blob: dcd14b56adbc367e1ca67a3a6d881c0b6971281a [file] [log] [blame]
/*
* This file is part of the Chelsio T4 Ethernet driver.
*
* Copyright (C) 2005-2009 Chelsio Communications. All rights reserved.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
* release for licensing terms and conditions.
*/
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include "common.h"
#include "t4_regs.h"
#include "t4_regs_values.h"
#include "t4_msg.h"
#include "t4fw_interface.h"
#define HAVE_PF_RING
#ifdef HAVE_PF_RING
#include "../../../../kernel/linux/pf_ring.h"
#endif
/*
* Rx buffer size for "packed" pages Free List buffers (multiple ingress
* packets packed per page buffer). We use largish buffers if possible but
* settle for single pages under memory shortage.
*/
#if PAGE_SHIFT >= 16
# define FL_PG_ORDER 0
#else
# define FL_PG_ORDER (16 - PAGE_SHIFT)
#endif
/* RX_PULL_LEN should be <= RX_COPY_THRES */
#define RX_COPY_THRES 256
#define RX_PULL_LEN 128
/*
* Main body length for sk_buffs used for Rx Ethernet packets with fragments.
* Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
*/
#define RX_PKT_SKB_LEN 512
/* Ethernet header padding prepended to RX_PKTs */
#define RX_PKT_PAD 2
/*
* Max number of Tx descriptors we clean up at a time. Should be modest as
* freeing skbs isn't cheap and it happens while holding locks. We just need
* to free packets faster than they arrive, we eventually catch up and keep
* the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
*/
#define MAX_TX_RECLAIM 16
/*
* Max number of Rx buffers we replenish at a time. Again keep this modest,
* allocating buffers isn't cheap either.
*/
#define MAX_RX_REFILL 16U
/*
* Period of the Rx queue check timer. This timer is infrequent as it has
* something to do only when the system experiences severe memory shortage.
*/
#define RX_QCHECK_PERIOD (HZ / 2)
/*
* Period of the Tx queue check timer.
*/
#define TX_QCHECK_PERIOD (HZ / 2)
/*
* Max number of Tx descriptors to be reclaimed by the Tx timer.
*/
#define MAX_TIMER_TX_RECLAIM 100
/*
* Timer index used when Rx queues encounter severe memory shortage.
*/
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
/*
* Suspend an Ethernet Tx queue with fewer available descriptors than this.
* This is the same as calc_tx_descs() for a TSO packet with
* nr_frags == MAX_SKB_FRAGS.
*/
#define ETHTXQ_STOP_THRES \
(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
/*
* Suspension threshold for non-Ethernet Tx queues. We require enough room
* for a full sized WR.
*/
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
/*
* Max Tx descriptor space we allow for an Ethernet packet to be inlined
* into a WR.
*/
#define MAX_IMM_TX_PKT_LEN 128
/*
* Max size of a WR sent through a control Tx queue.
*/
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
enum {
/* packet alignment in FL buffers */
FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES,
/* payload data is DMA'ed offset this far from the buffer start */
FL_PKTSHIFT = 2,
/* egress status entry size */
STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64
};
/*
* Currently there are two types of coalesce WR. Type 0 needs 48 bytes per
* packet (if one sgl is present) and type 1 needs 32 bytes. This means
* that type 0 can fit a maximum of 10 packets per WR and type 1 can fit
* 15 packets. We need to keep track of the skb pointers in a coalesce WR
* to be able to free those skbs when we get completions back from the FW.
* Allocating the maximum number of pointers in every tx desc is a waste
* of memory resources so we only store 2 pointers per tx desc which should
* be enough since a tx desc can only fit 2 packets in the best case
* scenario where a packet needs 32 bytes.
*/
#define ETH_COALESCE_PKT_NUM 15
#define ETH_COALESCE_PKT_PER_DESC 2
struct tx_eth_coal_desc {
struct sk_buff *skb[ETH_COALESCE_PKT_PER_DESC];
struct ulptx_sgl *sgl[ETH_COALESCE_PKT_PER_DESC];
int idx;
};
struct tx_sw_desc { /* SW state per Tx descriptor */
struct sk_buff *skb;
struct ulptx_sgl *sgl;
struct tx_eth_coal_desc coalesce;
};
struct rx_sw_desc { /* SW state per Rx descriptor */
void *buf; /* struct page or sk_buff */
dma_addr_t dma_addr;
};
/*
* Rx buffer sizes for "useskbs" Free List buffers (one ingress packet per skb
* buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
* We could easily support more but there doesn't seem to be much need for
* that ...
*/
#define FL_MTU_OVERHEAD (FL_PKTSHIFT + ETH_HLEN + VLAN_HLEN)
#define FL_MTU_SMALL 1500
#define FL_MTU_LARGE 9000
#define FL_MTU_SMALL_BUFSIZE ALIGN(FL_MTU_SMALL + FL_MTU_OVERHEAD, FL_ALIGN)
#define FL_MTU_LARGE_BUFSIZE ALIGN(FL_MTU_LARGE + FL_MTU_OVERHEAD, FL_ALIGN)
/*
* The low bits of rx_sw_desc.dma_addr have special meaning. The hardware
* uses these to specify the buffer size as an index into the SGE Free List
* Buffer Size register array. We also use one bit, when the buffer isn't
* mapped to the hardware to indicate that the buffer isn't mapped. (If we
* ever need to support more than 8 different buffer sizes, then we'll need to
* move that "Buffer Unmapped" flag into a separate "flags" word in the Rx
* Software Descriptor.)
*/
enum {
RX_BUF_FLAGS = 0xf, /* bottom four bits are special */
RX_BUF_SIZE = 0x7, /* bottom three bits are for buf sizes */
RX_UNMAPPED_BUF = 0x8, /* buffer is not mapped */
RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
};
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
{
return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
}
static inline bool is_buf_mapped(const struct rx_sw_desc *d)
{
return !(d->dma_addr & RX_UNMAPPED_BUF);
}
/**
* txq_avail - return the number of available slots in a Tx queue
* @q: the Tx queue
*
* Returns the number of descriptors in a Tx queue available to write new
* packets.
*/
static inline unsigned int txq_avail(const struct sge_txq *q)
{
return q->size - 1 - q->in_use;
}
/**
* fl_cap - return the capacity of a free-buffer list
* @fl: the FL
*
* Returns the capacity of a free-buffer list. The capacity is less than
* the size because one descriptor needs to be left unpopulated, otherwise
* HW will think the FL is empty.
*/
static inline unsigned int fl_cap(const struct sge_fl *fl)
{
return fl->size - 8; /* 1 descriptor = 8 buffers */
}
/**
* fl_starving - return whether a Free List is starving.
* @adapter: pointer to the adapter
* @fl: the Free List
*
* Tests specified Free List to see whether the number of buffers
* available to the hardware has falled below our "starvation"
* threshhold.
*/
static inline bool fl_starving(const struct adapter *adapter,
const struct sge_fl *fl)
{
const struct sge *s = &adapter->sge;
return fl->avail - fl->pend_cred <= s->fl_starve_thres;
}
static int map_skb(struct device *dev, const struct sk_buff *skb,
dma_addr_t *addr)
{
const skb_frag_t *fp, *end;
const struct skb_shared_info *si;
*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
goto out_err;
si = skb_shinfo(skb);
end = &si->frags[si->nr_frags];
for (fp = si->frags; fp < end; fp++) {
*++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
goto unwind;
}
return 0;
unwind:
while (fp-- > si->frags)
dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
out_err:
return -ENOMEM;
}
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
const dma_addr_t *addr)
{
const skb_frag_t *fp, *end;
const struct skb_shared_info *si;
dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
si = skb_shinfo(skb);
end = &si->frags[si->nr_frags];
for (fp = si->frags; fp < end; fp++)
dma_unmap_page(dev, *addr++, fp->size, DMA_TO_DEVICE);
}
/**
* deferred_unmap_destructor - unmap a packet when it is freed
* @skb: the packet
*
* This is the packet destructor used for Tx packets that need to remain
* mapped until they are freed rather than until their Tx descriptors are
* freed.
*/
static void deferred_unmap_destructor(struct sk_buff *skb)
{
unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
}
static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
const struct ulptx_sgl *sgl, const struct sge_txq *q)
{
const struct ulptx_sge_pair *p;
unsigned int nfrags = skb_shinfo(skb)->nr_frags;
if (likely(skb_headlen(skb)))
dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
DMA_TO_DEVICE);
else {
dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
DMA_TO_DEVICE);
nfrags--;
}
/*
* the complexity below is because of the possibility of a wrap-around
* in the middle of an SGL
*/
for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
ntohl(p->len[0]), DMA_TO_DEVICE);
dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
ntohl(p->len[1]), DMA_TO_DEVICE);
p++;
} else if ((u8 *)p == (u8 *)q->stat) {
p = (const struct ulptx_sge_pair *)q->desc;
goto unmap;
} else if ((u8 *)p + 8 == (u8 *)q->stat) {
const __be64 *addr = (const __be64 *)q->desc;
dma_unmap_page(dev, be64_to_cpu(addr[0]),
ntohl(p->len[0]), DMA_TO_DEVICE);
dma_unmap_page(dev, be64_to_cpu(addr[1]),
ntohl(p->len[1]), DMA_TO_DEVICE);
p = (const struct ulptx_sge_pair *)&addr[2];
} else {
const __be64 *addr = (const __be64 *)q->desc;
dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
ntohl(p->len[0]), DMA_TO_DEVICE);
dma_unmap_page(dev, be64_to_cpu(addr[0]),
ntohl(p->len[1]), DMA_TO_DEVICE);
p = (const struct ulptx_sge_pair *)&addr[1];
}
}
if (nfrags) {
__be64 addr;
if ((u8 *)p == (u8 *)q->stat)
p = (const struct ulptx_sge_pair *)q->desc;
addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
*(const __be64 *)q->desc;
dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
DMA_TO_DEVICE);
}
}
/**
* need_skb_unmap - does the platform need unmapping of sk_buffs?
*
* Returns true if the platfrom needs sk_buff unmapping. The compiler
* optimizes away unecessary code if this returns true.
*/
static inline int need_skb_unmap(void)
{
/*
* This structure is used to tell if the platfrom needs buffer
* unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
*/
struct dummy {
DECLARE_PCI_UNMAP_ADDR(addr);
};
return sizeof(struct dummy) != 0;
}
/**
* free_tx_desc - reclaims Tx descriptors and their buffers
* @adapter: the adapter
* @q: the Tx queue to reclaim descriptors from
* @n: the number of descriptors to reclaim
* @unmap: whether the buffers should be unmapped for DMA
*
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
* Tx buffers. Called with the Tx queue lock held.
*/
static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
unsigned int n, bool unmap)
{
struct tx_sw_desc *d;
unsigned int cidx = q->cidx;
struct device *dev = adap->pdev_dev;
int i;
const int need_unmap = need_skb_unmap() && unmap;
#ifdef T4_TRACE
T4_TRACE2(adap->tb[q->cntxt_id & 7],
"reclaiming %u Tx descriptors at cidx %u", n, cidx);
#endif
d = &q->sdesc[cidx];
while (n--) {
if (d->skb) { /* an SGL is present */
if (need_unmap)
unmap_sgl(dev, d->skb, d->sgl, q);
kfree_skb(d->skb);
d->skb = NULL;
}
if (d->coalesce.idx) {
for (i = 0; i < d->coalesce.idx; i++) {
if (need_unmap)
unmap_sgl(dev, d->coalesce.skb[i],
d->coalesce.sgl[i], q);
kfree_skb(d->coalesce.skb[i]);
d->coalesce.skb[i] = NULL;
}
d->coalesce.idx = 0;
}
++d;
if (++cidx == q->size) {
cidx = 0;
d = q->sdesc;
}
}
q->cidx = cidx;
}
/*
* Return the number of reclaimable descriptors in a Tx queue.
