blob: 036584f343624818d4ccdc43803a14e55b314406 [file] [log] [blame]
/*
* libjingle
* Copyright 2004--2011, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef POSIX
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#ifdef OPENBSD
#include <netinet/in_systm.h>
#endif
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>
#endif
#include <stdio.h>
#include "talk/base/ipaddress.h"
#include "talk/base/byteorder.h"
#include "talk/base/nethelpers.h"
#include "talk/base/logging.h"
#include "talk/base/win32.h"
namespace talk_base {
static const unsigned char kMappedPrefix[] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF};
static bool IsPrivateV4(uint32 ip);
static bool IsMappedAddress(const in6_addr& addr);
static in_addr ExtractMappedAddress(const in6_addr& addr);
uint32 IPAddress::v4AddressAsHostOrderInteger() const {
if (family_ == AF_INET) {
return ntohl(u_.ip4.s_addr);
} else {
return 0;
}
}
size_t IPAddress::Size() const {
switch (family_) {
case AF_INET:
return sizeof(in_addr);
case AF_INET6:
return sizeof(in6_addr);
}
return 0;
}
bool IPAddress::operator==(const IPAddress &other) const {
if (family_ != other.family_) {
return false;
}
if (family_ == AF_INET) {
return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0;
}
if (family_ == AF_INET6) {
return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0;
}
return family_ == AF_UNSPEC;
}
bool IPAddress::operator!=(const IPAddress &other) const {
return !((*this) == other);
}
bool IPAddress::operator >(const IPAddress &other) const {
return (*this) != other && !((*this) < other);
}
bool IPAddress::operator <(const IPAddress &other) const {
// IPv4 is 'less than' IPv6
if (family_ != other.family_) {
if (family_ == AF_UNSPEC) {
return true;
}
if (family_ == AF_INET && other.family_ == AF_INET6) {
return true;
}
return false;
}
// Comparing addresses of the same family.
switch (family_) {
case AF_INET: {
return ntohl(u_.ip4.s_addr) < ntohl(other.u_.ip4.s_addr);
}
case AF_INET6: {
return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0;
}
}
// Catches AF_UNSPEC and invalid addresses.
return false;
}
std::ostream& operator<<(std::ostream& os, const IPAddress& ip) {
os << ip.ToString();
return os;
}
in6_addr IPAddress::ipv6_address() const {
return u_.ip6;
}
in_addr IPAddress::ipv4_address() const {
return u_.ip4;
}
std::string IPAddress::ToString() const {
if (family_ != AF_INET && family_ != AF_INET6) {
return std::string();
}
char buf[INET6_ADDRSTRLEN] = {0};
const void* src = &u_.ip4;
if (family_ == AF_INET6) {
src = &u_.ip6;
}
if (!talk_base::inet_ntop(family_, src, buf, sizeof(buf))) {
return std::string();
}
return std::string(buf);
}
IPAddress IPAddress::Normalized() const {
if (family_ != AF_INET6) {
return *this;
}
if (!IsMappedAddress(u_.ip6)) {
return *this;
}
in_addr addr = ExtractMappedAddress(u_.ip6);
return IPAddress(addr);
}
IPAddress IPAddress::AsIPv6Address() const {
if (family_ != AF_INET) {
return *this;
}
// uint32 v4 = (u_.ip4.s_addr);
in6_addr v6addr;
::memcpy(&v6addr.s6_addr, kMappedPrefix, sizeof(kMappedPrefix));
::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr));
return IPAddress(v6addr);
}
bool IsPrivateV4(uint32 ip_in_host_order) {
return ((ip_in_host_order >> 24) == 127) ||
((ip_in_host_order >> 24) == 10) ||
((ip_in_host_order >> 20) == ((172 << 4) | 1)) ||
((ip_in_host_order >> 16) == ((192 << 8) | 168)) ||
((ip_in_host_order >> 16) == ((169 << 8) | 254));
}
bool IsMappedAddress(const in6_addr& addr) {
return memcmp(&(addr.s6_addr), kMappedPrefix, sizeof(kMappedPrefix)) == 0;
}
in_addr ExtractMappedAddress(const in6_addr& in6) {
in_addr ipv4;
::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr));
return ipv4;
}
bool IPFromHostEnt(hostent* host_ent, IPAddress* out) {
return IPFromHostEnt(host_ent, 0, out);
}
bool IPFromHostEnt(hostent* host_ent, int idx, IPAddress* out) {
if (!out || (idx < 0)) {
return false;
}
char** requested_address = host_ent->h_addr_list;
// Find the idx-th element (while checking for null, which terminates the
// list of addresses).
