blob: 0bb0db44034dfd44a698880d321a4dc9d6d183fd [file] [log] [blame]
/*
* Atheros AR71xx built-in ethernet mac driver
*
* Copyright (c) 2013 The Linux Foundation. All rights reserved.
* Copyright (C) 2008-2010 Gabor Juhos <juhosg@openwrt.org>
* Copyright (C) 2008 Imre Kaloz <kaloz@openwrt.org>
*
* Based on Atheros' AG7100 driver
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include "ag71xx.h"
#ifdef CONFIG_OF
#include <linux/of.h>
#include <linux/of_platform.h>
#endif
#ifndef UNUSED
#define UNUSED(__x) (void)(__x)
#endif
static int ag71xx_gmac_num = 0;
#define AG71XX_DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV \
| NETIF_MSG_PROBE \
| NETIF_MSG_LINK \
| NETIF_MSG_TIMER \
| NETIF_MSG_IFDOWN \
| NETIF_MSG_IFUP \
| NETIF_MSG_RX_ERR \
| NETIF_MSG_TX_ERR)
static int ag71xx_msg_level = -1;
module_param_named(msg_level, ag71xx_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
#ifdef CONFIG_AG71XX_SRAM_DESCRIPTORS
#define MAX_AG71XX_USING_SRAM 2
#define MAX_AG71XX_SRAM_RINGS (MAX_AG71XX_USING_SRAM) * 2
static unsigned long ag71xx_ring_bufs[MAX_AG71XX_SRAM_RINGS] = {
0x1d000000UL,
0x1d001000UL,
0x1d002000UL,
0x1d003000UL
};
#endif /* CONFIG_AG71XX_SRAM_DESCRIPTORS */
#ifdef DEBUG
static void ag71xx_dump_dma_regs(struct ag71xx *ag)
{
DBG("%s: dma_tx_ctrl=%08x, dma_tx_desc=%08x, dma_tx_status=%08x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_TX_CTRL),
ag71xx_rr(ag, AG71XX_REG_TX_DESC),
ag71xx_rr(ag, AG71XX_REG_TX_STATUS));
DBG("%s: dma_rx_ctrl=%08x, dma_rx_desc=%08x, dma_rx_status=%08x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_RX_CTRL),
ag71xx_rr(ag, AG71XX_REG_RX_DESC),
ag71xx_rr(ag, AG71XX_REG_RX_STATUS));
}
static void ag71xx_dump_regs(struct ag71xx *ag)
{
DBG("%s: mac_cfg1=%08x, mac_cfg2=%08x, ipg=%08x, hdx=%08x, mfl=%08x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_MAC_CFG1),
ag71xx_rr(ag, AG71XX_REG_MAC_CFG2),
ag71xx_rr(ag, AG71XX_REG_MAC_IPG),
ag71xx_rr(ag, AG71XX_REG_MAC_HDX),
ag71xx_rr(ag, AG71XX_REG_MAC_MFL));
DBG("%s: mac_ifctl=%08x, mac_addr1=%08x, mac_addr2=%08x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_MAC_IFCTL),
ag71xx_rr(ag, AG71XX_REG_MAC_ADDR1),
ag71xx_rr(ag, AG71XX_REG_MAC_ADDR2));
DBG("%s: fifo_cfg0=%08x, fifo_cfg1=%08x, fifo_cfg2=%08x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG0),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG1),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG2));
DBG("%s: fifo_cfg3=%08x, fifo_cfg4=%08x, fifo_cfg5=%08x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG3),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG4),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG5));
}
static inline void ag71xx_dump_intr(struct ag71xx *ag, char *label, u32 intr)
{
DBG("%s: %s intr=%08x %s%s%s%s%s%s\n",
ag->dev->name, label, intr,
(intr & AG71XX_INT_TX_PS) ? "TXPS " : "",
(intr & AG71XX_INT_TX_UR) ? "TXUR " : "",
(intr & AG71XX_INT_TX_BE) ? "TXBE " : "",
(intr & AG71XX_INT_RX_PR) ? "RXPR " : "",
(intr & AG71XX_INT_RX_OF) ? "RXOF " : "",
(intr & AG71XX_INT_RX_BE) ? "RXBE " : "");
}
#else /* !DEBUG */
#define ag71xx_dump_dma_regs(__ag)
#define ag71xx_dump_regs(__ag)
#define ag71xx_dump_intr(__ag, __label, __intr)
#endif /* DEBUG */
static void ag71xx_ring_free(struct ag71xx_ring *ring)
{
if (ring->descs_cpu) {
if (ring->iomem) {
iounmap(ring->iomem);
} else {
dma_free_coherent(NULL, ring->size * ring->desc_size,
ring->descs_cpu, ring->descs_dma);
}
}
}
static int ag71xx_ring_alloc(struct ag71xx *ag, struct ag71xx_ring *ring,
unsigned int id)
{
int i;
ring->desc_size = sizeof(struct ag71xx_desc);
if (ring->desc_size % cache_line_size()) {
DBG("ag71xx: ring %p, desc size %u rounded to %u\n",
ring, ring->desc_size,
roundup(ring->desc_size, cache_line_size()));
ring->desc_size = roundup(ring->desc_size, cache_line_size());
}
#ifdef CONFIG_AG71XX_SRAM_DESCRIPTORS
if (id < MAX_AG71XX_USING_SRAM) {
DBG("ag71xx: descriptors in SRAM\n");
ring->iomem = ioremap_nocache(ag71xx_ring_bufs[id], 0x1000);
if (ring->iomem == NULL)
return -ENOMEM;
ring->descs_cpu = (u8 *)ring->iomem;
ring->descs_dma = ((dma_addr_t)(ring->iomem) & 0x1fffffff);
goto descs_allocated;
}
#else
UNUSED(id);
#endif /* CONFIG_AG71XX_SRAM_DESCRIPTORS */
ring->iomem = NULL;
ring->descs_cpu = dma_alloc_coherent(NULL,
ring->size * ring->desc_size,
&ring->descs_dma,
GFP_ATOMIC);
if (!ring->descs_cpu) {
return -ENOMEM;
}
#ifdef CONFIG_AG71XX_SRAM_DESCRIPTORS
descs_allocated:
#endif /* CONFIG_AG71XX_SRAM_DESCRIPTORS */
/* The even numbered ring at the beginning, odd gets the end */
if ((id & 0x1) == 0) {
ring->buf = &ag->ring_bufs[0];
} else {
/*
* This looks weird but tries very hard to avoid aliasing
* problems in the D-cache.