*/
static inline int reclaimable(const struct sge_txq *q)
{
int hw_cidx = ntohs(q->stat->cidx);
hw_cidx -= q->cidx;
return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
}
/**
* reclaim_completed_tx - reclaims completed Tx descriptors
* @adap: the adapter
* @q: the Tx queue to reclaim completed descriptors from
* @unmap: whether the buffers should be unmapped for DMA
*
* Reclaims Tx descriptors that the SGE has indicated it has processed,
* and frees the associated buffers if possible. Called with the Tx
* queue locked.
*/
static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
bool unmap)
{
int avail = reclaimable(q);
if (avail) {
/*
* Limit the amount of clean up work we do at a time to keep
* the Tx lock hold time O(1).
*/
if (avail > MAX_TX_RECLAIM)
avail = MAX_TX_RECLAIM;
free_tx_desc(adap, q, avail, unmap);
q->in_use -= avail;
}
}
static inline int get_buf_size(const struct rx_sw_desc *d)
{
unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
static int rx_buf_size[] = {
[RX_SMALL_PG_BUF] = PAGE_SIZE,
[RX_LARGE_PG_BUF] = PAGE_SIZE << FL_PG_ORDER,
[RX_SMALL_MTU_BUF] = FL_MTU_SMALL_BUFSIZE,
[RX_LARGE_MTU_BUF] = FL_MTU_LARGE_BUFSIZE,
};
BUG_ON(rx_buf_size_idx >= ARRAY_SIZE(rx_buf_size));
return rx_buf_size[rx_buf_size_idx];
}
/**
* free_rx_bufs - free the Rx buffers on an SGE free list
* @adap: the adapter
* @q: the SGE free list to free buffers from
* @n: how many buffers to free
*
* Release the next @n buffers on an SGE free-buffer Rx queue. The
* buffers must be made inaccessible to HW before calling this function.
*/
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
{
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
while (n--) {
struct rx_sw_desc *d = &q->sdesc[q->cidx];
if (unlikely(rxq->useskbs)) {
if (is_buf_mapped(d))
dma_unmap_single(adap->pdev_dev,
get_buf_addr(d),
get_buf_size(d),
PCI_DMA_FROMDEVICE);
kfree_skb(d->buf);
} else {
if (is_buf_mapped(d))
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
get_buf_size(d),
PCI_DMA_FROMDEVICE);
put_page(d->buf);
}
d->buf = NULL;
if (++q->cidx == q->size)
q->cidx = 0;
q->avail--;
}
}
/**
* unmap_rx_buf - unmap the current Rx buffer on an SGE free list
* @adap: the adapter
* @q: the SGE free list
*
* Unmap the current buffer on an SGE free-buffer Rx queue. The
* buffer must be made inaccessible to HW before calling this function.
*
* This is similar to @free_rx_bufs above but does not free the buffer.
* Do note that the FL still loses any further access to the buffer.
*/
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
{
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
struct rx_sw_desc *d = &q->sdesc[q->cidx];
if (unlikely(rxq->useskbs)) {
if (is_buf_mapped(d))
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
get_buf_size(d), PCI_DMA_FROMDEVICE);
} else {
if (is_buf_mapped(d))
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
get_buf_size(d), PCI_DMA_FROMDEVICE);
}
if (++q->cidx == q->size)
q->cidx = 0;
q->avail--;
}
static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
{
if (q->pend_cred >= 8) {
wmb();
t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
V_QID(q->cntxt_id) | V_PIDX(q->pend_cred / 8));
q->pend_cred &= 7;
}
}
static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
dma_addr_t mapping)
{
sd->buf = buf;
sd->dma_addr = mapping; /* includes size low bits */
}
#define POISON_BUF_VAL -1
static inline void poison_buf(struct page *pg, size_t sz)
{
#if POISON_BUF_VAL >= 0
memset(page_address(pg), POISON_BUF_VAL, sz);
#endif
}
/**
* refill_fl_usepages - refill an SGE Rx buffer ring with pages
* @adap: the adapter
* @q: the ring to refill
* @n: the number of new buffers to allocate
* @gfp: the gfp flags for the allocations
*
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
* allocated with the supplied gfp flags. The caller must assure that
* @n does not exceed the queue's capacity. If afterwards the queue is
* found critically low mark it as starving in the bitmap of starving FLs.
*
* Returns the number of buffers allocated.
*/
static unsigned int refill_fl_usepages(struct adapter *adap, struct sge_fl *q,
int n, gfp_t gfp)
{
struct page *pg;
dma_addr_t mapping;
unsigned int cred = q->avail;
__be64 *d = &q->desc[q->pidx];
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
goto out;
gfp |= __GFP_NOWARN; /* failures are expected */
#if FL_PG_ORDER > 0
/*
* Prefer large buffers
*/
while (n) {
pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER);
if (unlikely(!pg)) {
q->large_alloc_failed++;
break; /* fall back to single pages */
}
poison_buf(pg, PAGE_SIZE << FL_PG_ORDER);
mapping = dma_map_page(adap->pdev_dev, pg, 0,
PAGE_SIZE << FL_PG_ORDER,
PCI_DMA_FROMDEVICE);
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
__free_pages(pg, FL_PG_ORDER);
goto out; /* do not try small pages for this error */
}
mapping |= RX_LARGE_PG_BUF;
*d++ = cpu_to_be64(mapping);
set_rx_sw_desc(sd, pg, mapping);
sd++;
q->avail++;
if (++q->pidx == q->size) {
q->pidx = 0;
sd = q->sdesc;
d = q->desc;
}
n--;
}
#endif
while (n--) {
pg = __netdev_alloc_page(adap->port[0], gfp);
if (unlikely(!pg)) {
q->alloc_failed++;
break;
}
poison_buf(pg, PAGE_SIZE);
mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
netdev_free_page(adap->port[0], pg);
break;
}
mapping |= RX_SMALL_PG_BUF;
*d++ = cpu_to_be64(mapping);
set_rx_sw_desc(sd, pg, mapping);
sd++;
q->avail++;
if (++q->pidx == q->size) {
q->pidx = 0;
sd = q->sdesc;
d = q->desc;
}
}
out: cred = q->avail - cred;
q->pend_cred += cred;
ring_fl_db(adap, q);
if (unlikely(fl_starving(adap, q))) {
smp_wmb();
set_bit(q->cntxt_id - adap->sge.egr_start,
adap->sge.starving_fl);
}
return cred;
}
/**
* refill_fl_useskbs - refill an SGE Rx buffer ring with skbs
* @adap: the adapter
* @q: the ring to refill
* @n: the number of new buffers to allocate
* @gfp: the gfp flags for the allocations
*
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
* allocated with the supplied gfp flags. The caller must assure that
* @n does not exceed the queue's capacity. If afterwards the queue is
* found critically low mark it as starving in the bitmap of starving FLs.
*
* Returns the number of buffers allocated.
*/
static unsigned int refill_fl_useskbs(struct adapter *adap, struct sge_fl *q,
int n, gfp_t gfp)
{
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
struct net_device *dev = rxq->rspq.netdev;
unsigned int mtu = dev->mtu;
unsigned int buf_size, buf_size_idx, skb_size;
unsigned int cred = q->avail;
__be64 *d = &q->desc[q->pidx];
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
gfp |= __GFP_NOWARN; /* failures are expected */
/*
* Figure out what skb buffer size and corresponding T4 SGE FL Buffer
* Size index we'll be using based on the device's current MTU. We
* need to allocate an extra (FL_ALIGN-1) bytes in order to be able to
* create an aligned address (and leave the bottom bits available for
* our flags and buffer size indices).
*/
if (mtu <= FL_MTU_SMALL) {
buf_size = FL_MTU_SMALL_BUFSIZE;
buf_size_idx = RX_SMALL_MTU_BUF;
} else {
buf_size = FL_MTU_LARGE_BUFSIZE;
buf_size_idx = RX_LARGE_MTU_BUF;
}
skb_size = buf_size + FL_ALIGN - 1;
while (n--) {
struct sk_buff *skb = alloc_skb(skb_size, gfp);
void *buf_start;
dma_addr_t mapping;
if (unlikely(!skb))
goto out;
buf_start = PTR_ALIGN(skb->data, FL_ALIGN);
if (buf_start != skb->data)
skb_reserve(skb,
(__kernel_ptrdiff_t)buf_start -
(__kernel_ptrdiff_t)skb->data);
mapping = dma_map_single(adap->pdev_dev, buf_start, buf_size,
PCI_DMA_FROMDEVICE);
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
kfree_skb(skb);
goto out;
}
mapping |= buf_size_idx;
*d++ = cpu_to_be64(mapping);
set_rx_sw_desc(sd, skb, mapping);
sd++;
q->avail++;
if (++q->pidx == q->size) {
q->pidx = 0;
sd = q->sdesc;
d = q->desc;
}
}
out: cred = q->avail - cred;
q->pend_cred += cred;
ring_fl_db(adap, q);
if (unlikely(fl_starving(adap, q))) {
smp_wmb();
set_bit(q->cntxt_id - adap->sge.egr_start,
adap->sge.starving_fl);
}
return cred;
}
/**
* refill_fl - refill an SGE Rx buffer ring with skbs
* @adap: the adapter
* @q: the ring to refill
* @n: the number of new buffers to allocate
* @gfp: the gfp flags for the allocations
*
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
* allocated with the supplied gfp flags. The caller must assure that
* @n does not exceed the queue's capacity. Returns the number of buffers
* allocated.
*/
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
gfp_t gfp)
{
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
return (unlikely(rxq->useskbs)
? refill_fl_useskbs(adap, q, n, gfp)
: refill_fl_usepages(adap, q, n, gfp));
}
static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
{
refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
GFP_ATOMIC);
}
/**
* alloc_ring - allocate resources for an SGE descriptor ring
* @dev: the PCI device's core device
* @nelem: the number of descriptors
* @elem_size: the size of each descriptor
* @sw_size: the size of the SW state associated with each ring element
* @phys: the physical address of the allocated ring
* @metadata: address of the array holding the SW state for the ring
* @stat_size: extra space in HW ring for status information
*
* Allocates resources for an SGE descriptor ring, such as Tx queues,
* free buffer lists, or response queues. Each SGE ring requires
* space for its HW descriptors plus, optionally, space for the SW state
* associated with each HW entry (the metadata). The function returns
* three values: the virtual address for the HW ring (the return value
* of the function), the bus address of the HW ring, and the address
* of the SW ring.
*/
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
size_t sw_size, dma_addr_t *phys, void *metadata,
size_t stat_size)
{
size_t len = nelem * elem_size + stat_size;
void *s = NULL;
void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
if (!p)
return NULL;
if (sw_size) {
s = kcalloc(nelem, sw_size, GFP_KERNEL);
if (!s) {
dma_free_coherent(dev, len, p, *phys);
return NULL;
}
}
if (metadata)
*(void **)metadata = s;
memset(p, 0, len);
return p;
}
/**
* sgl_len - calculates the size of an SGL of the given capacity
* @n: the number of SGL entries
*
* Calculates the number of flits needed for a scatter/gather list that
* can hold the given number of entries.
*/
static inline unsigned int sgl_len(unsigned int n)
{
/*
* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
* addresses. The DSGL Work Request starts off with a 32-bit DSGL
* ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
* repeated sequences of { Length[i], Length[i+1], Address[i],
* Address[i+1] } (this ensures that all addresses are on 64-bit
* boundaries). If N is even, then Length[N+1] should be set to 0 and
* Address[N+1] is omitted.
*
* The following calculation incorporates all of the above. It's
* somewhat hard to follow but, briefly: the "+2" accounts for the
* first two flits which include the DSGL header, Length0 and
* Address0; the "(3*(n-1))/2" covers the main body of list entries (3
* flits for every pair of the remaining N) +1 if (n-1) is odd; and
* finally the "+((n-1)&1)" adds the one remaining flit needed if
* (n-1) is odd ...
*/
n--;
return (3 * n) / 2 + (n & 1) + 2;
}
/**
* flits_to_desc - returns the num of Tx descriptors for the given flits
* @n: the number of flits
*
* Returns the number of Tx descriptors needed for the supplied number
* of flits.
