blob: c1aa594fe19d9712f818ee02156b034e8d51f5ba [file] [log] [blame]
/*
* (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
* (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <init.h>
#include <miidev.h>
#include <driver.h>
#include <miidev.h>
#include <fec.h>
#include <asm/mmu.h>
#include <asm/io.h>
#include <mach/generic.h>
#include <mach/imx-regs.h>
#include <clock.h>
#include <mach/clock.h>
#ifndef CONFIG_ARCH_MXS
# include <mach/iim.h>
#endif
#include <xfuncs.h>
#include "fec_imx.h"
struct fec_frame {
uint8_t data[1500]; /* actual data */
int length; /* actual length */
int used; /* buffer in use or not */
uint8_t head[16]; /* MAC header(6 + 6 + 2) + 2(aligned) */
};
/*
* MII-interface related functions
*/
static int fec_miidev_read(struct mii_device *mdev, int phyAddr, int regAddr)
{
struct eth_device *edev = mdev->edev;
struct fec_priv *fec = (struct fec_priv *)edev->priv;
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint64_t start;
writel(((imx_get_fecclk() >> 20) / 5) << 1,
fec->regs + FEC_MII_SPEED);
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
writel(FEC_IEVENT_MII, fec->regs + FEC_IEVENT);
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg, fec->regs + FEC_MII_DATA);
/*
* wait for the related interrupt
*/
start = get_time_ns();
while (!(readl(fec->regs + FEC_IEVENT) & FEC_IEVENT_MII)) {
if (is_timeout(start, MSECOND)) {
printf("Read MDIO failed...\n");
return -1;
}
}
/*
* clear mii interrupt bit
*/
writel(FEC_IEVENT_MII, fec->regs + FEC_IEVENT);
/*
* it's now safe to read the PHY's register
*/
return readl(fec->regs + FEC_MII_DATA);
}
static int fec_miidev_write(struct mii_device *mdev, int phyAddr,
int regAddr, int data)
{
struct eth_device *edev = mdev->edev;
struct fec_priv *fec = (struct fec_priv *)edev->priv;
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint64_t start;
writel(((imx_get_fecclk() >> 20) / 5) << 1,
fec->regs + FEC_MII_SPEED);
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data, fec->regs + FEC_MII_DATA);
/*
* wait for the MII interrupt
*/
start = get_time_ns();
while (!(readl(fec->regs + FEC_IEVENT) & FEC_IEVENT_MII)) {
if (is_timeout(start, MSECOND)) {
printf("Write MDIO failed...\n");
return -1;
}
}
/*
* clear MII interrupt bit
*/
writel(FEC_IEVENT_MII, fec->regs + FEC_IEVENT);
return 0;
}
static int fec_rx_task_enable(struct fec_priv *fec)
{
writel(1 << 24, fec->regs + FEC_R_DES_ACTIVE);
return 0;
}
static int fec_rx_task_disable(struct fec_priv *fec)
{
return 0;
}
static int fec_tx_task_enable(struct fec_priv *fec)
{
writel(1 << 24, fec->regs + FEC_X_DES_ACTIVE);
return 0;
}
static int fec_tx_task_disable(struct fec_priv *fec)
{
return 0;
}
/**
* Swap endianess to send data on an i.MX28 based platform
* @param buf Pointer to little endian data
* @param len Size in words (max. 1500 bytes)
* @return Pointer to the big endian data
*/
static void *imx28_fix_endianess_wr(uint32_t *buf, unsigned wlen)
{
unsigned u;
static uint32_t data[376]; /* = 1500 bytes + 4 bytes */
for (u = 0; u < wlen; u++, buf++)
data[u] = __swab32(*buf);
return data;
}
/**
* Swap endianess to read data on an i.MX28 based platform
* @param buf Pointer to little endian data
* @param len Size in words (max. 1500 bytes)
*
* TODO: Check for the risk of destroying some other data behind the buffer
* if its size is not a multiple of 4.
*/
static void imx28_fix_endianess_rd(uint32_t *buf, unsigned wlen)
{
unsigned u;
for (u = 0; u < wlen; u++, buf++)
*buf = __swab32(*buf);
}
/**
* Initialize receive task's buffer descriptors
* @param[in] fec all we know about the device yet
* @param[in] count receive buffer count to be allocated
* @param[in] size size of each receive buffer
* @return 0 on success
*
* For this task we need additional memory for the data buffers. And each
* data buffer requires some alignment. Thy must be aligned to a specific
* boundary each (DB_DATA_ALIGNMENT).
