blob: 671fd321cee0686d81e7c8d73f1797619907c610 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* filterbanks.c
*
* This file contains function WebRtcIsac_AllPassFilter2Float,
* WebRtcIsac_SplitAndFilter, and WebRtcIsac_FilterAndCombine
* which implement filterbanks that produce decimated lowpass and
* highpass versions of a signal, and performs reconstruction.
*
*/
#include "settings.h"
#include "filterbank_tables.h"
#include "codec.h"
/* This function performs all-pass filtering--a series of first order all-pass
* sections are used to filter the input in a cascade manner.
* The input is overwritten!!
*/
static void WebRtcIsac_AllPassFilter2Float(float *InOut, const float *APSectionFactors,
int lengthInOut, int NumberOfSections,
float *FilterState)
{
int n, j;
float temp;
for (j=0; j<NumberOfSections; j++){
for (n=0;n<lengthInOut;n++){
temp = FilterState[j] + APSectionFactors[j] * InOut[n];
FilterState[j] = -APSectionFactors[j] * temp + InOut[n];
InOut[n] = temp;
}
}
}
/* HPstcoeff_in = {a1, a2, b1 - b0 * a1, b2 - b0 * a2}; */
static const float kHpStCoefInFloat[4] =
{-1.94895953203325f, 0.94984516000000f, -0.05101826139794f, 0.05015484000000f};
/* Function WebRtcIsac_SplitAndFilter
* This function creates low-pass and high-pass decimated versions of part of
the input signal, and part of the signal in the input 'lookahead buffer'.
INPUTS:
in: a length FRAMESAMPLES array of input samples
prefiltdata: input data structure containing the filterbank states
and lookahead samples from the previous encoding
iteration.
OUTPUTS:
LP: a FRAMESAMPLES_HALF array of low-pass filtered samples that
have been phase equalized. The first QLOOKAHEAD samples are
based on the samples in the two prefiltdata->INLABUFx arrays
each of length QLOOKAHEAD.
The remaining FRAMESAMPLES_HALF-QLOOKAHEAD samples are based
on the first FRAMESAMPLES_HALF-QLOOKAHEAD samples of the input
array in[].
HP: a FRAMESAMPLES_HALF array of high-pass filtered samples that
have been phase equalized. The first QLOOKAHEAD samples are
based on the samples in the two prefiltdata->INLABUFx arrays
each of length QLOOKAHEAD.
The remaining FRAMESAMPLES_HALF-QLOOKAHEAD samples are based
on the first FRAMESAMPLES_HALF-QLOOKAHEAD samples of the input
array in[].
LP_la: a FRAMESAMPLES_HALF array of low-pass filtered samples.
These samples are not phase equalized. They are computed
from the samples in the in[] array.
HP_la: a FRAMESAMPLES_HALF array of high-pass filtered samples
that are not phase equalized. They are computed from
the in[] vector.
prefiltdata: this input data structure's filterbank state and
lookahead sample buffers are updated for the next
encoding iteration.