*/
static inline unsigned int flits_to_desc(unsigned int n)
{
BUG_ON(n > SGE_MAX_WR_LEN / 8);
return DIV_ROUND_UP(n, 8);
}
/**
* is_eth_imm - can an Ethernet packet be sent as immediate data?
* @skb: the packet
*
* Returns whether an Ethernet packet is small enough to fit as
* immediate data.
*/
static inline int is_eth_imm(const struct sk_buff *skb)
{
return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
}
/**
* calc_tx_flits - calculate the number of flits for a packet Tx WR
* @skb: the packet
*
* Returns the number of flits needed for a Tx WR for the given Ethernet
* packet, including the needed WR and CPL headers.
*/
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
{
unsigned int flits;
/*
* If the skb is small enough, we can pump it out as a work request
* with only immediate data. In that case we just have to have the
* TX Packet header plus the skb data in the Work Request.
*/
if (is_eth_imm(skb))
return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
/*
* Otherwise, we're going to have to construct a Scatter gather list
* of the skb body and fragments. We also include the flits necessary
* for the TX Packet Work Request and CPL. We always have a firmware
* Write Header (incorporated as part of the cpl_tx_pkt_lso and
* cpl_tx_pkt structures), followed by either a TX Packet Write CPL
* message or, if we're doing a Large Send Offload, an LSO CPL message
* with an embeded TX Packet Write CPL message.
*/
flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
if (skb_shinfo(skb)->gso_size)
flits += (sizeof(struct fw_eth_tx_pkt_wr) +
sizeof(struct cpl_tx_pkt_lso_core) +
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
else
flits += (sizeof(struct fw_eth_tx_pkt_wr) +
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
return flits;
}
/**
* calc_tx_descs - calculate the number of Tx descriptors for a packet
* @skb: the packet
*
* Returns the number of Tx descriptors needed for the given Ethernet
* packet, including the needed WR and CPL headers.
*/
static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
{
return flits_to_desc(calc_tx_flits(skb));
}
/**
* write_sgl - populate a scatter/gather list for a packet
* @skb: the packet
* @q: the Tx queue we are writing into
* @sgl: starting location for writing the SGL
* @end: points right after the end of the SGL
* @start: start offset into skb main-body data to include in the SGL
*
* Generates a scatter/gather list for the buffers that make up a packet.
* The caller must provide adequate space for the SGL that will be written.
* The SGL includes all of the packet's page fragments and the data in its
* main body except for the first @start bytes. @sgl must be 16-byte
* aligned and within a Tx descriptor with available space. @end points
* write after the end of the SGL but does not account for any potential
* wrap around, i.e., @end > @sgl.
*/
static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
struct ulptx_sgl *sgl, u64 *end, unsigned int start,
const dma_addr_t *addr)
{
unsigned int i, len;
struct ulptx_sge_pair *to;
const struct skb_shared_info *si = skb_shinfo(skb);
unsigned int nfrags = si->nr_frags;
struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
len = skb_headlen(skb) - start;
if (likely(len)) {
sgl->len0 = htonl(len);
sgl->addr0 = cpu_to_be64(addr[0] + start);
nfrags++;
} else {
sgl->len0 = htonl(si->frags[0].size);
sgl->addr0 = cpu_to_be64(addr[1]);
}
sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nfrags));
if (likely(--nfrags == 0))
return;
/*
* Most of the complexity below deals with the possibility we hit the
* end of the queue in the middle of writing the SGL. For this case
* only we create the SGL in a temporary buffer and then copy it.
*/
to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
to->len[0] = cpu_to_be32(si->frags[i].size);
to->len[1] = cpu_to_be32(si->frags[++i].size);
to->addr[0] = cpu_to_be64(addr[i]);
to->addr[1] = cpu_to_be64(addr[++i]);
}
if (nfrags) {
to->len[0] = cpu_to_be32(si->frags[i].size);
to->len[1] = cpu_to_be32(0);
to->addr[0] = cpu_to_be64(addr[i + 1]);
}
if (unlikely((u8 *)end > (u8 *)q->stat)) {
unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
if (likely(part0))
memcpy(sgl->sge, buf, part0);
part1 = (u8 *)end - (u8 *)q->stat;
memcpy(q->desc, (u8 *)buf + part0, part1);
end = (void *)q->desc + part1;
}
if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
*(u64 *)end = 0;
}
/**
* ring_tx_db - check and potentially ring a Tx queue's doorbell
* @adap: the adapter
* @q: the Tx queue
* @n: number of new descriptors to give to HW
*
* Ring the doorbel for a Tx queue.
*/
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
{
WARN_ON((V_QID(q->cntxt_id) | V_PIDX(n)) & F_DBPRIO);
wmb(); /* write descriptors before telling HW */
t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
V_QID(q->cntxt_id) | V_PIDX(n));
}
/**
* inline_tx_skb - inline a packet's data into Tx descriptors
* @skb: the packet
* @q: the Tx queue where the packet will be inlined
* @pos: starting position in the Tx queue where to inline the packet
*
* Inline a packet's contents directly into Tx descriptors, starting at
* the given position within the Tx DMA ring.
* Most of the complexity of this operation is dealing with wrap arounds
* in the middle of the packet we want to inline.
*/
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
void *pos)
{
u64 *p;
int left = (void *)q->stat - pos;
if (likely(skb->len <= left)) {
if (likely(!skb->data_len))
skb_copy_from_linear_data(skb, pos, skb->len);
else
skb_copy_bits(skb, 0, pos, skb->len);
pos += skb->len;
} else {
skb_copy_bits(skb, 0, pos, left);
skb_copy_bits(skb, left, q->desc, skb->len - left);
pos = (void *)q->desc + (skb->len - left);
}
/* 0-pad to multiple of 16 */
p = PTR_ALIGN(pos, 8);
if ((uintptr_t)p & 8)
*p = 0;
}
/*
* Figure out what HW csum a packet wants and return the appropriate control
* bits.
*/
static u64 hwcsum(const struct sk_buff *skb)
{
int csum_type;
const struct iphdr *iph = ip_hdr(skb);
if (iph->version == 4) {
if (iph->protocol == IPPROTO_TCP)
csum_type = TX_CSUM_TCPIP;
else if (iph->protocol == IPPROTO_UDP)
csum_type = TX_CSUM_UDPIP;
else {
nocsum: /*
* unknown protocol, disable HW csum
* and hope a bad packet is detected
*/
return F_TXPKT_L4CSUM_DIS;
}
} else {
/*
* this doesn't work with extension headers
*/
const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
if (ip6h->nexthdr == IPPROTO_TCP)
csum_type = TX_CSUM_TCPIP6;
else if (ip6h->nexthdr == IPPROTO_UDP)
csum_type = TX_CSUM_UDPIP6;
else
goto nocsum;
}
if (likely(csum_type >= TX_CSUM_TCPIP))
return V_TXPKT_CSUM_TYPE(csum_type) |
V_TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
V_TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
else {
int start = skb_transport_offset(skb);
return V_TXPKT_CSUM_TYPE(csum_type) |
V_TXPKT_CSUM_START(start) |
V_TXPKT_CSUM_LOC(start + skb->csum_offset);
}
}
#if 0
/*
* Returns a pointer to the Tx descriptor at the start of the 8th most recent
* packet.
*/
static struct tx_desc *wakeup_desc(const struct sge_txq *q)
{
unsigned int n;
n = (q->recent & 0x0f0f0f0f) + ((q->recent >> 4) & 0x0f0f0f0f);
n = (n & 0x00ff00ff) + ((n >> 8) & 0x00ff00ff);
n = (n & 0xffff) + (n >> 16);
n = q->pidx >= n ? q->pidx - n : q->pidx - n + q->size;
return &q->desc[n];
}
#endif
static void eth_txq_stop(struct sge_eth_txq *q)
{
netif_tx_stop_queue(q->txq);
q->q.stops++;
}
static inline void txq_advance(struct sge_txq *q, unsigned int n)
{
q->in_use += n;
q->pidx += n;
if (q->pidx >= q->size)
q->pidx -= q->size;
}
#define MAX_COALESCE_LEN 64000
static inline int wraps_around(struct sge_txq *q, int ndesc)
{
return (q->pidx + ndesc) > q->size ? 1 : 0;
}
/**
* ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
* @ adap: adapter structure
* @txq: tx queue
*
* writes the different fields of the pkts WR and sends it.
*/
static inline int ship_tx_pkt_coalesce_wr(struct adapter *adap, struct sge_eth_txq *txq)
{
u32 wr_mid;
struct sge_txq *q = &txq->q;
struct fw_eth_tx_pkts_wr *wr;
unsigned int ndesc;
/* fill the pkts WR header */
wr = (void *)&q->desc[q->pidx];
wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
V_FW_WR_IMMDLEN(sizeof(u64) * (q->coalesce.flits - 2)));
wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
ndesc = flits_to_desc(q->coalesce.flits);
if (q->coalesce.intr) {
wr_mid |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
q->coalesce.intr = false;
}
wr->equiq_to_len16 = htonl(wr_mid);
wr->plen = cpu_to_be16(q->coalesce.len);
wr->npkt = q->coalesce.idx;
wr->r3 = 0;
wr->type = q->coalesce.type;
/* zero out coalesce structure members */
q->coalesce.idx = 0;
q->coalesce.flits = 0;
q->coalesce.len = 0;
txq_advance(q, ndesc);
txq->coal_wr++;
txq->coal_pkts += wr->npkt;
ring_tx_db(adap, q, ndesc);
return 1;
}
int t4_sge_coalesce_handler(struct adapter *adap, struct sge_eth_txq *eq)
{
struct sge_txq *q = &eq->q;
int hw_cidx = ntohs(q->stat->cidx);
int in_use = q->pidx - hw_cidx + flits_to_desc(q->coalesce.flits);
/* in_use is what the hardware hasn't processed yet and not
* the tx descriptors not yet freed */
if (in_use < 0)
in_use += q->size;
/* if the queue is stopped and half the descritors were consumed
* by the hw, restart the queue */
if (netif_tx_queue_stopped(eq->txq) && in_use < (eq->q.size >> 1)) {
netif_tx_wake_queue(eq->txq);
eq->q.restarts++;
} else if (!netif_tx_queue_stopped(eq->txq) && in_use >= (eq->q.size >> 1))
eq->q.coalesce.intr = true;
if (eq->q.coalesce.idx && __netif_tx_trylock(eq->txq)){
ship_tx_pkt_coalesce_wr(adap, eq);
__netif_tx_unlock(eq->txq);
}
return 1;
}
/**
* should_tx_packet_coalesce - decides wether to coalesce an skb or not
* @txq: tx queue where the skb is sent
* @skb: skb to be sent
* @nflits: return value for number of flits needed
* @adap: adapter structure
*
* This function decides if a packet should be coalesced or not. We start
* coalescing if half of the descriptors in a tx queue are used and stop
* when the number of used descriptors falls down to one fourth of the txq.
*/
static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq, struct sk_buff *skb,
int *nflits, struct adapter *adap)
{
struct skb_shared_info *si = skb_shinfo(skb);
struct sge_txq *q = &txq->q;
unsigned int flits, ndesc;
unsigned char type = 0;
int credits, hw_cidx = ntohs(q->stat->cidx);
int in_use = q->pidx - hw_cidx + flits_to_desc(q->coalesce.flits);
if (in_use < 0)
in_use += q->size;
if (unlikely(type != q->coalesce.type && q->coalesce.idx))
ship_tx_pkt_coalesce_wr(adap, txq);
/* calculate the number of flits required for coalescing this packet
* without the 2 flits of the WR header. These are added further down
* if we are just starting in new PKTS WR. sgl_len doesn't account for
* the possible 16 bytes alignment ULP TX commands so we do it here.