*/
static int fec_rbd_init(struct fec_priv *fec, int count, int size)
{
int ix;
static int once = 0;
unsigned long p = 0;
if (!once) {
/* reserve data memory and consider alignment */
p = (unsigned long)dma_alloc_coherent(size * count + DB_DATA_ALIGNMENT);
p += DB_DATA_ALIGNMENT - 1;
p &= ~(DB_DATA_ALIGNMENT - 1);
}
for (ix = 0; ix < count; ix++) {
if (!once) {
writel(virt_to_phys((void *)p), &fec->rbd_base[ix].data_pointer);
p += size;
}
writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
writew(0, &fec->rbd_base[ix].data_length);
}
once = 1; /* malloc done now (and once) */
/*
* mark the last RBD to close the ring
*/
writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
fec->rbd_index = 0;
return 0;
}
/**
* Initialize transmit task's buffer descriptors
* @param[in] fec all we know about the device yet
*
* Transmit buffers are created externally. We only have to init the BDs here.\n
* Note: There is a race condition in the hardware. When only one BD is in
* use it must be marked with the WRAP bit to use it for every transmit.
* This bit in combination with the READY bit results into double transmit
* of each data buffer. It seems the state machine checks READY earlier then
* resetting it after the first transfer.
* Using two BDs solves this issue.
*/
static void fec_tbd_init(struct fec_priv *fec)
{
writew(0x0000, &fec->tbd_base[0].status);
writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
fec->tbd_index = 0;
}
/**
* Mark the given read buffer descriptor as free
* @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
* @param[in] pRbd buffer descriptor to mark free again
*/
static void fec_rbd_clean(int last, struct buffer_descriptor __iomem *pRbd)
{
/*
* Reset buffer descriptor as empty
*/
if (last)
writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
else
writew(FEC_RBD_EMPTY, &pRbd->status);
/*
* no data in it
*/
writew(0, &pRbd->data_length);
}
static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
{
#ifdef CONFIG_ARCH_MXS
return -1;
#else
return imx_iim_get_mac(mac);
#endif
}
static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
/*
* Set physical address
*/
writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], fec->regs + FEC_PADDR1);
writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, fec->regs + FEC_PADDR2);
return 0;
}
static int fec_init(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
writel(0xffffffff, fec->regs + FEC_IEVENT);
/*
* Set interrupt mask register
*/
writel(0x00000000, fec->regs + FEC_IMASK);
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
if (fec->xcv_type == SEVENWIRE) {
/*
* Frame length=1518; 7-wire mode
*/
writel(FEC_R_CNTRL_MAX_FL(1518), fec->regs + FEC_R_CNTRL);
} else {
/*
* Frame length=1518; MII mode;
*/
writel(FEC_R_CNTRL_MAX_FL(1518) | FEC_R_CNTRL_MII_MODE,
fec->regs + FEC_R_CNTRL);
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*/
writel(((imx_get_fecclk() >> 20) / 5) << 1,
fec->regs + FEC_MII_SPEED);
}
if (fec->xcv_type == RMII) {
if (cpu_is_mx28()) {
/* just another way to enable RMII */
uint32_t reg = readl(fec->regs + FEC_R_CNTRL);
writel(reg | FEC_R_CNTRL_RMII_MODE
/* the linux driver add these bits, why not we? */
/* | FEC_R_CNTRL_FCE | */
/* FEC_R_CNTRL_NO_LGTH_CHECK */,
fec->regs + FEC_R_CNTRL);
} else {
/* disable the gasket and wait */
writel(0, fec->regs + FEC_MIIGSK_ENR);
while (readl(fec->regs + FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
udelay(1);
/* configure the gasket for RMII, 50 MHz, no loopback, no echo */
writel(FEC_MIIGSK_CFGR_IF_MODE_RMII, fec->regs + FEC_MIIGSK_CFGR);
/* re-enable the gasket */
writel(FEC_MIIGSK_ENR_EN, fec->regs + FEC_MIIGSK_ENR);
}
}
/*
* Set Opcode/Pause Duration Register
*/
writel(0x00010020, fec->regs + FEC_OP_PAUSE);
writel(0x2, fec->regs + FEC_X_WMRK);
/*
* Set multicast address filter
*/