while (*requested_address && idx) {
idx--;
requested_address++;
}
if (!(*requested_address)) {
return false;
}
if (host_ent->h_addrtype == AF_INET) {
in_addr ip;
ip.s_addr = *reinterpret_cast<uint32*>(*requested_address);
*out = IPAddress(ip);
return true;
} else if (host_ent->h_addrtype == AF_INET6) {
in6_addr ip;
::memcpy(&ip.s6_addr, *requested_address, host_ent->h_length);
*out = IPAddress(ip);
return true;
}
return false;
}
bool IPFromString(const std::string& str, IPAddress* out) {
if (!out) {
return false;
}
in_addr addr;
if (talk_base::inet_pton(AF_INET, str.c_str(), &addr) == 0) {
in6_addr addr6;
if (talk_base::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) {
*out = IPAddress();
return false;
}
*out = IPAddress(addr6);
} else {
*out = IPAddress(addr);
}
return true;
}
bool IPIsAny(const IPAddress& ip) {
static const IPAddress kIPv4Any(INADDR_ANY);
static const IPAddress kIPv6Any(in6addr_any);
switch (ip.family()) {
case AF_INET:
return ip == kIPv4Any;
case AF_INET6:
return ip == kIPv6Any;
case AF_UNSPEC:
return false;
}
return false;
}
bool IPIsLoopback(const IPAddress& ip) {
static const IPAddress kIPv4Loopback(INADDR_LOOPBACK);
static const IPAddress kIPv6Loopback(in6addr_loopback);
switch (ip.family()) {
case AF_INET: {
return ip == kIPv4Loopback;
}
case AF_INET6: {
return ip == kIPv6Loopback;
}
}
return false;
}
bool IPIsPrivate(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return IsPrivateV4(ip.v4AddressAsHostOrderInteger());
}
case AF_INET6: {
in6_addr v6 = ip.ipv6_address();
return (v6.s6_addr[0] == 0xFE && v6.s6_addr[1] == 0x80) ||
IPIsLoopback(ip);
}
}
return false;
}
size_t HashIP(const IPAddress& ip) {
switch (ip.family()) {
case AF_INET: {
return ip.ipv4_address().s_addr;
}
case AF_INET6: {
in6_addr v6addr = ip.ipv6_address();
const uint32* v6_as_ints =
reinterpret_cast<const uint32*>(&v6addr.s6_addr);
return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3];
}
}
return 0;
}
IPAddress TruncateIP(const IPAddress& ip, int length) {
if (length < 0) {
return IPAddress();
}
if (ip.family() == AF_INET) {
if (length > 31) {
return ip;
}
if (length == 0) {
return IPAddress(INADDR_ANY);
}
int mask = (0xFFFFFFFF << (32 - length));
uint32 host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr);
in_addr masked;
masked.s_addr = HostToNetwork32(host_order_ip & mask);
return IPAddress(masked);
} else if (ip.family() == AF_INET6) {
if (length > 127) {
return ip;
}
if (length == 0) {
return IPAddress(in6addr_any);
}
in6_addr v6addr = ip.ipv6_address();
int position = length / 32;
int inner_length = (length - (position * 32));
int inner_mask = (0xFFFFFFFF << (32 - inner_length));
uint32* v6_as_ints =
reinterpret_cast<uint32*>(&v6addr.s6_addr);
in6_addr ip_addr = ip.ipv6_address();
for (int i = 0; i < 4; ++i) {
if (i == position) {
uint32 host_order_inner = NetworkToHost32(v6_as_ints[i]);
v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask);
} else if (i > position) {
v6_as_ints[i] = 0;
}
}
return IPAddress(v6addr);
}
return IPAddress();
}
int CountIPMaskBits(IPAddress mask) {
// Doing this the lazy/simple way.
// Clever bit tricks welcome but please be careful re: byte order.
uint32 word_to_count = 0;
int bits = 0;
switch (mask.family()) {
case AF_INET: {
word_to_count = NetworkToHost32(mask.ipv4_address().s_addr);
break;
}
case AF_INET6: {
in6_addr v6addr = mask.ipv6_address();
const uint32* v6_as_ints =
reinterpret_cast<const uint32*>(&v6addr.s6_addr);
int i = 0;
for (; i < 4; ++i) {
if (v6_as_ints[i] != 0xFFFFFFFF) {
break;
}
}
if (i < 4) {
word_to_count = NetworkToHost32(v6_as_ints[i]);
}
bits = (i * 32);
break;
}
default: {
return 0;
}
}
// Check for byte boundaries before scanning.
if (word_to_count == 0) {
return bits;
} else if (word_to_count == 0xFF000000) {
return bits + 8;
} else if (word_to_count == 0xFFFF0000) {
return bits + 16;
} else if (word_to_count == 0xFFFFFF00) {
return bits + 24;
}
while (word_to_count & 0x80000000) {
word_to_count <<= 1;
++bits;
}
return bits;
}
} // Namespace talk base