*/
flits = (sgl_len(si->nr_frags + 1) + 1) & ~1U;
if (type == 0)
flits += (sizeof(struct ulp_txpkt) +
sizeof(struct ulptx_idata)) / sizeof(__be64);
flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
*nflits = flits;
/* if we're using less than 64 descriptors and the tx_coal module parameter
* is not equal to 2 stop coalescing and ship any pending WR */
if ((adap->tx_coal != 2) && in_use < 64) {
if (q->coalesce.idx)
ship_tx_pkt_coalesce_wr(adap, txq);
q->coalesce.ison = false;
return 0;
}
/* we don't bother coalescing gso packets */
if (si->gso_size) {
if (q->coalesce.idx)
ship_tx_pkt_coalesce_wr(adap, txq);
return 0;
}
/* if coalescing is on, the skb is added to a pkts WR. Otherwise,
* if the queue is half full we turn coalescing on but send this
* skb through the normal path to request a completion interrupt.
* if the queue is not half full we just send the skb through the
* normal path. */
if (q->coalesce.ison) {
if (q->coalesce.idx) {
ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
credits = txq_avail(q) - ndesc;
/* If credits are not available for this skb, send the
* already coalesced skbs and let the non-coalesce pass
* handle stopping the queue.
*/
if (unlikely(credits < ETHTXQ_STOP_THRES ||
wraps_around(q, ndesc))) {
ship_tx_pkt_coalesce_wr(adap, txq);
return 0;
}
/* If the max coalesce len or the max WR len is reached
* ship the WR and keep coalescing on.
*/
if (unlikely((q->coalesce.len + skb->len >
MAX_COALESCE_LEN) ||
(q->coalesce.flits + flits >
q->coalesce.max))) {
ship_tx_pkt_coalesce_wr(adap, txq);
goto new;
}
return 1;
} else
goto new;
} else if (in_use > (q->size >> 1)) {
/* start coalescing and arm completion interrupt */
q->coalesce.ison = true;
q->coalesce.intr = true;
return 0;
} else
return 0;
new:
/* start a new pkts WR, the WR header is not filled below */
flits += sizeof(struct fw_eth_tx_pkts_wr) /
sizeof(__be64);
ndesc = flits_to_desc(q->coalesce.flits + flits);
credits = txq_avail(q) - ndesc;
if (unlikely((credits < ETHTXQ_STOP_THRES) || wraps_around(q, ndesc)))
return 0;
q->coalesce.flits += 2;
q->coalesce.type = type;
q->coalesce.ptr = (unsigned char *) &q->desc[q->pidx] +
2 * sizeof(__be64);
return 1;
}
/**
* tx_do_packet_coalesce - add an skb to a coalesce WR
* @txq: sge_eth_txq used send the skb
* @skb: skb to be sent
* @flits: flits needed for this skb
* @adap: adapter structure
* @pi: port_info structure
* @addr: mapped address of the skb
*
* Adds an skb to be sent as part of a coalesce WR by filling a
* ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
* ulp_tx_sc_dsgl command.
*/
static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
struct sk_buff *skb,
int flits, struct adapter *adap,
const struct port_info *pi,
dma_addr_t *addr)
{
u64 cntrl, *end;
struct sge_txq *q = &txq->q;
struct ulp_txpkt *mc;
struct ulptx_idata *sc_imm;
struct cpl_tx_pkt_core *cpl;
struct tx_sw_desc *sd;
unsigned int idx = q->coalesce.idx, len = skb->len;
if (q->coalesce.type == 0) {
mc = (struct ulp_txpkt *) q->coalesce.ptr;
mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
F_ULP_TXPKT_RO);
mc->len = htonl(DIV_ROUND_UP(flits, 2));
sc_imm = (struct ulptx_idata *) (mc + 1);
sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) | F_ULP_TX_SC_MORE);
sc_imm->len = htonl(sizeof(*cpl));
end = (u64 *) mc + flits;
cpl = (struct cpl_tx_pkt_core *) (sc_imm + 1);
} else {
end = (u64 *) q->coalesce.ptr + flits;
cpl = (struct cpl_tx_pkt_core *) q->coalesce.ptr;
}
/* update coalesce structure for this txq */
q->coalesce.flits += flits;
q->coalesce.ptr += flits * sizeof(__be64);
q->coalesce.len += skb->len;
/* fill the cpl message, same as in t4_eth_xmit, this should be kept
* similar to t4_eth_xmit
*/
if (skb->ip_summed == CHECKSUM_PARTIAL) {
cntrl = hwcsum(skb) | F_TXPKT_IPCSUM_DIS;
txq->tx_cso++;
} else
cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
if (vlan_tx_tag_present(skb)) {
txq->vlan_ins++;
cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
}
cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
V_TXPKT_INTF(pi->tx_chan) |
V_TXPKT_PF(adap->pf));
cpl->pack = htons(0);
cpl->len = htons(len);
cpl->ctrl1 = cpu_to_be64(cntrl);
write_sgl(skb, q, (struct ulptx_sgl *)(cpl + 1), end, 0,
addr);
skb_orphan(skb);
/* store pointers to the skb and the sgl used in free_tx_desc.
* each tx desc can hold two pointers corresponding to the value
* of ETH_COALESCE_PKT_PER_DESC */
sd = &q->sdesc[q->pidx + (idx >> 1)];
sd->coalesce.skb[idx & 1] = skb;
sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
sd->coalesce.idx = (idx & 1) + 1;
/* send the coaelsced work request if max reached */
if (++q->coalesce.idx == ETH_COALESCE_PKT_NUM)
ship_tx_pkt_coalesce_wr(adap, txq);
return NETDEV_TX_OK;
}
/**
* t4_eth_xmit - add a packet to an Ethernet Tx queue
* @skb: the packet
* @dev: the egress net device
*
* Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
*/
int t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
u32 wr_mid;
u64 cntrl, *end;
int qidx, credits;
unsigned int flits, ndesc, cflits;
struct adapter *adap;
struct sge_eth_txq *q;
const struct port_info *pi;
struct fw_eth_tx_pkt_wr *wr;
struct cpl_tx_pkt_core *cpl;
const struct skb_shared_info *ssi;
dma_addr_t addr[MAX_SKB_FRAGS + 1];
/*
* The chip min packet length is 10 octets but play safe and reject
* anything shorter than an Ethernet header.
*/
if (unlikely(skb->len < ETH_HLEN)) {
out_free: dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
pi = netdev_priv(dev);
adap = pi->adapter;
qidx = skb_get_queue_mapping(skb);
q = &adap->sge.ethtxq[qidx + pi->first_qset];
reclaim_completed_tx(adap, &q->q, true);
/* align the end fo coalesce WR to a 512 byte boundary */
q->q.coalesce.max = (8 - (q->q.pidx & 7)) * 8;
/* check if we can do packet coalescing */
if (adap->tx_coal && should_tx_packet_coalesce(q, skb, &cflits, adap)) {
if (unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
q->mapping_err++;
goto out_free;
}
return tx_do_packet_coalesce(q, skb, cflits, adap, pi, addr);
}
flits = calc_tx_flits(skb);
ndesc = flits_to_desc(flits);
credits = txq_avail(&q->q) - ndesc;
if (unlikely(credits < 0)) {
eth_txq_stop(q);
dev_err(adap->pdev_dev,
"%s: Tx ring %u full while queue awake!\n",
dev->name, qidx);
return NETDEV_TX_BUSY;
}
if (!is_eth_imm(skb) &&
unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
q->mapping_err++;
goto out_free;
}
wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
eth_txq_stop(q);
wr_mid |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
}
/* request tx completion if needed for tx coalescing */
if (adap->tx_coal && q->q.coalesce.intr) {
wr_mid |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
q->q.coalesce.intr = false;
}
wr = (void *)&q->q.desc[q->q.pidx];
wr->equiq_to_len16 = htonl(wr_mid);
wr->r3 = cpu_to_be64(0);
end = (u64 *)wr + flits;
ssi = skb_shinfo(skb);
if (ssi->gso_size) {
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
int l3hdr_len = skb_network_header_len(skb);
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
V_FW_WR_IMMDLEN(sizeof(*lso) +
sizeof(*cpl)));
lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
V_LSO_IPV6(v6) |
V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
V_LSO_IPHDR_LEN(l3hdr_len / 4) |
V_LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
lso->ipid_ofst = htons(0);
lso->mss = htons(ssi->gso_size);
lso->seqno_offset = htonl(0);
lso->len = htonl(skb->len);
cpl = (void *)(lso + 1);
cntrl = V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
V_TXPKT_IPHDR_LEN(l3hdr_len) |
V_TXPKT_ETHHDR_LEN(eth_xtra_len);
q->tso++;
q->tx_cso += ssi->gso_segs;
} else {
int len;
len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
V_FW_WR_IMMDLEN(len));
cpl = (void *)(wr + 1);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
cntrl = hwcsum(skb) | F_TXPKT_IPCSUM_DIS;
q->tx_cso++;
} else
cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
}
if (vlan_tx_tag_present(skb)) {
q->vlan_ins++;
cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
}
cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
V_TXPKT_INTF(pi->tx_chan) |
V_TXPKT_PF(adap->pf));
cpl->pack = htons(0);
cpl->len = htons(skb->len);
cpl->ctrl1 = cpu_to_be64(cntrl);
#ifdef T4_TRACE
T4_TRACE5(adap->tb[q->q.cntxt_id & 7],
"eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
ndesc, credits, q->q.pidx, skb->len, ssi->nr_frags);
#endif
if (is_eth_imm(skb)) {
inline_tx_skb(skb, &q->q, cpl + 1);
dev_kfree_skb(skb);
} else {
int last_desc;
write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
addr);
skb_orphan(skb);
last_desc = q->q.pidx + ndesc - 1;
if (last_desc >= q->q.size)
last_desc -= q->q.size;
q->q.sdesc[last_desc].skb = skb;
q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
}
txq_advance(&q->q, ndesc);
dev->trans_start = jiffies; // XXX removed in newer kernels
ring_tx_db(adap, &q->q, ndesc);
return NETDEV_TX_OK;
}
/**
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
* @q: the SGE control Tx queue
*
* This is a variant of reclaim_completed_tx() that is used for Tx queues
* that send only immediate data (presently just the control queues) and
* thus do not have any sk_buffs to release.
*/
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
{
int hw_cidx = ntohs(q->stat->cidx);
int reclaim = hw_cidx - q->cidx;
if (reclaim < 0)
reclaim += q->size;
q->in_use -= reclaim;
q->cidx = hw_cidx;
}
/**
* is_imm - check whether a packet can be sent as immediate data
* @skb: the packet
*
* Returns true if a packet can be sent as a WR with immediate data.
*/
static inline int is_imm(const struct sk_buff *skb)
{
return skb->len <= MAX_CTRL_WR_LEN;
}
/**
* ctrlq_check_stop - check if a control queue is full and should stop
* @q: the queue
* @wr: most recent WR written to the queue
*
* Check if a control queue has become full and should be stopped.
* We clean up control queue descriptors very lazily, only when we are out.
* If the queue is still full after reclaiming any completed descriptors
* we suspend it and have the last WR wake it up.
*/
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
{
reclaim_completed_tx_imm(&q->q);
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
wr->lo |= htonl(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
q->q.stops++;
q->full = 1;
}
}
/**
* ctrl_xmit - send a packet through an SGE control Tx queue
* @q: the control queue
* @skb: the packet
*
* Send a packet through an SGE control Tx queue. Packets sent through
* a control queue must fit entirely as immediate data.
*/
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
{
unsigned int ndesc;
struct fw_wr_hdr *wr;
if (unlikely(!is_imm(skb))) {
WARN_ON(1);
dev_kfree_skb(skb);
return NET_XMIT_DROP;
}
ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
spin_lock(&q->sendq.lock);
if (unlikely(q->full)) {
skb->priority = ndesc; /* save for restart */
__skb_queue_tail(&q->sendq, skb);
spin_unlock(&q->sendq.lock);
return NET_XMIT_CN;
}
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
inline_tx_skb(skb, &q->q, wr);
txq_advance(&q->q, ndesc);
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
ctrlq_check_stop(q, wr);
ring_tx_db(q->adap, &q->q, ndesc);
spin_unlock(&q->sendq.lock);
kfree_skb(skb);
return NET_XMIT_SUCCESS;
}
/**
* restart_ctrlq - restart a suspended control queue
* @data: the control queue to restart
*
* Resumes transmission on a suspended Tx control queue.