writel(0, fec->regs + FEC_IADDR1);
writel(0, fec->regs + FEC_IADDR2);
writel(0, fec->regs + FEC_GADDR1);
writel(0, fec->regs + FEC_GADDR2);
/* size of each buffer */
writel(FEC_MAX_PKT_SIZE, fec->regs + FEC_EMRBR);
if (fec->xcv_type != SEVENWIRE)
miidev_restart_aneg(&fec->miidev);
return 0;
}
/**
* Start the FEC engine
* @param[in] edev Our device to handle
*/
static int fec_open(struct eth_device *edev)
{
struct fec_priv *fec = (struct fec_priv *)edev->priv;
int ret;
/*
* Initialize RxBD/TxBD rings
*/
fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
fec_tbd_init(fec);
/* full-duplex, heartbeat disabled */
writel(1 << 2, fec->regs + FEC_X_CNTRL);
fec->rbd_index = 0;
/*
* Enable FEC-Lite controller
*/
writel(FEC_ECNTRL_ETHER_EN, fec->regs + FEC_ECNTRL);
/*
* Enable SmartDMA receive task
*/
fec_rx_task_enable(fec);
if (fec->xcv_type != SEVENWIRE) {
ret = miidev_wait_aneg(&fec->miidev);
if (ret)
return ret;
miidev_print_status(&fec->miidev);
}
return 0;
}
/**
* Halt the FEC engine
* @param[in] dev Our device to handle
*/
static void fec_halt(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
int counter = 0xffff;
/* issue graceful stop command to the FEC transmitter if necessary */
writel(readl(fec->regs + FEC_X_CNTRL) | FEC_ECNTRL_RESET,
fec->regs + FEC_X_CNTRL);
/* wait for graceful stop to register */
while ((counter--) && (!(readl(fec->regs + FEC_IEVENT) & FEC_IEVENT_GRA)))
; /* FIXME ensure time */
/* Disable SmartDMA tasks */
fec_tx_task_disable(fec);
fec_rx_task_disable(fec);
/*
* Disable the Ethernet Controller
* Note: this will also reset the BD index counter!
*/
writel(0, fec->regs + FEC_ECNTRL);
fec->rbd_index = 0;
fec->tbd_index = 0;
}
/**
* Transmit one frame
* @param[in] dev Our ethernet device to handle
* @param[in] eth_data Pointer to the data to be transmitted
* @param[in] data_length Data count in bytes
* @return 0 on success
*/
static int fec_send(struct eth_device *dev, void *eth_data, int data_length)
{
unsigned int status;
uint64_t tmo;
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
struct fec_priv *fec = (struct fec_priv *)dev->priv;
/* Check for valid length of data. */
if ((data_length > 1500) || (data_length <= 0)) {
printf("Payload (%d) to large!\n", data_length);
return -1;
}
if ((uint32_t)eth_data & (DB_DATA_ALIGNMENT-1))
printf("%s: Warning: Transmit data not aligned: %p!\n", __FUNCTION__, eth_data);
/*
* Setup the transmit buffer
* Note: We are always using the first buffer for transmission,
* the second will be empty and only used to stop the DMA engine
*/
if (cpu_is_mx28())
eth_data = imx28_fix_endianess_wr(eth_data, (data_length + 3) >> 2);
writew(data_length, &fec->tbd_base[fec->tbd_index].data_length);
writel((uint32_t)(eth_data), &fec->tbd_base[fec->tbd_index].data_pointer);
dma_flush_range((unsigned long)eth_data,
(unsigned long)(eth_data + data_length));
/*
* update BD's status now
* This block:
* - is always the last in a chain (means no chain)
* - should transmitt the CRC
* - might be the last BD in the list, so the address counter should
* wrap (-> keep the WRAP flag)
*/
status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
writew(status, &fec->tbd_base[fec->tbd_index].status);
/* Enable SmartDMA transmit task */
fec_tx_task_enable(fec);
/* wait until frame is sent */
tmo = get_time_ns();
while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
if (is_timeout(tmo, 1 * SECOND)) {
printf("transmission timeout\n");
break;
}
}
/* for next transmission use the other buffer */
if (fec->tbd_index)
fec->tbd_index = 0;
else
fec->tbd_index = 1;
return 0;
}
/**
* Pull one frame from the card
* @param[in] dev Our ethernet device to handle
* @return Length of packet read
*/
static int fec_recv(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct buffer_descriptor __iomem *rbd = &fec->rbd_base[fec->rbd_index];
uint32_t ievent;
