};
static int fsl_esdhc_init_driver(void)
{
register_driver(&fsl_esdhc_driver);
return 0;
}
device_initcall(fsl_esdhc_init_driver);