*/
static void restart_ctrlq(unsigned long data)
{
struct sk_buff *skb;
unsigned int written = 0;
struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
spin_lock(&q->sendq.lock);
reclaim_completed_tx_imm(&q->q);
BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
struct fw_wr_hdr *wr;
unsigned int ndesc = skb->priority; /* previously saved */
/*
* Write descriptors and free skbs outside the lock to limit
* wait times. q->full is still set so new skbs will be queued.
*/
spin_unlock(&q->sendq.lock);
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
inline_tx_skb(skb, &q->q, wr);
kfree_skb(skb);
written += ndesc;
txq_advance(&q->q, ndesc);
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
unsigned long old = q->q.stops;
ctrlq_check_stop(q, wr);
if (q->q.stops != old) { /* suspended anew */
spin_lock(&q->sendq.lock);
goto ringdb;
}
}
if (written > 16) {
ring_tx_db(q->adap, &q->q, written);
written = 0;
}
spin_lock(&q->sendq.lock);
}
q->full = 0;
ringdb: if (written)
ring_tx_db(q->adap, &q->q, written);
spin_unlock(&q->sendq.lock);
}
/**
* t4_mgmt_tx - send a management message
* @adap: the adapter
* @skb: the packet containing the management message
*
* Send a management message through control queue 0.
*/
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
{
int ret;
local_bh_disable();
ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
local_bh_enable();
return ret;
}
/**
* is_ofld_imm - check whether a packet can be sent as immediate data
* @skb: the packet
*
* Returns true if a packet can be sent as an offload WR with immediate
* data. We currently use the same limit as for Ethernet packets.
*/
static inline int is_ofld_imm(const struct sk_buff *skb)
{
return skb->len <= MAX_IMM_TX_PKT_LEN;
}
/**
* calc_tx_flits_ofld - calculate # of flits for an offload packet
* @skb: the packet
*
* Returns the number of flits needed for the given offload packet.
* These packets are already fully constructed and no additional headers
* will be added.
*/
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
unsigned int flits, cnt;
if (is_ofld_imm(skb))
return DIV_ROUND_UP(skb->len, 8);
flits = skb_transport_offset(skb) / 8U; /* headers */
cnt = skb_shinfo(skb)->nr_frags;
if (skb->tail != skb->transport_header)
cnt++;
return flits + sgl_len(cnt);
}
/**
* txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
* @adap: the adapter
* @q: the queue to stop
*
* Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
* inability to map packets. A periodic timer attempts to restart
* queues so marked.
*/
static void txq_stop_maperr(struct sge_ofld_txq *q)
{
q->mapping_err++;
q->q.stops++;
set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
q->adap->sge.txq_maperr);
}
/**
* ofldtxq_stop - stop an offload Tx queue that has become full
* @q: the queue to stop
* @skb: the packet causing the queue to become full
*
* Stops an offload Tx queue that has become full and modifies the packet
* being written to request a wakeup.
*/
static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
{
struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
wr->lo |= htonl(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
q->q.stops++;
q->full = 1;
}
/**
* service_ofldq - restart a suspended offload queue
* @q: the offload queue
*
* Services an offload Tx queue by moving packets from its packet queue
* to the HW Tx ring. The function starts and ends with the queue locked.
*/
static void service_ofldq(struct sge_ofld_txq *q)
{
u64 *pos;
int credits;
struct sk_buff *skb;
unsigned int written = 0;
unsigned int flits, ndesc;
while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
/*
* We drop the lock but leave skb on sendq, thus retaining
* exclusive access to the state of the queue.
*/
spin_unlock(&q->sendq.lock);
reclaim_completed_tx(q->adap, &q->q, false);
flits = skb->priority; /* previously saved */
ndesc = flits_to_desc(flits);
credits = txq_avail(&q->q) - ndesc;
BUG_ON(credits < 0);
if (unlikely(credits < TXQ_STOP_THRES))
ofldtxq_stop(q, skb);
#ifdef T4_TRACE
T4_TRACE5(q->adap->tb[q->q.cntxt_id & 7],
"ofld_xmit: ndesc %u, pidx %u, len %u, main %u, "
"frags %u", ndesc, q->q.pidx, skb->len,
skb->len - skb->data_len, skb_shinfo(skb)->nr_frags);
#endif
pos = (u64 *)&q->q.desc[q->q.pidx];
if (is_ofld_imm(skb))
inline_tx_skb(skb, &q->q, pos);
else if (map_skb(q->adap->pdev_dev, skb,
(dma_addr_t *)skb->head)) {
txq_stop_maperr(q);
spin_lock(&q->sendq.lock);
break;
} else {
int last_desc, hdr_len = skb_transport_offset(skb);
/*
* This assumes the WR headers fit within one descriptor
* with room to spare. Otherwise we need to deal with
* wrap-around here.
*/
memcpy(pos, skb->data, hdr_len);
write_sgl(skb, &q->q, (void *)pos + hdr_len,
pos + flits, hdr_len,
(dma_addr_t *)skb->head);
if (need_skb_unmap()) {
skb->dev = q->adap->port[0];
skb->destructor = deferred_unmap_destructor;
}
last_desc = q->q.pidx + ndesc - 1;
if (last_desc >= q->q.size)
last_desc -= q->q.size;
q->q.sdesc[last_desc].skb = skb;
}
txq_advance(&q->q, ndesc);
written += ndesc;
if (unlikely(written > 32)) {
ring_tx_db(q->adap, &q->q, written);
written = 0;
}
spin_lock(&q->sendq.lock);
__skb_unlink(skb, &q->sendq);
if (is_ofld_imm(skb))
kfree_skb(skb);
}
if (likely(written))
ring_tx_db(q->adap, &q->q, written);
}
/**
* ofld_xmit - send a packet through an offload queue
* @q: the Tx offload queue
* @skb: the packet
*
* Send an offload packet through an SGE offload queue.
*/
static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
{
skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
spin_lock(&q->sendq.lock);
__skb_queue_tail(&q->sendq, skb);
if (q->sendq.qlen == 1)
service_ofldq(q);
spin_unlock(&q->sendq.lock);
return NET_XMIT_SUCCESS;
}
/**
* restart_ofldq - restart a suspended offload queue
* @data: the offload queue to restart
*
* Resumes transmission on a suspended Tx offload queue.
*/
static void restart_ofldq(unsigned long data)
{
struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
spin_lock(&q->sendq.lock);
q->full = 0; /* the queue actually is completely empty now */
service_ofldq(q);
spin_unlock(&q->sendq.lock);
}
/**
* skb_txq - return the Tx queue an offload packet should use
* @skb: the packet
*
* Returns the Tx queue an offload packet should use as indicated by bits
* 1-15 in the packet's queue_mapping.
*/
static inline unsigned int skb_txq(const struct sk_buff *skb)
{
return skb->queue_mapping >> 1;
}
/**
* is_ctrl_pkt - return whether an offload packet is a control packet
* @skb: the packet
*
* Returns whether an offload packet should use an OFLD or a CTRL
* Tx queue as indicated by bit 0 in the packet's queue_mapping.
*/
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
{
return skb->queue_mapping & 1;
}
static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
{
unsigned int idx = skb_txq(skb);
if (unlikely(is_ctrl_pkt(skb)))
return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
}
/**
* t4_ofld_send - send an offload packet
* @adap: the adapter
* @skb: the packet
*
* Sends an offload packet. We use the packet queue_mapping to select the
* appropriate Tx queue as follows: bit 0 indicates whether the packet
* should be sent as regular or control, bits 1-15 select the queue.
*/
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
{
int ret;
local_bh_disable();
ret = ofld_send(adap, skb);
local_bh_enable();
return ret;
}
/**
* cxgb4_ofld_send - send an offload packet
* @dev: the net device
* @skb: the packet
*
* Sends an offload packet. This is an exported version of @t4_ofld_send,
* intended for ULDs.
*/
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
{
return t4_ofld_send(netdev2adap(dev), skb);
}
EXPORT_SYMBOL(cxgb4_ofld_send);
/**
* pktgl_to_skb_usepages - build an sk_buff from a packet gather list
* @gl: the gather list
* @skb_len: size of sk_buff main body if it carries fragments
* @pull_len: amount of data to move to the sk_buff's main body
*
* Builds an sk_buff from the given packet gather list. Returns the
* sk_buff or %NULL if sk_buff allocation failed.
*/
struct sk_buff *t4_pktgl_to_skb_usepages(const struct pkt_gl *gl,
unsigned int skb_len,
unsigned int pull_len)
{
struct sk_buff *skb;
struct skb_shared_info *ssi;
/*
* Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
* size, which is expected since buffers are at least PAGE_SIZEd.
* In this case packets up to RX_COPY_THRES have only one fragment.
*/
if (gl->tot_len <= RX_COPY_THRES) {
skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
if (unlikely(!skb))
goto out;
__skb_put(skb, gl->tot_len);
skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
} else {
skb = alloc_skb(skb_len, GFP_ATOMIC);
if (unlikely(!skb))
goto out;
__skb_put(skb, pull_len);
skb_copy_to_linear_data(skb, gl->va, pull_len);
ssi = skb_shinfo(skb);
ssi->frags[0].page = gl->frags[0].page;
ssi->frags[0].page_offset = gl->frags[0].page_offset + pull_len;
ssi->frags[0].size = gl->frags[0].size - pull_len;
if (gl->nfrags > 1)
memcpy(&ssi->frags[1], &gl->frags[1],
(gl->nfrags - 1) * sizeof(skb_frag_t));
ssi->nr_frags = gl->nfrags;
skb->len = gl->tot_len;
skb->data_len = skb->len - pull_len;
skb->truesize += skb->data_len;
/* Get a reference for the last page, we don't own it */
get_page(gl->frags[gl->nfrags - 1].page);
}
out: return skb;
}
/**
* pktgl_to_skb_useskbs - build an sk_buff from a packet gather list
* @gl: the gather list
* @skb_len: size of sk_buff main body if it carries fragments
* @pull_len: amount of data to move to the sk_buff's main body
*
* Builds an sk_buff from the given packet gather list. Returns the
* sk_buff or %NULL if sk_buff allocation failed.
*/
struct sk_buff *t4_pktgl_to_skb_useskbs(const struct pkt_gl *gl,
unsigned int skb_len,
unsigned int pull_len)
{
struct sk_buff *skb;
unsigned char *dp;
int frag;
/*
* If there's only one skb fragment, just return that.
*/
if (likely(gl->nfrags == 1))
return gl->skbs[0];
/*
* There are multiple skb fragments so we need to create a single new
* skb which contains all the data. This can happen when the MTU on
* an interface is increased and the ingress packet is received into
* the old smaller MTU buffers which were on the receive ring at the
* time of the MTU change.
*/
skb = alloc_skb(gl->tot_len + FL_PKTSHIFT, GFP_ATOMIC);
if (unlikely(!skb))
goto out;
skb_put(skb, gl->tot_len + FL_PKTSHIFT);
dp = skb->data;
for (frag = 0; frag < gl->nfrags; frag++) {
struct sk_buff *sskb = gl->skbs[frag];
memcpy(dp, sskb->data, sskb->len);
dp += sskb->len;
kfree_skb(sskb);
}
out: return skb;
}
/**
* pktgl_to_skb - build an sk_buff from a packet gather list
* @gl: the gather list
* @skb_len: size of sk_buff main body if it carries fragments
* @pull_len: amount of data to move to the sk_buff's main body
*
* Builds an sk_buff from the given packet gather list. Returns the
* sk_buff or %NULL if sk_buff allocation failed.