*/
unsigned int rings_total;
rings_total = AG71XX_TX_RING_SIZE_MAX + AG71XX_RX_RING_SIZE_MAX;
ring->buf = &ag->ring_bufs[rings_total - ring->size];
}
for (i = 0; i < ring->size; i++) {
int idx = i * ring->desc_size;
ring->buf[i].desc = (struct ag71xx_desc *)&ring->descs_cpu[idx];
DBG("ag71xx: ring %p, desc %d at %p\n",
ring, i, ring->buf[i].desc);
}
return 0;
}
static void ag71xx_ring_tx_clean(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->tx_ring;
struct net_device *dev = ag->dev;
unsigned int bytes_compl = 0;
unsigned int pkts_compl = 0;
struct ag71xx_buf *dirty = ring->dirty;
unsigned int used = ring->used;
if (!ring->buf) {
return;
}
while (used) {
struct ag71xx_desc *desc = dirty->desc;
struct sk_buff *skb;
/*
* If the descriptor is not marked as empty then mark it as
* empty and record a TX error.
*/
if (!(desc->ctrl & DESC_EMPTY)) {
desc->ctrl = DESC_EMPTY;
dev->stats.tx_errors++;
}
skb = dirty->skb;
dirty->skb = NULL;
dirty = dirty->next;
bytes_compl += skb->len;
pkts_compl++;
dev_kfree_skb(skb);
used--;
}
ring->dirty = dirty;
ring->used = used;
netdev_completed_queue(dev, pkts_compl, bytes_compl);
}
static void ag71xx_ring_tx_init(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->tx_ring;
unsigned int mask = ring->mask;
unsigned int size = ring->size;
int i;
for (i = 0; i < size; i++) {
struct ag71xx_buf *buf = &ring->buf[i];
struct ag71xx_desc *desc = buf->desc;
desc->next = (u32)(ring->descs_dma +
ring->desc_size * ((i + 1) & mask));
desc->ctrl = DESC_EMPTY;
buf->skb = NULL;
buf->next = &ring->buf[(i + 1) & mask];
}
ring->curr = ring->buf;
ring->dirty = ring->buf;
ring->used = 0;
netdev_reset_queue(ag->dev);
}
static void ag71xx_ring_rx_clean(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->rx_ring;
struct net_device *dev = ag->dev;
int i;
if (!ring->buf) {
return;
}
for (i = 0; i < ring->size; i++) {
struct ag71xx_buf *buf = &ring->buf[i];
struct sk_buff *skb = buf->skb;
if (skb) {
dma_unmap_single(&dev->dev, buf->dma_addr,
ag->rx_buf_size, DMA_FROM_DEVICE);
dev_kfree_skb(skb);
buf->skb = NULL;
}
}
}
static int ag71xx_ring_rx_init(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->rx_ring;
struct net_device *dev = ag->dev;
unsigned int mask = ring->mask;
unsigned int size = ring->size;
unsigned int rx_buf_size = ag->rx_buf_size;
unsigned int rx_buf_offset = ag->rx_buf_offset;
unsigned int i;
for (i = 0; i < size; i++) {
struct ag71xx_buf *buf = &ring->buf[i];
struct ag71xx_desc *desc = buf->desc;
struct sk_buff *skb;
desc->next = (u32)(ring->descs_dma +
ring->desc_size * ((i + 1) & mask));
skb = dev_alloc_skb(rx_buf_size + rx_buf_offset);
if (unlikely(!skb)) {
return -ENOMEM;
}
skb_reserve(skb, rx_buf_offset);
buf->skb = skb;
buf->next = &ring->buf[(i + 1) & mask];
buf->dma_addr = dma_map_single(&dev->dev, skb->data,
rx_buf_size, DMA_FROM_DEVICE);
desc->data = (u32)buf->dma_addr;
desc->ctrl = DESC_EMPTY;
}
ring->curr = ring->buf;
ring->dirty = ring->buf;
ring->used = size;
return 0;
}
static int ag71xx_rings_init(struct ag71xx *ag)
{
unsigned int rings_total;
int ret;
rings_total = AG71XX_TX_RING_SIZE_MAX + AG71XX_RX_RING_SIZE_MAX;
ag->ring_bufs = kzalloc((rings_total * sizeof(struct ag71xx_buf)),
GFP_KERNEL);
if (!ag->ring_bufs)
return -ENOMEM;
ret = ag71xx_ring_alloc(ag, &ag->tx_ring, (ag->gmac_num * 2));
if (ret)
return ret;
ag71xx_ring_tx_init(ag);
ret = ag71xx_ring_alloc(ag, &ag->rx_ring, (ag->gmac_num * 2) + 1);
if (ret)
return ret;
ret = ag71xx_ring_rx_init(ag);
return ret;
}
static void ag71xx_rings_cleanup(struct ag71xx *ag)
{
ag71xx_ring_rx_clean(ag);
ag71xx_ring_free(&ag->rx_ring);
ag71xx_ring_tx_clean(ag);
netdev_reset_queue(ag->dev);
ag71xx_ring_free(&ag->tx_ring);
if (ag->ring_bufs)
kfree(ag->ring_bufs);
}
static unsigned char *ag71xx_speed_str(struct ag71xx *ag)
{
switch (ag->speed) {
case SPEED_1000:
return "1000";
case SPEED_100:
return "100";
case SPEED_10:
return "10";
}
return "?";
}
static void ag71xx_hw_set_macaddr(struct ag71xx *ag, unsigned char *mac)
{
u32 t;
t = (((u32)mac[5]) << 24) | (((u32)mac[4]) << 16)
| (((u32)mac[3]) << 8) | ((u32)mac[2]);
ag71xx_wr(ag, AG71XX_REG_MAC_ADDR1, t);
t = (((u32)mac[1]) << 24) | (((u32)mac[0]) << 16);
ag71xx_wr(ag, AG71XX_REG_MAC_ADDR2, t);
}
static void ag71xx_dma_reset(struct ag71xx *ag)
{
u32 val;
int i;
ag71xx_dump_dma_regs(ag);
/* stop RX and TX */
ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0);
ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0);
/*
* give the hardware some time to really stop all rx/tx activity