*/
void WebRtcIsac_SplitAndFilterFloat(float *pin, float *LP, float *HP,
double *LP_la, double *HP_la,
PreFiltBankstr *prefiltdata)
{
int k,n;
float CompositeAPFilterState[NUMBEROFCOMPOSITEAPSECTIONS];
float ForTransform_CompositeAPFilterState[NUMBEROFCOMPOSITEAPSECTIONS];
float ForTransform_CompositeAPFilterState2[NUMBEROFCOMPOSITEAPSECTIONS];
float tempinoutvec[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float tempin_ch1[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float tempin_ch2[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float in[FRAMESAMPLES];
float ftmp;
/* High pass filter */
for (k=0;k<FRAMESAMPLES;k++) {
in[k] = pin[k] + kHpStCoefInFloat[2] * prefiltdata->HPstates_float[0] +
kHpStCoefInFloat[3] * prefiltdata->HPstates_float[1];
ftmp = pin[k] - kHpStCoefInFloat[0] * prefiltdata->HPstates_float[0] -
kHpStCoefInFloat[1] * prefiltdata->HPstates_float[1];
prefiltdata->HPstates_float[1] = prefiltdata->HPstates_float[0];
prefiltdata->HPstates_float[0] = ftmp;
}
/*
% backwards all-pass filtering to obtain zero-phase
[tmp1(N2+LA:-1:LA+1, 1), state1] = filter(Q.coef, Q.coef(end:-1:1), in(N:-2:2));
tmp1(LA:-1:1) = filter(Q.coef, Q.coef(end:-1:1), Q.LookAheadBuf1, state1);
Q.LookAheadBuf1 = in(N:-2:N-2*LA+2);
*/
/*Backwards all-pass filter the odd samples of the input (upper channel)
to eventually obtain zero phase. The composite all-pass filter (comprised of both
the upper and lower channel all-pass filsters in series) is used for the
filtering. */
/* First Channel */
/*initial state of composite filter is zero */
for (k=0;k<NUMBEROFCOMPOSITEAPSECTIONS;k++){
CompositeAPFilterState[k] = 0.0;
}
/* put every other sample of input into a temporary vector in reverse (backward) order*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempinoutvec[k] = in[FRAMESAMPLES-1-2*k];
}
/* now all-pass filter the backwards vector. Output values overwrite the input vector. */
WebRtcIsac_AllPassFilter2Float(tempinoutvec, WebRtcIsac_kCompositeApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
/* save the backwards filtered output for later forward filtering,
but write it in forward order*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempin_ch1[FRAMESAMPLES_HALF+QLOOKAHEAD-1-k] = tempinoutvec[k];
}
/* save the backwards filter state becaue it will be transformed
later into a forward state */
for (k=0; k<NUMBEROFCOMPOSITEAPSECTIONS; k++) {
ForTransform_CompositeAPFilterState[k] = CompositeAPFilterState[k];
}
/* now backwards filter the samples in the lookahead buffer. The samples were
placed there in the encoding of the previous frame. The output samples
overwrite the input samples */
WebRtcIsac_AllPassFilter2Float(prefiltdata->INLABUF1_float,
WebRtcIsac_kCompositeApFactorsFloat, QLOOKAHEAD,
NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
/* save the output, but write it in forward order */
/* write the lookahead samples for the next encoding iteration. Every other
sample at the end of the input frame is written in reverse order for the
lookahead length. Exported in the prefiltdata structure. */
for (k=0;k<QLOOKAHEAD;k++) {
tempin_ch1[QLOOKAHEAD-1-k]=prefiltdata->INLABUF1_float[k];
prefiltdata->INLABUF1_float[k]=in[FRAMESAMPLES-1-2*k];
}
/* Second Channel. This is exactly like the first channel, except that the
even samples are now filtered instead (lower channel). */
for (k=0;k<NUMBEROFCOMPOSITEAPSECTIONS;k++){
CompositeAPFilterState[k] = 0.0;
}
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempinoutvec[k] = in[FRAMESAMPLES-2-2*k];
}
WebRtcIsac_AllPassFilter2Float(tempinoutvec, WebRtcIsac_kCompositeApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempin_ch2[FRAMESAMPLES_HALF+QLOOKAHEAD-1-k] = tempinoutvec[k];
}
for (k=0; k<NUMBEROFCOMPOSITEAPSECTIONS; k++) {
ForTransform_CompositeAPFilterState2[k] = CompositeAPFilterState[k];
}
WebRtcIsac_AllPassFilter2Float(prefiltdata->INLABUF2_float,
WebRtcIsac_kCompositeApFactorsFloat, QLOOKAHEAD,NUMBEROFCOMPOSITEAPSECTIONS,