*/
struct sk_buff *t4_pktgl_to_skb(const struct pkt_gl *gl,
unsigned int skb_len,
unsigned int pull_len)
{
return (unlikely(gl->useskbs)
? t4_pktgl_to_skb_useskbs(gl, skb_len, pull_len)
: t4_pktgl_to_skb_usepages(gl, skb_len, pull_len));
}
EXPORT_SYMBOL(t4_pktgl_to_skb);
/**
* t4_pktgl_free - free a packet gather list
* @gl: the gather list
*
* Releases the buffers of a packet gather list.
*/
void t4_pktgl_free(const struct pkt_gl *gl)
{
int n;
if (unlikely(gl->useskbs)) {
for (n = 0; n < gl->nfrags; n++)
kfree_skb(gl->skbs[n]);
} else {
const skb_frag_t *p;
/*
* We do not own the last page on the list and do not free
* it.
*/
for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
put_page(p->page);
}
}
#ifdef CONFIG_CXGB4_GRO
/**
* copy_frags - copy fragments from gather list into skb_shared_info
* @si: destination skb shared info structure
* @gl: source internal packet gather list
* @offset: packet start offset in first page
*
* Copy an internal packet gather list into a Linux skb_shared_info
* structure.
*/
static inline void copy_frags(struct skb_shared_info *si,
const struct pkt_gl *gl,
unsigned int offset)
{
unsigned int n;
/* usually there's just one frag */
si->frags[0].page = gl->frags[0].page;
si->frags[0].page_offset = gl->frags[0].page_offset + offset;
si->frags[0].size = gl->frags[0].size - offset;
si->nr_frags = gl->nfrags;
n = gl->nfrags - 1;
if (n)
memcpy(&si->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));
/* get a reference to the last page, we don't own it */
get_page(gl->frags[n].page);
}
/**
* do_gro - perform Generic Receive Offload ingress packet processing
* @rxq: ingress RX Ethernet Queue
* @gl: gather list for ingress packet
* @pkt: CPL header for last packet fragment
*
* Perform Generic Receive Offload (GRO) ingress packet processing.
* We use the standard Linux GRO interfaces for this.
*/
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
const struct cpl_rx_pkt *pkt)
{
int ret;
struct sk_buff *skb;
skb = napi_get_frags(&rxq->rspq.napi);
if (unlikely(!skb)) {
t4_pktgl_free(gl);
rxq->stats.rx_drops++;
return;
}
copy_frags(skb_shinfo(skb), gl, FL_PKTSHIFT);
skb->len = gl->tot_len - FL_PKTSHIFT;
skb->data_len = skb->len;
skb->truesize += skb->data_len;
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb_record_rx_queue(skb, rxq->rspq.idx);
if (unlikely(pkt->vlan_ex)) {
struct port_info *pi = netdev_priv(rxq->rspq.netdev);
struct vlan_group *grp = pi->vlan_grp;
rxq->stats.vlan_ex++;
if (likely(grp)) {
ret = vlan_gro_frags(&rxq->rspq.napi, grp,
be16_to_cpu(pkt->vlan));
goto stats;
}
}
ret = napi_gro_frags(&rxq->rspq.napi);
stats:
if (ret == GRO_HELD)
rxq->stats.lro_pkts++;
else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
rxq->stats.lro_merged++;
rxq->stats.pkts++;
rxq->stats.rx_cso++;
}
#endif
/*
* Process an MPS trace packet. Give it an unused protocol number so it won't
* be delivered to anyone and send it to the stack for capture.
*/
static noinline int handle_trace_pkt(struct adapter *adap,
const struct pkt_gl *gl)
{
struct sk_buff *skb;
struct cpl_trace_pkt *p;
skb = t4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
if (unlikely(!skb)) {
t4_pktgl_free(gl);
return 0;
}
p = (struct cpl_trace_pkt *)skb->data;
__skb_pull(skb, sizeof(*p));
skb_reset_mac_header(skb);
skb->protocol = htons(0xffff);
skb->dev = adap->port[0];
netif_receive_skb(skb);
return 0;
}
/**
* t4_ethrx_handler - process an ingress ethernet packet
* @q: the response queue that received the packet
* @rsp: the response queue descriptor holding the RX_PKT message
* @si: the gather list of packet fragments
*
* Process an ingress ethernet packet and deliver it to the stack.
*/
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
const struct pkt_gl *si)
{
struct sk_buff *skb;
struct port_info *pi;
const struct cpl_rx_pkt *pkt;
bool csum_ok;
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT))
return handle_trace_pkt(q->adapter, si);
pkt = (void *)&rsp[1];
csum_ok = pkt->csum_calc && !pkt->err_vec;
#ifdef CONFIG_CXGB4_GRO
/*
* If this is a good TCP packet and we have Generic Receive Offload
* enabled, handle the packet in the GRO path.
*/
if ((pkt->l2info & cpu_to_be32(F_RXF_TCP)) &&
(q->netdev->features & NETIF_F_GRO) &&
likely(si->useskbs == 0) &&
csum_ok && !pkt->ip_frag) {
do_gro(rxq, si, pkt);
return 0;
}
#endif
skb = t4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
if (unlikely(!skb)) {
t4_pktgl_free(si);
rxq->stats.rx_drops++;
return 0;
}
__skb_pull(skb, RX_PKT_PAD); /* remove ethernet header padding */
skb->protocol = eth_type_trans(skb, q->netdev);
skb_record_rx_queue(skb, q->idx);
pi = netdev_priv(skb->dev);
rxq->stats.pkts++;
if (csum_ok && (pi->rx_offload & RX_CSO) &&
(pkt->l2info & htonl(F_RXF_UDP | F_RXF_TCP))) {
if (!pkt->ip_frag) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
rxq->stats.rx_cso++;
} else if (pkt->l2info & htonl(F_RXF_IP)) {
__sum16 c = (__force __sum16)pkt->csum;
skb->csum = csum_unfold(c);
skb->ip_summed = CHECKSUM_COMPLETE;
rxq->stats.rx_cso++;
}
} else
skb->ip_summed = CHECKSUM_NONE;
if (unlikely(pkt->vlan_ex)) {
struct vlan_group *grp = pi->vlan_grp;
rxq->stats.vlan_ex++;
if (likely(grp))
vlan_hwaccel_receive_skb(skb, grp, ntohs(pkt->vlan));
else
dev_kfree_skb_any(skb);
} else {
#ifdef HAVE_PF_RING
{
int debug = 0;
struct net_device *dev = skb->dev;
struct pfring_hooks *hook = (struct pfring_hooks *)
dev->pfring_ptr;
if (hook && (hook->magic == PF_RING)) {
/* Wow: PF_RING is alive & kickin' ! */
int rc;
if (debug)
printk(KERN_INFO "[PF_RING] alive [%s][len=%d]\n",
dev->name, skb->len);
if (*hook->transparent_mode != standard_linux_path) {
rc = hook->ring_handler(skb, 1, 1, -1, 1);
if (rc == 1 /* Packet handled by PF_RING */) {
if (*hook->transparent_mode == driver2pf_ring_non_transparent) {
/* PF_RING has already freed the memory */
goto rcd_done;
}
}
}
else {
if (debug) printk(KERN_INFO "[PF_RING] not present on %s\n",
dev->name);
}
}
}
#endif
netif_receive_skb(skb);
}
#ifdef HAVE_PF_RING
rcd_done:
#endif
return 0;
}
/**
* restore_rx_bufs - put back a packet's Rx buffers
* @q: the SGE free list
* @frags: number of FL buffers to restore
*
* Puts back on an FL the Rx buffers. The buffers have already been
* unmapped and are left unmapped, we mark them so to prevent further
* unmapping attempts.
*
* This function undoes a series of @unmap_rx_buf calls when we find out
* that the current packet can't be processed right away afterall and we
* need to come back to it later. This is a very rare event and there's
* no effort to make this particularly efficient.
*/
static void restore_rx_bufs(struct sge_fl *q, int frags)
{
struct rx_sw_desc *d;
while (frags--) {
if (q->cidx == 0)
q->cidx = q->size - 1;
else
q->cidx--;
d = &q->sdesc[q->cidx];
d->dma_addr |= RX_UNMAPPED_BUF;
q->avail++;
}
}
/**
* is_new_response - check if a response is newly written
* @r: the response descriptor
* @q: the response queue
*
* Returns true if a response descriptor contains a yet unprocessed
* response.
*/
static inline bool is_new_response(const struct rsp_ctrl *r,
const struct sge_rspq *q)
{
return (r->u.type_gen >> S_RSPD_GEN) == q->gen;
}
/**
* rspq_next - advance to the next entry in a response queue
* @q: the queue
*
* Updates the state of a response queue to advance it to the next entry.
*/
static inline void rspq_next(struct sge_rspq *q)
{
q->cur_desc = (void *)q->cur_desc + q->iqe_len;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->gen ^= 1;
q->cur_desc = q->desc;
}
}
/**
* process_responses - process responses from an SGE response queue
* @q: the ingress queue to process
* @budget: how many responses can be processed in this round
*
* Process responses from an SGE response queue up to the supplied budget.
* Responses include received packets as well as control messages from FW
* or HW.
*
* Additionally choose the interrupt holdoff time for the next interrupt
* on this queue. If the system is under memory shortage use a fairly
* long delay to help recovery.
*/
int process_responses(struct sge_rspq *q, int budget)
{
int ret, rsp_type;
int budget_left = budget;
const struct rsp_ctrl *rc;
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
while (likely(budget_left)) {
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
if (!is_new_response(rc, q))
break;
rmb();
rsp_type = G_RSPD_TYPE(rc->u.type_gen);
if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
const struct rx_sw_desc *rsd;
u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
struct pkt_gl si;
si.useskbs = rxq->useskbs;
if (unlikely(si.useskbs)) {
struct sk_buff *skb;
/*
* In "use skbs" mode, we don't pack multiple
* ingress packets per buffer (skb) so we
* should _always_ get a "New Buffer" flags
* from the SGE. Also, since we hand the
* skb's up to the host stack for it to
* eventually free, we don't release the skb's
* in the driver (in contrast to the "packed
* page" mode where the driver needs to
* release its reference on the page buffers).
*/
BUG_ON(!(len & F_RSPD_NEWBUF));
len = G_RSPD_LEN(len);
si.tot_len = len;
/* gather packet fragments */
for (frags = 0; len; frags++) {
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
bufsz = min(get_buf_size(rsd),
(int)len);
skb = rsd->buf;
skb_put(skb, bufsz);
si.skbs[frags] = skb;
len -= bufsz;
unmap_rx_buf(q->adapter, &rxq->fl);
}
si.va = si.skbs[0]->data;
prefetch(si.va);
si.nfrags = frags;
ret = q->handler(q, q->cur_desc, &si);
if (unlikely(ret != 0))
restore_rx_bufs(&rxq->fl, frags);
} else {
skb_frag_t *fp;
if (len & F_RSPD_NEWBUF) {
if (likely(q->offset > 0)) {
free_rx_bufs(q->adapter,
&rxq->fl, 1);
q->offset = 0;
}
len = G_RSPD_LEN(len);
}
si.tot_len = len;
/* gather packet fragments */
for (frags = 0, fp = si.frags; ; frags++, fp++) {
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
bufsz = min(get_buf_size(rsd), (int)len);
fp->page = rsd->buf;
fp->page_offset = q->offset;
fp->size = bufsz;
len -= bufsz;
if (!len)
break;
unmap_rx_buf(q->adapter, &rxq->fl);
}
/*
* Last buffer remains mapped so explicitly
* make it coherent for CPU access.