* clearing the descriptors too early causes random memory corruption
*/
mdelay(1);
/* clear descriptor addresses */
ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->stop_desc_dma);
ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->stop_desc_dma);
/* clear pending RX/TX interrupts */
for (i = 0; i < 256; i++) {
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_PR);
ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_PS);
}
/* clear pending errors */
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE | RX_STATUS_OF);
ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE | TX_STATUS_UR);
val = ag71xx_rr(ag, AG71XX_REG_RX_STATUS);
if (val)
pr_alert("%s: unable to clear DMA Rx status: %08x\n",
ag->dev->name, val);
val = ag71xx_rr(ag, AG71XX_REG_TX_STATUS);
/* mask out reserved bits */
val &= ~0xff000000;
if (val)
pr_alert("%s: unable to clear DMA Tx status: %08x\n",
ag->dev->name, val);
ag71xx_dump_dma_regs(ag);
}
#define MAC_CFG1_INIT (MAC_CFG1_RXE | MAC_CFG1_TXE | \
MAC_CFG1_SRX | MAC_CFG1_STX)
#define FIFO_CFG0_INIT (FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT)
#define FIFO_CFG4_INIT (FIFO_CFG4_DE | FIFO_CFG4_DV | FIFO_CFG4_FC | \
FIFO_CFG4_CE | FIFO_CFG4_CR | FIFO_CFG4_LM | \
FIFO_CFG4_LO | FIFO_CFG4_OK | FIFO_CFG4_MC | \
FIFO_CFG4_BC | FIFO_CFG4_DR | FIFO_CFG4_LE | \
FIFO_CFG4_CF | FIFO_CFG4_PF | FIFO_CFG4_UO | \
FIFO_CFG4_VT)
#define FIFO_CFG5_INIT (FIFO_CFG5_DE | FIFO_CFG5_DV | FIFO_CFG5_FC | \
FIFO_CFG5_CE | FIFO_CFG5_LO | FIFO_CFG5_OK | \
FIFO_CFG5_MC | FIFO_CFG5_BC | FIFO_CFG5_DR | \
FIFO_CFG5_CF | FIFO_CFG5_PF | FIFO_CFG5_VT | \
FIFO_CFG5_LE | FIFO_CFG5_FT | FIFO_CFG5_16 | \
FIFO_CFG5_17 | FIFO_CFG5_SF)
static void ag71xx_hw_stop(struct ag71xx *ag)
{
/* disable all interrupts and stop the rx/tx engine */
ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, 0);
ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0);
ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0);
}
static void ag71xx_hw_setup(struct ag71xx *ag)
{
struct ag71xx_platform_data *pdata = ag71xx_get_pdata(ag);
/* setup MAC configuration registers */
ag71xx_wr(ag, AG71XX_REG_MAC_CFG1, MAC_CFG1_INIT);
ag71xx_sb(ag, AG71XX_REG_MAC_CFG2,
MAC_CFG2_PAD_CRC_EN | MAC_CFG2_LEN_CHECK);
/* setup max frame length */
if(ag->dev->mtu < AG71XX_TX_MTU_LEN)
ag71xx_wr(ag, AG71XX_REG_MAC_MFL, AG71XX_TX_MTU_LEN);
else
ag71xx_wr(ag, AG71XX_REG_MAC_MFL, ag->dev->mtu);
/* setup FIFO configuration registers */
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG0, FIFO_CFG0_INIT);
if (pdata->is_ar724x) {
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG1, pdata->fifo_cfg1);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG2, pdata->fifo_cfg2);
} else {
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG1, 0x0fff0000);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG2, 0x00001fff);
}
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG4, FIFO_CFG4_INIT);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, FIFO_CFG5_INIT);
}
static void ag71xx_hw_init(struct ag71xx *ag)
{
struct ag71xx_platform_data *pdata = ag71xx_get_pdata(ag);
u32 reset_mask = pdata->reset_bit;
ag71xx_hw_stop(ag);
if (pdata->is_ar724x) {
u32 reset_phy = reset_mask;
reset_phy &= AR71XX_RESET_GE0_PHY | AR71XX_RESET_GE1_PHY;
reset_mask &= ~(AR71XX_RESET_GE0_PHY | AR71XX_RESET_GE1_PHY);
ath79_device_reset_set(reset_phy);
mdelay(50);
ath79_device_reset_clear(reset_phy);
mdelay(200);
}
ag71xx_sb(ag, AG71XX_REG_MAC_CFG1, MAC_CFG1_SR);
udelay(20);
ath79_device_reset_set(reset_mask);
mdelay(100);
ath79_device_reset_clear(reset_mask);
mdelay(200);
ag71xx_hw_setup(ag);
ag71xx_dma_reset(ag);
}
static void ag71xx_fast_reset(struct ag71xx *ag)
{
struct ag71xx_platform_data *pdata = ag71xx_get_pdata(ag);
struct net_device *dev = ag->dev;
u32 reset_mask = pdata->reset_bit;
u32 rx_ds, tx_ds;
u32 mii_reg;
reset_mask &= AR71XX_RESET_GE0_MAC | AR71XX_RESET_GE1_MAC;
mii_reg = ag71xx_rr(ag, AG71XX_REG_MII_CFG);
rx_ds = ag71xx_rr(ag, AG71XX_REG_RX_DESC);
tx_ds = ag71xx_rr(ag, AG71XX_REG_TX_DESC);
ath79_device_reset_set(reset_mask);
udelay(10);
ath79_device_reset_clear(reset_mask);
udelay(10);
ag71xx_dma_reset(ag);
ag71xx_hw_setup(ag);
ag71xx_wr(ag, AG71XX_REG_RX_DESC, rx_ds);
ag71xx_wr(ag, AG71XX_REG_TX_DESC, tx_ds);
ag71xx_wr(ag, AG71XX_REG_MII_CFG, mii_reg);
ag71xx_hw_set_macaddr(ag, dev->dev_addr);
}
static void ag71xx_hw_start(struct ag71xx *ag)
{
/* start RX engine */
ag71xx_wr(ag, AG71XX_REG_RX_CTRL, RX_CTRL_RXE);
/* enable interrupts */
ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, AG71XX_INT_INIT);