CompositeAPFilterState);
for (k=0;k<QLOOKAHEAD;k++) {
tempin_ch2[QLOOKAHEAD-1-k]=prefiltdata->INLABUF2_float[k];
prefiltdata->INLABUF2_float[k]=in[FRAMESAMPLES-2-2*k];
}
/* Transform filter states from backward to forward */
/*At this point, each of the states of the backwards composite filters for the
two channels are transformed into forward filtering states for the corresponding
forward channel filters. Each channel's forward filtering state from the previous
encoding iteration is added to the transformed state to get a proper forward state */
/* So the existing NUMBEROFCOMPOSITEAPSECTIONS x 1 (4x1) state vector is multiplied by a
NUMBEROFCHANNELAPSECTIONSxNUMBEROFCOMPOSITEAPSECTIONS (2x4) transform matrix to get the
new state that is added to the previous 2x1 input state */
for (k=0;k<NUMBEROFCHANNELAPSECTIONS;k++){ /* k is row variable */
for (n=0; n<NUMBEROFCOMPOSITEAPSECTIONS;n++){/* n is column variable */
prefiltdata->INSTAT1_float[k] += ForTransform_CompositeAPFilterState[n]*
WebRtcIsac_kTransform1Float[k*NUMBEROFCHANNELAPSECTIONS+n];
prefiltdata->INSTAT2_float[k] += ForTransform_CompositeAPFilterState2[n]*
WebRtcIsac_kTransform2Float[k*NUMBEROFCHANNELAPSECTIONS+n];
}
}
/*obtain polyphase components by forward all-pass filtering through each channel */
/* the backward filtered samples are now forward filtered with the corresponding channel filters */
/* The all pass filtering automatically updates the filter states which are exported in the
prefiltdata structure */
WebRtcIsac_AllPassFilter2Float(tempin_ch1,WebRtcIsac_kUpperApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTAT1_float);
WebRtcIsac_AllPassFilter2Float(tempin_ch2,WebRtcIsac_kLowerApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTAT2_float);
/* Now Construct low-pass and high-pass signals as combinations of polyphase components */
for (k=0; k<FRAMESAMPLES_HALF; k++) {
LP[k] = 0.5f*(tempin_ch1[k] + tempin_ch2[k]);/* low pass signal*/
HP[k] = 0.5f*(tempin_ch1[k] - tempin_ch2[k]);/* high pass signal*/
}
/* Lookahead LP and HP signals */
/* now create low pass and high pass signals of the input vector. However, no
backwards filtering is performed, and hence no phase equalization is involved.
Also, the input contains some samples that are lookahead samples. The high pass
and low pass signals that are created are used outside this function for analysis
(not encoding) purposes */
/* set up input */
for (k=0; k<FRAMESAMPLES_HALF; k++) {
tempin_ch1[k]=in[2*k+1];
tempin_ch2[k]=in[2*k];
}
/* the input filter states are passed in and updated by the all-pass filtering routine and
exported in the prefiltdata structure*/
WebRtcIsac_AllPassFilter2Float(tempin_ch1,WebRtcIsac_kUpperApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTATLA1_float);
WebRtcIsac_AllPassFilter2Float(tempin_ch2,WebRtcIsac_kLowerApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTATLA2_float);
for (k=0; k<FRAMESAMPLES_HALF; k++) {
LP_la[k] = (float)(0.5f*(tempin_ch1[k] + tempin_ch2[k])); /*low pass */
HP_la[k] = (double)(0.5f*(tempin_ch1[k] - tempin_ch2[k])); /* high pass */
}
}/*end of WebRtcIsac_SplitAndFilter */
/* Combining */
/* HPstcoeff_out_1 = {a1, a2, b1 - b0 * a1, b2 - b0 * a2}; */
static const float kHpStCoefOut1Float[4] =
{-1.99701049409000f, 0.99714204490000f, 0.01701049409000f, -0.01704204490000f};
/* HPstcoeff_out_2 = {a1, a2, b1 - b0 * a1, b2 - b0 * a2}; */
static const float kHpStCoefOut2Float[4] =
{-1.98645294509837f, 0.98672435560000f, 0.00645294509837f, -0.00662435560000f};
/* Function WebRtcIsac_FilterAndCombine */
/* This is a decoder function that takes the decimated
length FRAMESAMPLES_HALF input low-pass and
high-pass signals and creates a reconstructed fullband
output signal of length FRAMESAMPLES. WebRtcIsac_FilterAndCombine
is the sibling function of WebRtcIsac_SplitAndFilter */
/* INPUTS:
inLP: a length FRAMESAMPLES_HALF array of input low-pass
samples.