*/
dma_sync_single_for_cpu(q->adapter->pdev_dev,
get_buf_addr(rsd),
fp->size,
DMA_FROM_DEVICE);
si.va = page_address(si.frags[0].page) +
si.frags[0].page_offset;
prefetch(si.va);
si.nfrags = frags + 1;
ret = q->handler(q, q->cur_desc, &si);
if (likely(ret == 0))
q->offset += ALIGN(fp->size, FL_ALIGN);
else
restore_rx_bufs(&rxq->fl, frags);
}
} else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
ret = q->handler(q, q->cur_desc, NULL);
} else {
ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
}
if (unlikely(ret)) {
/* couldn't process descriptor, back off for recovery */
q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
break;
}
rspq_next(q);
budget_left--;
}
if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
__refill_fl(q->adapter, &rxq->fl);
return budget - budget_left;
}
/**
* napi_rx_handler - the NAPI handler for Rx processing
* @napi: the napi instance
* @budget: how many packets we can process in this round
*
* Handler for new data events when using NAPI. This does not need any
* locking or protection from interrupts as data interrupts are off at
* this point and other adapter interrupts do not interfere (the latter
* in not a concern at all with MSI-X as non-data interrupts then have
* a separate handler).
*/
static int napi_rx_handler(struct napi_struct *napi, int budget)
{
unsigned int params;
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
int work_done = process_responses(q, budget);
if (likely(work_done < budget)) {
napi_complete(napi);
params = q->next_intr_params;
q->next_intr_params = q->intr_params;
} else
params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
t4_write_reg(q->adapter, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(work_done) |
V_INGRESSQID((u32)q->cntxt_id) | V_SEINTARM(params));
return work_done;
}
/*
* The MSI-X interrupt handler for an SGE response queue.
*/
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
{
struct sge_rspq *q = cookie;
napi_schedule(&q->napi);
return IRQ_HANDLED;
}
/*
* Process the indirect interrupt entries in the interrupt queue and kick off
* NAPI for each queue that has generated an entry.
*/
static unsigned int process_intrq(struct adapter *adap)
{
unsigned int credits;
const struct rsp_ctrl *rc;
struct sge_rspq *q = &adap->sge.intrq;
spin_lock(&adap->sge.intrq_lock);
for (credits = 0; ; credits++) {
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
if (!is_new_response(rc, q))
break;
rmb();
if (G_RSPD_TYPE(rc->u.type_gen) == X_RSPD_TYPE_INTR) {
unsigned int qid = ntohl(rc->pldbuflen_qid);
qid -= adap->sge.ingr_start;
napi_schedule(&adap->sge.ingr_map[qid]->napi);
}
rspq_next(q);
}
t4_write_reg(adap, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(credits) |
V_INGRESSQID(q->cntxt_id) | V_SEINTARM(q->intr_params));
spin_unlock(&adap->sge.intrq_lock);
return credits;
}
/*
* The MSI interrupt handler, which handles data events from SGE response queues
* as well as error and other async events as they all use the same MSI vector.
*/
static irqreturn_t t4_intr_msi(int irq, void *cookie)
{
struct adapter *adap = cookie;
t4_slow_intr_handler(adap);
process_intrq(adap);
return IRQ_HANDLED;
}
/*
* Interrupt handler for legacy INTx interrupts for T4-based cards.
* Handles data events from SGE response queues as well as error and other
* async events as they all use the same interrupt line.
*/
static irqreturn_t t4_intr_intx(int irq, void *cookie)
{
struct adapter *adap = cookie;
t4_write_reg(adap, MYPF_REG(A_PCIE_PF_CLI), 0);
if (t4_slow_intr_handler(adap) | process_intrq(adap))
return IRQ_HANDLED;
return IRQ_NONE; /* probably shared interrupt */
}
/**
* t4_intr_handler - select the top-level interrupt handler
* @adap: the adapter
*
* Selects the top-level interrupt handler based on the type of interrupts
* (MSI-X, MSI, or INTx).
*/
irq_handler_t t4_intr_handler(adapter_t *adap)
{
if (adap->flags & USING_MSIX)
return t4_sge_intr_msix;
if (adap->flags & USING_MSI)
return t4_intr_msi;
return t4_intr_intx;
}
/**
* sge_rx_timer_cb - perform periodic maintenance of SGE Rx queues
* @data: the adapter
*
* Runs periodically from a timer to perform maintenance of SGE Rx queues.
* It performs two tasks:
*
* a) Replenishes Rx queues that have run out due to memory shortage.
* Normally new Rx buffers are added as existing ones are consumed but
* when out of memory a queue can become empty. We schedule NAPI to do
* the actual refill.
*
* b) Checks that the SGE is not stuck trying to deliver packets. This
* typically indicates a programming error that has caused an Rx queue to
* be exhausted.
*/
static void sge_rx_timer_cb(unsigned long data)
{
unsigned long m;
unsigned int i, state, cnt[2];
struct adapter *adap = (struct adapter *)data;
struct sge *s = &adap->sge;
for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
for (m = s->starving_fl[i]; m; m &= m - 1) {
struct sge_eth_rxq *rxq;
unsigned int id = __ffs(m) + i * BITS_PER_LONG;
struct sge_fl *fl = s->egr_map[id];
clear_bit(id, s->starving_fl);
smp_mb__after_clear_bit();
/*
* Since we are accessing fl without a lock there's a
* small probability of a false positive where we
* schedule napi but the FL is no longer starving.
* No biggie.
*/
if (fl_starving(adap, fl)) {
rxq = container_of(fl, struct sge_eth_rxq, fl);
if (napi_reschedule(&rxq->rspq.napi))
fl->starving++;
else
set_bit(id, s->starving_fl);
}
}
t4_write_reg(adap, A_SGE_DEBUG_INDEX, 13);
cnt[0] = t4_read_reg(adap, A_SGE_DEBUG_DATA_HIGH);
cnt[1] = t4_read_reg(adap, A_SGE_DEBUG_DATA_LOW);
for (i = 0; i < 2; i++)
if (cnt[i] >= s->starve_thres) {
if (s->idma_state[i] || cnt[i] == 0xffffffff)
continue;
s->idma_state[i] = 1;
t4_write_reg(adap, A_SGE_DEBUG_INDEX, 0);
m = t4_read_reg(adap, A_SGE_DEBUG_DATA_LOW) >> (i * 9);
state = m & 0x3f;
t4_write_reg(adap, A_SGE_DEBUG_INDEX, 11);
m = t4_read_reg(adap, A_SGE_DEBUG_DATA_LOW) >> (i * 16);
CH_WARN(adap, "SGE idma%u stuck in state %u, "
"queue %lu\n", i, state, m & 0xffff);
} else if (s->idma_state[i])
s->idma_state[i] = 0;
mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
}
/**
* send_flush_wr - send a Flush Work Request on a TX Queue
* @adapter: the adapter
* @txq: TX Queue to flush
*
* Send a Flush Work Request on the indicated TX Queue with a request to
* updated the Status Page of the TX Queue when the Flush Work Request
* is processed. This will allow us to determine when all of the
* preceeding TX Requests have been processed.
*/
static void send_flush_wr(struct adapter *adapter, struct sge_eth_txq *txq)
{
int credits;
unsigned int ndesc;
struct fw_eq_flush_wr *fwr;
struct sk_buff *skb;
unsigned int len;
/*
* See if there's space in the TX Queue to fit the Flush Work Request.
* If not, we simply return.
*/
len = sizeof *fwr;
ndesc = DIV_ROUND_UP(len, sizeof(struct tx_desc));
credits = txq_avail(&txq->q) - ndesc;
if (unlikely(credits < 0))
return;
/*
* Allocate an skb to hold the Flush Work Request and initialize it
* with the flush request.
*/
skb = alloc_skb(len, GFP_ATOMIC);
if (unlikely(!skb))
return;
fwr = (struct fw_eq_flush_wr *)__skb_put(skb, len);
memset(fwr, 0, sizeof(*fwr));
fwr->opcode = htonl(V_FW_WR_OP(FW_EQ_FLUSH_WR));
fwr->equiq_to_len16 = cpu_to_be32(F_FW_WR_EQUEQ |
V_FW_WR_LEN16(len / 16));
/*
* If the Flush Work Request fills up the TX Queue to the point where
* we don't have enough room for a maximum sized TX Request, then
* we need to stop further TX Requests and request that the firmware
* notify us with an interrupt when it processes this request.
*/
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
eth_txq_stop(txq);
fwr->equiq_to_len16 |= cpu_to_be32(F_FW_WR_EQUIQ);
}
/*
* Copy the Flush Work Request into the TX Queue and notify the
* hardware that we've given it some more to do ...
*/
inline_tx_skb(skb, &txq->q, &txq->q.desc[txq->q.pidx]);
txq_advance(&txq->q, ndesc);
ring_tx_db(adapter, &txq->q, ndesc);
/*
* Free up the skb and return ...
*/
kfree_skb(skb);
return;
}
/**
* sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
* @data: the adapter
*
* Runs periodically from a timer to perform maintenance of SGE Tx queues.
* It performs two tasks:
*
* a) Restarts offload Tx queues stopped due to I/O MMU mapping errors.
*
* b) Reclaims completed Tx packets for the Ethernet queues. Normally
* packets are cleaned up by new Tx packets, this timer cleans up packets
* when no new packets are being submitted. This is essential for pktgen,
* at least.
*/
static void sge_tx_timer_cb(unsigned long data)
{
unsigned long m, period;
unsigned int i, budget;
struct adapter *adap = (struct adapter *)data;
struct sge *s = &adap->sge;
for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
for (m = s->txq_maperr[i]; m; m &= m - 1) {
unsigned long id = __ffs(m) + i * BITS_PER_LONG;
struct sge_ofld_txq *txq = s->egr_map[id];
clear_bit(id, s->txq_maperr);
tasklet_schedule(&txq->qresume_tsk);
}
budget = MAX_TIMER_TX_RECLAIM;
i = s->ethtxq_rover;
do {
struct sge_eth_txq *q = &s->ethtxq[i];
if (__netif_tx_trylock(q->txq)) {
if (reclaimable(&q->q)) {
int avail = reclaimable(&q->q);
if (avail > budget)
avail = budget;
free_tx_desc(adap, &q->q, avail, true);
q->q.in_use -= avail;
budget -= avail;
if (!budget){
__netif_tx_unlock(q->txq);
break;
}
}
/* if coalescing is on, ship the coal WR */
if (q->q.coalesce.idx) {
ship_tx_pkt_coalesce_wr(adap, q);
if (adap->tx_coal == 2)
q->q.coalesce.ison = false;
}
/*
* If the TX Queue has unreclaimed TX Descriptors and
* the last time anything was sent on the associated
* net device was more than 5 seconds in the past,
* issue a flush request on the TX Queue in order to
* get any stranded skb's off the TX Queue.
*/
if (q->q.in_use > 0 &&
time_after(jiffies,
q->txq->dev->trans_start + HZ * 5)) {
local_bh_disable();
send_flush_wr(adap, q);
local_bh_enable();
}
__netif_tx_unlock(q->txq);
}
i++;
if (i >= s->ethqsets)
i = 0;
} while (i != s->ethtxq_rover);
s->ethtxq_rover = i;
/* if we coalesce all the time, we need to run the timer more often */
period = (adap->tx_coal == 2) ? (TX_QCHECK_PERIOD / 10) :
TX_QCHECK_PERIOD;
/*
* If we found too many reclaimable packets schedule a timer in the
* near future to continue where we left off. Otherwise the next timer
* will be at its normal interval.