}
static void ag71xx_disable_inline_chksum_engine(struct ag71xx *ag)
{
void __iomem *dam = ioremap_nocache(QCA956X_DAM_RESET_OFFSET,
QCA956X_DAM_RESET_SIZE);
if (!dam) {
dev_err(&ag->dev, "unable to ioremap DAM_RESET_OFFSET\n");
} else {
/*
* can not use the wr, rr functions since this is outside of
* the normal ag71xx register block
*/
__raw_writel(__raw_readl(dam) & ~QCA956X_INLINE_CHKSUM_ENG, dam);
(void)__raw_readl(dam);
iounmap(dam);
}
}
void ag71xx_link_adjust(struct ag71xx *ag)
{
struct ag71xx_platform_data *pdata = ag71xx_get_pdata(ag);
u32 cfg2;
u32 ifctl;
u32 fifo5;
if (!ag->link) {
ag71xx_hw_stop(ag);
netif_carrier_off(ag->dev);
if (netif_msg_link(ag))
pr_info("%s: link down\n", ag->dev->name);
return;
}
if (pdata->is_ar724x)
ag71xx_fast_reset(ag);
cfg2 = ag71xx_rr(ag, AG71XX_REG_MAC_CFG2);
cfg2 &= ~(MAC_CFG2_IF_1000 | MAC_CFG2_IF_10_100 | MAC_CFG2_FDX);
cfg2 |= (ag->duplex) ? MAC_CFG2_FDX : 0;
ifctl = ag71xx_rr(ag, AG71XX_REG_MAC_IFCTL);
ifctl &= ~(MAC_IFCTL_SPEED);
fifo5 = ag71xx_rr(ag, AG71XX_REG_FIFO_CFG5);
fifo5 &= ~FIFO_CFG5_BM;
switch (ag->speed) {
case SPEED_1000:
cfg2 |= MAC_CFG2_IF_1000;
fifo5 |= FIFO_CFG5_BM;
break;
case SPEED_100:
cfg2 |= MAC_CFG2_IF_10_100;
ifctl |= MAC_IFCTL_SPEED;
break;
case SPEED_10:
cfg2 |= MAC_CFG2_IF_10_100;
break;
default:
BUG();
return;
}
if (pdata->is_ar91xx)
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG3, 0x00780fff);
else if (pdata->is_ar724x)
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG3, pdata->fifo_cfg3);
else
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG3, 0x008001ff);
if (pdata->set_speed)
pdata->set_speed(ag->speed);
ag71xx_wr(ag, AG71XX_REG_MAC_CFG2, cfg2);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, fifo5);
ag71xx_wr(ag, AG71XX_REG_MAC_IFCTL, ifctl);
ag71xx_hw_start(ag);
if (pdata->is_qca956x) {
ag71xx_disable_inline_chksum_engine(ag);
}
netif_carrier_on(ag->dev);
if (netif_msg_link(ag))
pr_info("%s: link up (%sMbps/%s duplex)\n",
ag->dev->name,
ag71xx_speed_str(ag),
(DUPLEX_FULL == ag->duplex) ? "Full" : "Half");
DBG("%s: fifo_cfg0=%#x, fifo_cfg1=%#x, fifo_cfg2=%#x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG0),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG1),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG2));
DBG("%s: fifo_cfg3=%#x, fifo_cfg4=%#x, fifo_cfg5=%#x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG3),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG4),
ag71xx_rr(ag, AG71XX_REG_FIFO_CFG5));
DBG("%s: mac_cfg2=%#x, mac_ifctl=%#x\n",
ag->dev->name,
ag71xx_rr(ag, AG71XX_REG_MAC_CFG2),
ag71xx_rr(ag, AG71XX_REG_MAC_IFCTL));
}
static int ag71xx_open(struct net_device *dev)
{
struct ag71xx *ag = netdev_priv(dev);
int ret;
/*
* Compute the RX buffer size.
*/
if (dev->mtu > AG71XX_TX_MTU_LEN) {
ag->rx_buf_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN + NET_SKB_PAD + NET_IP_ALIGN;
} else {
ag->rx_buf_size = AG71XX_RX_BUF_SIZE;
}
/*
* Compute the RX buffer offset. On AR71xx/AR91xx packets must be
* 4-byte aligned.
*
* When using builtin AR8216 support, hardware adds a 2-byte header,
* so we don't need any extra alignment in that case.
*/
if (!ag71xx_get_pdata(ag)->is_ar724x || ag71xx_has_ar8216(ag)) {
ag->rx_buf_offset = AG71XX_HACK_WIFI_HEADROOM;
} else {
ag->rx_buf_offset = AG71XX_HACK_WIFI_HEADROOM + NET_IP_ALIGN;
}
ret = ag71xx_rings_init(ag);
if (ret) {
ag71xx_rings_cleanup(ag);
return ret;
}
napi_enable(&ag->napi);
netif_carrier_off(dev);
ag71xx_phy_start(ag);
ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->tx_ring.descs_dma);
ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->rx_ring.descs_dma);
ag71xx_hw_set_macaddr(ag, dev->dev_addr);
netif_start_queue(dev);
ag->tx_stopped = false;
return 0;
}
static int ag71xx_stop(struct net_device *dev)
{
struct ag71xx *ag = netdev_priv(dev);
unsigned long flags;
netif_carrier_off(dev);
ag71xx_phy_stop(ag);
spin_lock_irqsave(&ag->lock, flags);
ag->tx_stopped = true;
netif_stop_queue(dev);
ag71xx_hw_stop(ag);
ag71xx_dma_reset(ag);
napi_disable(&ag->napi);
spin_unlock_irqrestore(&ag->lock, flags);
ag71xx_rings_cleanup(ag);
return 0;
}
static netdev_tx_t ag71xx_hard_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ag71xx *ag = netdev_priv(dev);
struct ag71xx_ring *ring = &ag->tx_ring;
struct ag71xx_buf *curr = ring->curr;
struct ag71xx_desc *desc = curr->desc;
unsigned int used = ring->used;
unsigned int size = ring->size;
unsigned int len;
dma_addr_t dma_addr;
/*
* We shouldn't ever see our ring fully used and reach here but just in case!