int frame_length, len = 0;
struct fec_frame *frame;
uint16_t bd_status;
/*
* Check if any critical events have happened
*/
ievent = readl(fec->regs + FEC_IEVENT);
writel(ievent, fec->regs + FEC_IEVENT);
if (ievent & FEC_IEVENT_BABT) {
/* BABT, Rx/Tx FIFO errors */
fec_halt(dev);
fec_init(dev);
printf("some error: 0x%08x\n", ievent);
return 0;
}
if (!cpu_is_mx28()) {
if (ievent & FEC_IEVENT_HBERR) {
/* Heartbeat error */
writel(readl(fec->regs + FEC_X_CNTRL) | 0x1,
fec->regs + FEC_X_CNTRL);
}
}
if (ievent & FEC_IEVENT_GRA) {
/* Graceful stop complete */
if (readl(fec->regs + FEC_X_CNTRL) & 0x00000001) {
fec_halt(dev);
writel(readl(fec->regs + FEC_X_CNTRL) & ~0x00000001,
fec->regs + FEC_X_CNTRL);
fec_init(dev);
}
}
/*
* ensure reading the right buffer status
*/
bd_status = readw(&rbd->status);
if (!(bd_status & FEC_RBD_EMPTY)) {
if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
((readw(&rbd->data_length) - 4) > 14)) {
if (cpu_is_mx28())
imx28_fix_endianess_rd(
phys_to_virt(readl(&rbd->data_pointer)),
(readw(&rbd->data_length) + 3) >> 2);
/*
* Get buffer address and size
*/
frame = phys_to_virt(readl(&rbd->data_pointer));
frame_length = readw(&rbd->data_length) - 4;
net_receive(frame->data, frame_length);
len = frame_length;
} else {
if (bd_status & FEC_RBD_ERR) {
printf("error frame: 0x%p 0x%08x\n", rbd, bd_status);
}
}
/*
* free the current buffer, restart the engine
* and move forward to the next buffer
*/
fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
fec_rx_task_enable(fec);
fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
}
return len;
}
static int fec_probe(struct device_d *dev)
{
struct fec_platform_data *pdata = (struct fec_platform_data *)dev->platform_data;
struct eth_device *edev;
struct fec_priv *fec;
uint32_t base;
#ifdef CONFIG_ARCH_IMX27
PCCR0 |= PCCR0_FEC_EN;
#endif
edev = (struct eth_device *)xzalloc(sizeof(struct eth_device));
dev->type_data = edev;
fec = (struct fec_priv *)xzalloc(sizeof(*fec));
edev->priv = fec;
edev->open = fec_open;
edev->init = fec_init;
edev->send = fec_send;
edev->recv = fec_recv;
edev->halt = fec_halt;
edev->get_ethaddr = fec_get_hwaddr;
edev->set_ethaddr = fec_set_hwaddr;
fec->regs = (void *)dev->map_base;
/* Reset chip. */
writel(FEC_ECNTRL_RESET, fec->regs + FEC_ECNTRL);
while(readl(fec->regs + FEC_ECNTRL) & 1) {
udelay(10);
}
/*
* reserve memory for both buffer descriptor chains at once
* Datasheet forces the startaddress of each chain is 16 byte aligned
*/
base = (uint32_t)dma_alloc_coherent((2 + FEC_RBD_NUM) *
sizeof(struct buffer_descriptor) + 2 * DB_ALIGNMENT);
base += (DB_ALIGNMENT - 1);
base &= ~(DB_ALIGNMENT - 1);
fec->rbd_base = (struct buffer_descriptor __force __iomem *)base;
base += FEC_RBD_NUM * sizeof (struct buffer_descriptor) +
(DB_ALIGNMENT - 1);
base &= ~(DB_ALIGNMENT - 1);
fec->tbd_base = (struct buffer_descriptor __force __iomem *)base;
writel((uint32_t)virt_to_phys(fec->tbd_base), fec->regs + FEC_ETDSR);
writel((uint32_t)virt_to_phys(fec->rbd_base), fec->regs + FEC_ERDSR);
fec->xcv_type = pdata->xcv_type;
if (fec->xcv_type != SEVENWIRE) {
fec->miidev.read = fec_miidev_read;
fec->miidev.write = fec_miidev_write;
fec->miidev.address = pdata->phy_addr;
fec->miidev.flags = pdata->xcv_type == MII10 ? MIIDEV_FORCE_10 : 0;
fec->miidev.edev = edev;
mii_register(&fec->miidev);
}
eth_register(edev);
return 0;
}
static void fec_remove(struct device_d *dev)
{
struct eth_device *edev = dev->type_data;
fec_halt(edev);
}
/**
* Driver description for registering
*/
static struct driver_d imx27_driver = {
.name = "fec_imx",
.probe = fec_probe,
.remove = fec_remove,
};
static int fec_register(void)
{
register_driver(&imx27_driver);
return 0;
}
device_initcall(fec_register);
/**
* @file
* @brief Network driver for FreeScale's FEC implementation.
* This type of hardware can be found on i.MX27 CPUs
*/