*/
mod_timer(&s->tx_timer, jiffies + (budget ? period : 2));
}
/*
* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
* @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
*/
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
struct net_device *dev, int intr_idx,
struct sge_fl *fl, rspq_handler_t hnd, int cong)
{
int ret, flsz = 0;
struct fw_iq_cmd c;
struct port_info *pi = netdev_priv(dev);
/* Size needs to be multiple of 16, including status entry. */
iq->size = roundup(iq->size, 16);
iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
&iq->phys_addr, NULL, 0);
if (!iq->desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC |
V_FW_IQ_CMD_PFN(adap->pf) | V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
(sizeof(c) / 16));
c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_IQASYNCH(fwevtq) | V_FW_IQ_CMD_VIID(pi->viid) |
V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT) |
V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
-intr_idx - 1));
c.iqdroprss_to_iqesize = htons(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
c.iqsize = htons(iq->size);
c.iqaddr = cpu_to_be64(iq->phys_addr);
if (cong >= 0)
c.iqns_to_fl0congen = htonl(F_FW_IQ_CMD_IQFLINTCONGEN);
if (fl) {
struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
fl);
fl->size = roundup(fl->size, 8);
fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
sizeof(struct rx_sw_desc), &fl->addr,
&fl->sdesc, STAT_LEN);
if (!fl->desc)
goto fl_nomem;
flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc);
c.iqns_to_fl0congen |=
htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
(unlikely(rxq->useskbs)
? 0
: F_FW_IQ_CMD_FL0PACKEN) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
F_FW_IQ_CMD_FL0PADEN);
if (cong >= 0)
c.iqns_to_fl0congen |=
htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
c.fl0dcaen_to_fl0cidxfthresh =
htons(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
c.fl0size = htons(flsz);
c.fl0addr = cpu_to_be64(fl->addr);
}
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
if (ret)
goto err;
netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
iq->cur_desc = iq->desc;
iq->cidx = 0;
iq->gen = 1;
iq->next_intr_params = iq->intr_params;
iq->cntxt_id = ntohs(c.iqid);
iq->abs_id = ntohs(c.physiqid);
iq->size--; /* subtract status entry */
iq->netdev = dev; // XXX use napi.dev in newer kernels
iq->handler = hnd;
/* set offset to -1 to distinguish ingress queues without FL */
iq->offset = fl ? 0 : -1;
adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
if (fl) {
fl->cntxt_id = ntohs(c.fl0id);
fl->avail = fl->pend_cred = 0;
fl->pidx = fl->cidx = 0;
fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
}
return 0;
fl_nomem:
ret = -ENOMEM;
err:
if (iq->desc) {
dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
iq->desc, iq->phys_addr);
iq->desc = NULL;
}
if (fl && fl->desc) {
kfree(fl->sdesc);
fl->sdesc = NULL;
dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
fl->desc, fl->addr);
fl->desc = NULL;
}
return ret;
}
static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
{
q->in_use = 0;
q->cidx = q->pidx = 0;
q->stops = q->restarts = 0;
q->coalesce.idx = q->coalesce.flits = 0;
q->coalesce.ison = q->coalesce.intr = false;
q->stat = (void *)&q->desc[q->size];
q->cntxt_id = id;
adap->sge.egr_map[id - adap->sge.egr_start] = q;
}
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
struct net_device *dev, struct netdev_queue *netdevq,
unsigned int iqid)
{
int ret, nentries;
struct fw_eq_eth_cmd c;
struct port_info *pi = netdev_priv(dev);
/* Add status entries */
nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
&txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
if (!txq->q.desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC |
V_FW_EQ_ETH_CMD_PFN(adap->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
c.viid_pkd = htonl(V_FW_EQ_ETH_CMD_VIID(pi->viid));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
c.dcaen_to_eqsize =
htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_ETH_CMD_EQSIZE(nentries));
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
if (ret) {
kfree(txq->q.sdesc);
txq->q.sdesc = NULL;
dma_free_coherent(adap->pdev_dev,
nentries * sizeof(struct tx_desc),
txq->q.desc, txq->q.phys_addr);
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)));
txq->txq = netdevq;
txq->tso = txq->tx_cso = txq->vlan_ins = 0;
txq->mapping_err = 0;
return 0;
}
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
struct net_device *dev, unsigned int iqid,
unsigned int cmplqid)
{
int ret, nentries;
struct fw_eq_ctrl_cmd c;
struct port_info *pi = netdev_priv(dev);
/* Add status entries */
nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
sizeof(struct tx_desc), 0, &txq->q.phys_addr,
NULL, 0);
if (!txq->q.desc)
return -ENOMEM;
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC |
V_FW_EQ_CTRL_CMD_PFN(adap->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | (sizeof(c) / 16));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
c.physeqid_pkd = htonl(0);
c.fetchszm_to_iqid =
htonl(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(iqid));
c.dcaen_to_eqsize =
htonl(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_CTRL_CMD_EQSIZE(nentries));
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
if (ret) {
dma_free_coherent(adap->pdev_dev,
nentries * sizeof(struct tx_desc),
txq->q.desc, txq->q.phys_addr);
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, G_FW_EQ_CTRL_CMD_EQID(ntohl(c.cmpliqid_eqid)));
txq->adap = adap;
skb_queue_head_init(&txq->sendq);
tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
txq->full = 0;
return 0;
}
int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
struct net_device *dev, unsigned int iqid)
{
int ret, nentries;
struct fw_eq_ofld_cmd c;
struct port_info *pi = netdev_priv(dev);
/* Add status entries */
nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
&txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
if (!txq->q.desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC |
V_FW_EQ_OFLD_CMD_PFN(adap->pf) |
V_FW_EQ_OFLD_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
F_FW_EQ_OFLD_CMD_EQSTART | (sizeof(c) / 16));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(iqid));
c.dcaen_to_eqsize =
htonl(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_OFLD_CMD_EQSIZE(nentries));
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
if (ret) {
kfree(txq->q.sdesc);
txq->q.sdesc = NULL;
dma_free_coherent(adap->pdev_dev,
nentries * sizeof(struct tx_desc),
txq->q.desc, txq->q.phys_addr);
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, G_FW_EQ_OFLD_CMD_EQID(ntohl(c.eqid_pkd)));
txq->adap = adap;
skb_queue_head_init(&txq->sendq);
tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
txq->full = 0;
txq->mapping_err = 0;
return 0;
}
static void free_txq(struct adapter *adap, struct sge_txq *q)
{
dma_free_coherent(adap->pdev_dev,
q->size * sizeof(struct tx_desc) + STAT_LEN,
q->desc, q->phys_addr);
q->cntxt_id = 0;
q->sdesc = NULL;
q->desc = NULL;
}
static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
struct sge_fl *fl)
{
unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
rq->cntxt_id, fl_id, 0xffff);
dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
rq->desc, rq->phys_addr);
netif_napi_del(&rq->napi);
rq->netdev = NULL;
rq->cntxt_id = rq->abs_id = 0;
rq->desc = NULL;
if (fl) {
free_rx_bufs(adap, fl, fl->avail);
dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN,
fl->desc, fl->addr);
kfree(fl->sdesc);
fl->sdesc = NULL;
fl->cntxt_id = 0;
fl->desc = NULL;
}
}
/**
* t4_free_ofld_rxqs - free a block of consecutive Rx queues
* @adap: the adapter
* @n: number of queues
* @q: pointer to first queue
*
* Release the resources of a consecutive block of offload Rx queues.
*/
void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
{
for ( ; n; n--, q++)
if (q->rspq.desc)
free_rspq_fl(adap, &q->rspq, &q->fl);
}
/**
* t4_free_sge_resources - free SGE resources
* @adap: the adapter
*
* Frees resources used by the SGE queue sets.
*/
void t4_free_sge_resources(struct adapter *adap)
{
int i;
struct sge_eth_rxq *eq = adap->sge.ethrxq;
struct sge_eth_txq *etq = adap->sge.ethtxq;
/* clean up Ethernet Tx/Rx queues */
for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
if (eq->rspq.desc)
free_rspq_fl(adap, &eq->rspq, &eq->fl);
if (etq->q.desc) {
t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
etq->q.cntxt_id);
free_tx_desc(adap, &etq->q, etq->q.in_use, true);
kfree(etq->q.sdesc);
free_txq(adap, &etq->q);
}
}
/* clean up TOE, RDMA and iSCSI Rx queues */
t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
t4_free_ofld_rxqs(adap, adap->sge.niscsiq, adap->sge.iscsirxq);
/* clean up offload Tx queues */
for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
if (q->q.desc) {
tasklet_kill(&q->qresume_tsk);
t4_ofld_eq_free(adap, adap->mbox, adap->pf,
0, q->q.cntxt_id);
free_tx_desc(adap, &q->q, q->q.in_use, false);
kfree(q->q.sdesc);
__skb_queue_purge(&q->sendq);
free_txq(adap, &q->q);
}
}
/* clean up control Tx queues */
for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
if (cq->q.desc) {
tasklet_kill(&cq->qresume_tsk);
t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
cq->q.cntxt_id);
__skb_queue_purge(&cq->sendq);
free_txq(adap, &cq->q);
}
}
if (adap->sge.fw_evtq.desc)
free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
if (adap->sge.intrq.desc)
free_rspq_fl(adap, &adap->sge.intrq, NULL);
/* clear the reverse egress queue map */
memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
}
void t4_sge_start(struct adapter *adap)
{
adap->sge.ethtxq_rover = 0;
mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
}
/**
* t4_sge_stop - disable SGE operation
* @adap: the adapter
*
* Stop tasklets and timers associated with the DMA engine. Note that
* this is effective only if measures have been taken to disable any HW
* events that may restart them.
*/
void t4_sge_stop(struct adapter *adap)
{
int i;
struct sge *s = &adap->sge;
if (in_interrupt()) /* actions below require waiting */
return;
if (s->rx_timer.function)
del_timer_sync(&s->rx_timer);
if (s->tx_timer.function)
del_timer_sync(&s->tx_timer);
for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
struct sge_ofld_txq *q = &s->ofldtxq[i];
if (q->q.desc)
tasklet_kill(&q->qresume_tsk);
}
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
struct sge_ctrl_txq *cq = &s->ctrlq[i];
if (cq->q.desc)
tasklet_kill(&cq->qresume_tsk);
}
}
/**
* t4_sge_init - initialize SGE
* @adap: the adapter
*
* Performs SGE initialization needed every time after a chip reset.
* We do not initialize any of the queues here, instead the driver
* top-level must request those individually.
*/
void t4_sge_init(struct adapter *adap)
{
struct sge *s = &adap->sge;
unsigned int fl_align_log = ilog2(FL_ALIGN);
unsigned int s_hps;
t4_set_reg_field(adap, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT) |
F_EGRSTATUSPAGESIZE |
V_INGPADBOUNDARY(M_INGPADBOUNDARY),
V_INGPADBOUNDARY(fl_align_log - 5) |
V_PKTSHIFT(FL_PKTSHIFT) |
V_EGRSTATUSPAGESIZE(STAT_LEN != 64) | F_RXPKTCPLMODE);
/*
* A FL with <= fl_starve_thres buffers is starving and a periodic
* timer will attempt to refill it. This needs to be larger than the
* SGE's Egress Congestion Threshold. If it isn't, then we can get
* stuck waiting for new packets while the SGE is waiting for us to
* give it more Free List entries. (Note that the SGE's Egress
* Congestion Threshold is in units of 2 Free List pointers.)
*/
s->fl_starve_thres
= G_EGRTHRESHOLD(t4_read_reg(adap, A_SGE_CONM_CTRL))*2 + 1;
s_hps = (S_HOSTPAGESIZEPF0 +
(S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adap->pf);
t4_set_reg_field(adap, A_SGE_HOST_PAGE_SIZE,
M_HOSTPAGESIZEPF0 << s_hps,
(PAGE_SHIFT - 10) << s_hps);
t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0+RX_SMALL_PG_BUF*sizeof(u32),
PAGE_SIZE);
#if FL_PG_ORDER > 0
t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
PAGE_SIZE << FL_PG_ORDER);
#endif
t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
FL_MTU_SMALL_BUFSIZE);
t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
FL_MTU_LARGE_BUFSIZE);
t4_write_reg(adap, A_SGE_INGRESS_RX_THRESHOLD,
V_THRESHOLD_0(s->counter_val[0]) |
V_THRESHOLD_1(s->counter_val[1]) |
V_THRESHOLD_2(s->counter_val[2]) |
V_THRESHOLD_3(s->counter_val[3]));
t4_write_reg(adap, A_SGE_TIMER_VALUE_0_AND_1,
V_TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
V_TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
t4_write_reg(adap, A_SGE_TIMER_VALUE_2_AND_3,
V_TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
V_TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
t4_write_reg(adap, A_SGE_TIMER_VALUE_4_AND_5,
V_TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
V_TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */
s->idma_state[0] = s->idma_state[1] = 0;
spin_lock_init(&s->intrq_lock);
}