*/
if (unlikely(used == size)) {
DBG("%s: tx queue full\n", dev->name);
ag->tx_stopped = true;
netif_stop_queue(dev);
goto err_drop;
}
if (unlikely(ag71xx_has_ar8216(ag))) {
ag71xx_add_ar8216_header(ag, skb);
}
len = skb->len;
if (unlikely(len <= 0)) {
DBG("%s: packet len is too small\n", dev->name);
goto err_drop;
}
netdev_sent_queue(dev, len);
curr->skb = skb;
curr->len = len;
dma_addr = dma_map_single(&dev->dev, skb->data, len, DMA_TO_DEVICE);
/* setup descriptor fields */
desc->data = (u32)dma_addr;
desc->ctrl = len & DESC_PKTLEN_M;
curr = curr->next;
ring->curr = curr;
used++;
ring->used = used;
/*
* If our transmit ring is full then stop transmitting.
*/
if (unlikely(used == size)) {
DBG("%s: tx queue full\n", ag->dev->name);
ag->tx_stopped = true;
netif_stop_queue(dev);
}
DBG("%s: packet injected into TX queue\n", ag->dev->name);
dev->trans_start = jiffies;
/* enable TX engine */
ag71xx_wr_fast(ag->tx_ctrl_reg, TX_CTRL_TXE);
ag71xx_wr_flush(ag->tx_ctrl_reg);
return NETDEV_TX_OK;
err_drop:
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int ag71xx_do_ioctl_switchport(struct net_device *dev, struct ifreq *ifr,
int cmd)
{
struct ag71xx *ag = netdev_priv(dev);
struct net_device *netdev = ag->dev;
struct mii_ioctl_data *mii_data = if_mii(ifr);
switch (cmd) {
case SIOCGMIIPHY:
mii_data->phy_id = netdev->dev_id;
/* fall through */
case SIOCGMIIREG:
mii_data->val_out = ag->mii_bus->read(ag->mii_bus, netdev->dev_id,
mii_data->reg_num);
if (mii_data->val_out == 0xffff)
return -ENODEV;
break;
case SIOCSMIIREG:
ag->mii_bus->write(ag->mii_bus, netdev->dev_id, mii_data->reg_num,
mii_data->val_in);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int ag71xx_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct ag71xx *ag = netdev_priv(dev);
int ret;
switch (cmd) {
case SIOCETHTOOL:
if (ag->phy_dev == NULL)
break;
spin_lock_irq(&ag->lock);
ret = phy_ethtool_ioctl(ag->phy_dev, (void *) ifr->ifr_data);
spin_unlock_irq(&ag->lock);
return ret;
case SIOCSIFHWADDR:
if (copy_from_user
(dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
return -EFAULT;
return 0;
case SIOCGIFHWADDR:
if (copy_to_user
(ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
return -EFAULT;
return 0;
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
if (ag->phy_dev == NULL)
return ag71xx_do_ioctl_switchport(dev, ifr, cmd);
else
return phy_mii_ioctl(ag->phy_dev, ifr, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static void ag71xx_tx_timeout(struct net_device *dev)
{
struct ag71xx *ag = netdev_priv(dev);
if (netif_msg_tx_err(ag))
pr_info("%s: tx timeout\n", ag->dev->name);
schedule_work(&ag->restart_work);
}
static void ag71xx_restart_work_func(struct work_struct *work)
{
struct ag71xx *ag = container_of(work, struct ag71xx, restart_work);
if (ag71xx_get_pdata(ag)->is_ar724x) {
ag->link = 0;
ag71xx_link_adjust(ag);
return;
}
ag71xx_stop(ag->dev);
ag71xx_open(ag->dev);
}
static bool ag71xx_check_dma_stuck(struct ag71xx *ag, struct net_device *dev)
{
u32 rx_sm, tx_sm, rx_fd;
if (likely(time_before(jiffies, dev->trans_start + HZ / 10)))
return false;
if (!netif_carrier_ok(dev))
return false;
rx_sm = ag71xx_rr(ag, AG71XX_REG_RX_SM);
if ((rx_sm & 0x7) == 0x3 && ((rx_sm >> 4) & 0x7) == 0x6)
return true;
tx_sm = ag71xx_rr(ag, AG71XX_REG_TX_SM);
rx_fd = ag71xx_rr(ag, AG71XX_REG_FIFO_DEPTH);
if (((tx_sm >> 4) & 0x7) == 0 && ((rx_sm & 0x7) == 0) &&
((rx_sm >> 4) & 0x7) == 0 && rx_fd == 0)
return true;
return false;
}
static int ag71xx_tx_packets(struct ag71xx *ag, struct net_device *dev,
bool is_ar7240)
{
struct ag71xx_ring *ring = &ag->tx_ring;
unsigned int sent = 0;
unsigned int bytes_compl = 0;
struct ag71xx_buf *dirty = ring->dirty;
struct ag71xx_desc *desc;
unsigned int used = ring->used;
struct sk_buff *skb;
DBG("%s: processing TX ring\n", dev->name);
/*
* If we haven't transmitted anything then we're done!
*/
if (!used)
return sent;
/*
* Start by looking at the SKB that will be up next.