inHP: a length FRAMESAMPLES_HALF array of input high-pass
samples.
postfiltdata: input data structure containing the filterbank
states from the previous decoding iteration.
OUTPUTS:
Out: a length FRAMESAMPLES array of output reconstructed
samples (fullband) based on the input low-pass and
high-pass signals.
postfiltdata: the input data structure containing the filterbank
states is updated for the next decoding iteration */
void WebRtcIsac_FilterAndCombineFloat(float *InLP,
float *InHP,
float *Out,
PostFiltBankstr *postfiltdata)
{
int k;
float tempin_ch1[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float tempin_ch2[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float ftmp, ftmp2;
/* Form the polyphase signals*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempin_ch1[k]=InLP[k]+InHP[k]; /* Construct a new upper channel signal*/
tempin_ch2[k]=InLP[k]-InHP[k]; /* Construct a new lower channel signal*/
}
/* all-pass filter the new upper channel signal. HOWEVER, use the all-pass filter factors
that were used as a lower channel at the encoding side. So at the decoder, the
corresponding all-pass filter factors for each channel are swapped.*/
WebRtcIsac_AllPassFilter2Float(tempin_ch1, WebRtcIsac_kLowerApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,postfiltdata->STATE_0_UPPER_float);
/* Now, all-pass filter the new lower channel signal. But since all-pass filter factors
at the decoder are swapped from the ones at the encoder, the 'upper' channel
all-pass filter factors (WebRtcIsac_kUpperApFactorsFloat) are used to filter this new
lower channel signal */
WebRtcIsac_AllPassFilter2Float(tempin_ch2, WebRtcIsac_kUpperApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,postfiltdata->STATE_0_LOWER_float);
/* Merge outputs to form the full length output signal.*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
Out[2*k]=tempin_ch2[k];
Out[2*k+1]=tempin_ch1[k];
}
/* High pass filter */
for (k=0;k<FRAMESAMPLES;k++) {
ftmp2 = Out[k] + kHpStCoefOut1Float[2] * postfiltdata->HPstates1_float[0] +
kHpStCoefOut1Float[3] * postfiltdata->HPstates1_float[1];
ftmp = Out[k] - kHpStCoefOut1Float[0] * postfiltdata->HPstates1_float[0] -
kHpStCoefOut1Float[1] * postfiltdata->HPstates1_float[1];
postfiltdata->HPstates1_float[1] = postfiltdata->HPstates1_float[0];
postfiltdata->HPstates1_float[0] = ftmp;
Out[k] = ftmp2;
}
for (k=0;k<FRAMESAMPLES;k++) {
ftmp2 = Out[k] + kHpStCoefOut2Float[2] * postfiltdata->HPstates2_float[0] +
kHpStCoefOut2Float[3] * postfiltdata->HPstates2_float[1];
ftmp = Out[k] - kHpStCoefOut2Float[0] * postfiltdata->HPstates2_float[0] -
kHpStCoefOut2Float[1] * postfiltdata->HPstates2_float[1];
postfiltdata->HPstates2_float[1] = postfiltdata->HPstates2_float[0];
postfiltdata->HPstates2_float[0] = ftmp;
Out[k] = ftmp2;
}
}