*/
skb = dirty->skb;
desc = dirty->desc;
do {
struct sk_buff *next_skb;
if (unlikely(!(desc->ctrl & DESC_EMPTY))) {
if (is_ar7240) {
if (unlikely(ag71xx_check_dma_stuck(ag, dev))) {
schedule_work(&ag->restart_work);
}
}
break;
}
sent++;
bytes_compl += dirty->len;
dirty->skb = NULL;
dirty = dirty->next;
next_skb = dirty->skb;
desc = dirty->desc;
/*
* There's a good chance that the next SKB may be cold in
* the cache so try to give some help.
*/
if (likely(next_skb)) {
prefetch(skb_shinfo(next_skb));
prefetch(&next_skb->users);
}
ag71xx_wr_fast(ag->tx_status_reg, TX_STATUS_PS);
dev_kfree_skb(skb);
skb = next_skb;
used--;
} while (used);
ag71xx_wr_flush(ag->tx_status_reg);
ring->dirty = dirty;
ring->used = used;
dev->stats.tx_bytes += bytes_compl;
dev->stats.tx_packets += sent;
DBG("%s: %u packets sent out\n", dev->name, sent);
/*
* Mark the amount of work we've done.
*/
netdev_completed_queue(dev, sent, bytes_compl);
/*
* If our transmit queue was previously stopped because we'd run out
* of space and we've now successfully freed some space then restart
* the transmit queue again.
*/
if (unlikely(ag->tx_stopped) && sent) {
netif_wake_queue(dev);
ag->tx_stopped = false;
}
return sent;
}
static int ag71xx_rx_packets(struct ag71xx *ag, struct net_device *dev, int limit)
{
struct ag71xx_ring *ring = &ag->rx_ring;
struct ag71xx_buf *curr = ring->curr;
struct ag71xx_desc *desc = curr->desc;
unsigned int rx_buf_size = ag->rx_buf_size;
unsigned int rx_buf_offset = ag->rx_buf_offset;
int received = 0;
struct sk_buff *skb;
bool has_ar8216;
has_ar8216 = ag71xx_has_ar8216(ag);
/*
* Start by looking at the SKB that will be up next.
*/
skb = curr->skb;
/*
* Process newly received packets.
*/
do {
u32 desc_ctrl;
struct sk_buff *next_skb;
struct sk_buff *new_skb;
int pktlen;
/*
* Is our descriptor marked as empty? If it is then we're done.
*/
desc_ctrl = desc->ctrl;
if (unlikely(desc_ctrl & DESC_EMPTY)) {
break;
}
/*
* Speed up eth_type_trans() since it will inspect the packet
* payload and write the protocol. Strictly speaking this is a
* little premature as the next SKB alloc could fail but in
* practice it never will so this is good :-)
*/
prefetch(skb->data);
prefetch(&skb->protocol);
/*
* When we receive a packet we also allocate a new buffer. If
* for some reason we can't allocate the buffer then we're not
* going to try to process the received buffer yet either.
*/
new_skb = dev_alloc_skb(rx_buf_size + rx_buf_offset);
if (unlikely(!new_skb)) {
break;
}
skb_reserve(new_skb, rx_buf_offset);
/*
* This is where we'd unmap our buffer from the GMAC in a
* general use of the DMA API. On a MIPS platform this would
* be a complete no-op so we don't bother:
*
* dma_unmap_single(&dev->dev, curr->dma_addr,
* rx_buf_size, DMA_FROM_DEVICE);
*/
/*
* Update the descriptor records to account for the new SKB.
*/
curr->skb = new_skb;
curr->dma_addr = dma_map_single(&dev->dev, new_skb->data,
rx_buf_size, DMA_FROM_DEVICE);
desc->data = (u32)curr->dma_addr;
desc->ctrl = DESC_EMPTY;
/*
* Move forward to what will be the next RX descriptor.
*/
curr = curr->next;
next_skb = curr->skb;
desc = curr->desc;
/*
* Our next skb is almost certainly cold in the cache as we last
* saw it when we replenished this slot. We'll take cache
* misses on almost every access. Try to mitigate this by
* issuing some prefetches.
*
* Note that what we're prefetching here are the fields that
* we'll need within the next iteration of this function.
*/
if (likely(next_skb)) {
/*
* For a MIPS platform we shouldn't issue more than 3
* prefetches at a time.
*/
prefetch(&next_skb->data);
prefetch(&next_skb->tail);
prefetch(&next_skb->len);
}
/*
* Notify the GMAC that we received the packet.
*/
ag71xx_wr_fast(ag->rx_status_reg, RX_STATUS_PR);
/*
* Determine the size of the packet we just received.
*/
pktlen = desc_ctrl & DESC_PKTLEN_M;
pktlen -= ETH_FCS_LEN;
/*
* Update device stats.
*/
dev->stats.rx_packets++;
dev->stats.rx_bytes += pktlen;
/*
* Set up the length of the skb.
*/
skb->tail += pktlen;
skb->len += pktlen;
if (unlikely(has_ar8216)) {
int err = ag71xx_remove_ar8216_header(ag, skb, pktlen);
if (err) {
dev->stats.rx_dropped++;
dev_kfree_skb(skb);
goto next;
}
}
skb->protocol = eth_type_trans(skb, dev);
skb_checksum_none_assert(skb);
netif_receive_skb(skb);
next:
skb = next_skb;
received++;
} while (received < limit);
ag71xx_wr_flush(ag->rx_status_reg);
ring->curr = curr;
return received;
}
static int ag71xx_poll(struct napi_struct *napi, int limit)
{
struct ag71xx *ag = container_of(napi, struct ag71xx, napi);
struct ag71xx_platform_data *pdata = ag71xx_get_pdata(ag);
struct net_device *dev = ag->dev;
unsigned long flags;
u32 status;
int tx_done;
int rx_done;
pdata->ddr_flush();
/*
* First empty any packets that we have transmitted! In theory it might
* seem better to handle packets that we've received but we
* really want to get packets that completed TX to be used to replenish
* the RX descriptor ring and keeping those two operations adjacent
* will help keep any recycled skbs hotter in the D-cache.
*/
tx_done = ag71xx_tx_packets(ag, dev, pdata->is_ar7240);
rx_done = ag71xx_rx_packets(ag, dev, limit);
ag71xx_debugfs_update_napi_stats(ag, rx_done, tx_done);
status = ag71xx_rr_fast(ag->rx_status_reg);
if (unlikely(status & RX_STATUS_OF)) {
ag71xx_wr_fast(ag->rx_status_reg, RX_STATUS_OF);
ag71xx_wr_flush(ag->rx_status_reg);
dev->stats.rx_fifo_errors++;
/* restart RX */
ag71xx_wr_fast(ag->rx_ctrl_reg, RX_CTRL_RXE);
ag71xx_wr_flush(ag->rx_ctrl_reg);
}
if (rx_done < limit) {
DBG("%s: disable polling mode, rx=%d, tx=%d,limit=%d\n",
dev->name, rx_done, tx_done, limit);
napi_complete(napi);
/* enable interrupts */
spin_lock_irqsave(&ag->lock, flags);
ag71xx_int_enable(ag, AG71XX_INT_POLL);
spin_unlock_irqrestore(&ag->lock, flags);
return rx_done;
}
more:
DBG("%s: stay in polling mode, rx=%d, tx=%d, limit=%d\n",
dev->name, rx_done, tx_done, limit);
return rx_done;
}
static irqreturn_t ag71xx_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct ag71xx *ag = netdev_priv(dev);
u32 status;
status = ag71xx_rr_fast(ag->int_status_reg);
ag71xx_dump_intr(ag, "raw", status);
if (unlikely(!status))
return IRQ_NONE;
if (unlikely(status & AG71XX_INT_ERR)) {
if (status & AG71XX_INT_TX_BE) {
ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE);
dev_err(&dev->dev, "TX BUS error\n");
}
if (status & AG71XX_INT_RX_BE) {
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE);
dev_err(&dev->dev, "RX BUS error\n");
}
}
if (likely(status & AG71XX_INT_POLL)) {
ag71xx_int_disable(ag, AG71XX_INT_POLL);
DBG("%s: enable polling mode\n", dev->name);
napi_schedule(&ag->napi);
}
ag71xx_debugfs_update_int_stats(ag, status);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void ag71xx_netpoll(struct net_device *dev)
{
disable_irq(dev->irq);
ag71xx_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
static int ag71xx_change_mtu(struct net_device *dev, int new_mtu)
{
int ret;
if (new_mtu < 68 || new_mtu > AG71XX_JUMBO_LEN)
return -EINVAL;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
return 0;
}
ag71xx_stop(dev);
printk("%s:%s new_mtu is %d\n",__func__,dev->name,new_mtu);
dev->mtu = new_mtu;
ret = ag71xx_open(dev);
if (ret)
dev_close(dev);
return ret;
}
static const struct net_device_ops ag71xx_netdev_ops = {
.ndo_open = ag71xx_open,
.ndo_stop = ag71xx_stop,
.ndo_start_xmit = ag71xx_hard_start_xmit,
.ndo_do_ioctl = ag71xx_do_ioctl,
.ndo_tx_timeout = ag71xx_tx_timeout,
.ndo_change_mtu = ag71xx_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = ag71xx_netpoll,
#endif
};
#ifdef CONFIG_OF
static void ag71xx_of_gmac_setup(struct platform_device *pdev, u32 mask)
{
struct resource *res;
void __iomem *cfg_base;
if (!(res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg_base")))
return;
cfg_base = ioremap_nocache(res->start, res->end - res->start + 1);
if (!cfg_base) {
dev_err(&pdev->dev, "unable to ioremap cfg_base\n");
return;
}
__raw_writel(__raw_readl(cfg_base) | mask, cfg_base);
/* flush write */
(void)__raw_readl(cfg_base);
iounmap(cfg_base);
}
static int ag71xx_of_pdata_update(struct platform_device *pdev)
{
u32 value[4];
const phandle *ph;
struct device_node *mdio;
struct platform_device *pdev_mdio;
struct ag71xx_platform_data *pdata = pdev->dev.platform_data;
if (!pdev->dev.of_node)
return -EINVAL;
ph = of_get_property(pdev->dev.of_node, "mdio-handle", NULL);
if (!ph) {
dev_err(&pdev->dev, "No mdio-handle in dtb\n");
return -EINVAL;
}
mdio = of_find_node_by_phandle(*ph);
if (!mdio) {
dev_err(&pdev->dev, "No mdio device found by phandle\n");
return -EINVAL;
}
pdev_mdio = of_find_device_by_node(mdio);
pdata->mii_bus_dev = &pdev_mdio->dev;
of_node_put(mdio);
if (!of_property_read_u32(pdev->dev.of_node, "eth-cfg", &value[0]))
ag71xx_of_gmac_setup(pdev, value[0]);
if (pdata->update_pll &&
!of_property_read_u32_array(pdev->dev.of_node, "eth-pll-data", value, 3))
pdata->update_pll(value[0], value[1], value[2]);
if (!of_property_read_u32_array(pdev->dev.of_node, "eth-phy-cfg", value, 4)) {
pdata->phy_if_mode = value[0];
pdata->phy_mask = value[1];
pdata->speed = value[2];
pdata->duplex = value[3];
}
if (!of_property_read_u32_array(pdev->dev.of_node, "eth-fifo-cfg", value, 3)) {
pdata->fifo_cfg1 = value[0];
pdata->fifo_cfg2 = value[1];
pdata->fifo_cfg3 = value[2];
}
if (pdata->switch_data &&
!of_property_read_u32_array(pdev->dev.of_node, "eth-sw-cfg", value, 2)) {
pdata->switch_data->phy4_mii_en = value[0];
pdata->switch_data->phy_poll_mask = value[1];
}
return 0;
}
#else
static int ag71xx_of_pdata_update(struct platform_device *pdev)
{
return -EINVAL;
}
#endif
static int __devinit ag71xx_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct resource *res;
struct ag71xx *ag;
struct ag71xx_desc *ag_stop_desc;
struct ag71xx_platform_data *pdata;
int err;
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "no platform data specified\n");
err = -ENXIO;
goto err_out;
}
if (pdata->mii_bus_dev == NULL &&
ag71xx_of_pdata_update(pdev)) {
dev_err(&pdev->dev, "no MII bus device specified\n");
err = -EINVAL;
goto err_out;
}
dev = alloc_etherdev(sizeof(*ag));
if (!dev) {
dev_err(&pdev->dev, "alloc_etherdev failed\n");
err = -ENOMEM;
goto err_out;
}
SET_NETDEV_DEV(dev, &pdev->dev);
ag = netdev_priv(dev);
ag->pdev = pdev;
ag->dev = dev;
ag->msg_enable = netif_msg_init(ag71xx_msg_level,
AG71XX_DEFAULT_MSG_ENABLE);
ag->gmac_num = ag71xx_gmac_num++;
spin_lock_init(&ag->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mac_base");
if (!res) {
dev_err(&pdev->dev, "no mac_base resource found\n");
err = -ENXIO;
goto err_out;
}
ag->mac_base = ioremap_nocache(res->start, res->end - res->start + 1);
if (!ag->mac_base) {
dev_err(&pdev->dev, "unable to ioremap mac_base\n");
err = -ENOMEM;
goto err_free_dev;
}
ag->rx_ctrl_reg = ag->mac_base + AG71XX_REG_RX_CTRL;
ag->rx_status_reg = ag->mac_base + AG71XX_REG_RX_STATUS;
ag->tx_ctrl_reg = ag->mac_base + AG71XX_REG_TX_CTRL;
ag->tx_status_reg = ag->mac_base + AG71XX_REG_TX_STATUS;
ag->int_status_reg = ag->mac_base + AG71XX_REG_INT_STATUS;
dev->irq = platform_get_irq(pdev, 0);
err = request_irq(dev->irq, ag71xx_interrupt,
IRQF_DISABLED,
dev->name, dev);
if (err) {
dev_err(&pdev->dev, "unable to request IRQ %d\n", dev->irq);
goto err_unmap_base;
}
dev->base_addr = (unsigned long)ag->mac_base;
dev->netdev_ops = &ag71xx_netdev_ops;
dev->ethtool_ops = &ag71xx_ethtool_ops;
INIT_WORK(&ag->restart_work, ag71xx_restart_work_func);
ag->tx_ring.size = AG71XX_TX_RING_SIZE_DEFAULT;
ag->tx_ring.mask = AG71XX_TX_RING_SIZE_DEFAULT - 1;
ag->rx_ring.size = AG71XX_RX_RING_SIZE_DEFAULT;
ag->rx_ring.mask = AG71XX_RX_RING_SIZE_DEFAULT - 1;
ag_stop_desc = dma_alloc_coherent(NULL,
sizeof(struct ag71xx_desc), &ag->stop_desc_dma, GFP_KERNEL);
if (!ag_stop_desc)
goto err_free_irq;
ag_stop_desc->data = 0;
ag_stop_desc->ctrl = 0;
ag_stop_desc->next = (u32)ag->stop_desc_dma;
ag->stop_desc = ag_stop_desc;
memcpy(dev->dev_addr, pdata->mac_addr, ETH_ALEN);
netif_napi_add(dev, &ag->napi, ag71xx_poll, AG71XX_NAPI_WEIGHT);
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "unable to register net device\n");
goto err_free_desc;
}
pr_info("%s: Atheros AG71xx at 0x%08lx, irq %d\n",
dev->name, dev->base_addr, dev->irq);
ag71xx_dump_regs(ag);
ag71xx_hw_init(ag);
ag71xx_dump_regs(ag);
err = ag71xx_phy_connect(ag);
if (err)
goto err_unregister_netdev;
err = ag71xx_debugfs_init(ag);
if (err)
goto err_phy_disconnect;
platform_set_drvdata(pdev, dev);
return 0;
err_phy_disconnect:
ag71xx_phy_disconnect(ag);
err_unregister_netdev:
unregister_netdev(dev);
err_free_desc:
dma_free_coherent(NULL, sizeof(struct ag71xx_desc), ag->stop_desc,
ag->stop_desc_dma);
err_free_irq:
free_irq(dev->irq, dev);
err_unmap_base:
iounmap(ag->mac_base);
err_free_dev:
kfree(dev);
err_out:
platform_set_drvdata(pdev, NULL);
return err;
}
static int __devexit ag71xx_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
if (dev) {
struct ag71xx *ag = netdev_priv(dev);
ag71xx_debugfs_exit(ag);
ag71xx_phy_disconnect(ag);
unregister_netdev(dev);
free_irq(dev->irq, dev);
iounmap(ag->mac_base);
kfree(dev);
platform_set_drvdata(pdev, NULL);
}
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id ag71xx_of_match_table[] = {
{.compatible = "qcom,ag71xx-eth"},
{}
};
#else
#define ag71xx_of_match_table NULL
#endif
static struct platform_driver ag71xx_driver = {
.probe = ag71xx_probe,
.remove = __exit_p(ag71xx_remove),
.driver = {
.name = AG71XX_DRV_NAME,
.of_match_table = ag71xx_of_match_table,
}
};
static int __init ag71xx_module_init(void)
{
int ret;
ret = ag71xx_debugfs_root_init();
if (ret)
goto err_out;
ret = ag71xx_mdio_driver_init();
if (ret)
goto err_debugfs_exit;
ret = platform_driver_register(&ag71xx_driver);
if (ret)
goto err_mdio_exit;
return 0;
err_mdio_exit:
ag71xx_mdio_driver_exit();
err_debugfs_exit:
ag71xx_debugfs_root_exit();
err_out:
return ret;
}
static void __exit ag71xx_module_exit(void)
{
platform_driver_unregister(&ag71xx_driver);
ag71xx_mdio_driver_exit();
ag71xx_debugfs_root_exit();
}
module_init(ag71xx_module_init);
module_exit(ag71xx_module_exit);
MODULE_VERSION(AG71XX_DRV_VERSION);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_AUTHOR("Imre Kaloz <kaloz@openwrt.org>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" AG71XX_DRV_NAME);